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We develop a formalism appropriate for studying multiple inelastic scattering of thermal-energy He
atoms from surface phonons in the collision regimes in which both the motion of the particle and surface
vibrations must be treated quantum mechanically. Having in mind recent experiments on He-atom
scattering (HAS) from surfaces, we first point out some difficulties connected with calculating the
reflection coefficients under extreme multiphonon conditions by resorting to the standard T-matrix ap-
proach. To circumvent these problems we make use of the connection between the reflection coefficients
and angular resolved scattering spectra and show how the latter can be conveniently obtained in the
form of a cumulant expansion for multiphonon-scattering amplitudes in powers of inelastic atom-surface
coupling. This yields the expression for the scattering spectrum whose advantageous characteristics are
the unitarity (which manifests itself through a Debye-Wailer factor in exponential form with a complete
Debye-Wailer exponent encompassing contributions from all inelastic scattering channels) and the ame-

nability to perturbational treatment in terms of uncorrelated and correlated atom-phonon interactions.
In the scattering regimes in which the contributions of correlated multiphonon excitations become negli-

gible relative to those of uncorrelated ones, the scattering spectrum acquires a particularly simple form
of an exponentiated Born approximation (EBA). As various other semiclassical and classical approxima-
tions regarding the particle dynamics can be shown to emerge from the EBA, we estimate its validity for
treating multiple He-atom scattering by Einstein- and Debye-like phonons in representative collision sys-

tems He —+CO(&3 X &3)R30 /Rh(111) and He —+Cu(001) in which such modes have been experimental-

ly detected. We find that under the conditions of these experiments the EBA can be considered as exact,
which enables accurate calculation of the corresponding multiphonon-scattering spectra. The obtained
results compare well with experimental data, thereby confirming the potentiality and applicability of the
developed formalism in HAS. We also show that the semiclassical trajectory and fast collision or im-

pulse approximations, which naturally derive as special limits of the EBA, can largely deviate from the
so-defined exact EBA treatment in the considered range of the parameter space. From this we conclude
that they may become unreliable in the scattering regimes in which either the validity of the EBA is
violated or their deviation from the EBA is large.

I. SINGLE-PHONON AND MULTIPHONON
PROCESSES IN He-ATOM SCA'I j.'KRING

FROM SURFACES

Recently, a considerable interest has been aroused in
connection with identification' and interpretation
of multiphonon features in the spectra of thermal-energy
He atoms scattered inelastically from solid surfaces. It
has been realized that a complete interpretation of
single-phonon spectral features in He-atom scattering
(HAS) time-of-Aight (TOF) spectra, whose analyses en-
able the extraction of the phonon-dispersion curves, also
requires a proper disentangling of multiphonon e6'ects
from the experimental data. In most cases these e6'ects
manifest themselves in the elastic or no-loss line of the
spectrum through the Debye-Wailer factor, as well as in
the inelastic sideband, mainly as a broad and almost
featureless background already detectable in the region in

which the single-phonon structure dominates. ' In con-
trast to this, in some systems characterized by surface
phonon modes of weak or negligible dispersion, the mul-
tiphonon eft'ects in the particle loss spectra may manifest
themselves as sharp higher-order peaks or as satellites
(characteristic of multiphonon and overtone losses) of the
single-phonon structure.

Although the number of theoretical works addressing
multiphonon features of the HAS spectra has not been
very large, the versatility of approaches in the treatment
of this problem is indicative of its complexity. However,
quite generally, they may be classified roughly into two
categories: (i) calculations of the inelastic atom-surface
reAection coefficient using the standard T-matrix ap-
proach of the stationary collision theory often carried out
by utilizing the Glauber —van Hove method' ' to deal
with phonon excitations, ' and (ii) a time-dependent ap-
proach to calculate the evolution operator of the collision
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quantum numbers (indices of the branches of the phonon
spectrum, etc.).

The inelastic reflection coefficient (1) contains phonon
processes to all orders in the coupling constant. By treat-
ing the dissipative atom-phonon interaction to first or-
der, "" 1.e. by making a replacement Tf';~Vf
=(nf, pf '~V(r)~n;, q', '), one arrives at the distorted-
wave Born approximation (DWBA) expression for the T
matrix' and the reflection coefficient. In the case of har-
rnonic atom-surface phonon coupling, this yields one-
phonon differential inelastic reflection coefficient dR /dkf
and the inelastic scattering intensity dR /defdQf which
have been applied to establish single-phonon-dispersion
curves for a number of solid surfaces. ' '

However, a transition from first- to higher-order
distorted-wave Born approximation terms in the pertur-
bation expansion of the T matrix which describes multi-
phonon processes is far from trivial. In contrast to the
first term of this expansion, viz. , Vf;, which is a local
quantity describing a single inelastic-scattering event
higher-order terms are generally nonlocal. Hence such
terms cannot be dealt with easily unless drastic
simplifications regarding the structure of T are intro-
duced. ' This efFectively limits the usefulness of this
method in a general and strictly quantal treatment of
higher-order correlated multiphonon-scattering process-
es, although the same formal Glauber —van Hove pro-
cedure as in the 0%'BA can be applied.

The treatment of atom-phonon scattering can be con-
siderably simplified and made much more illustrative in
models in which the total atom-surface interaction poten-
tial U(r) is assumed to be given by a pairwise sum of the
scattering atom-surface atom potentials v (r):

system from which the energy spectrum of the scattered
particle can be derived. " This latter approach also al-
lows for a natural extension in which the particle motion
is treated by classical dynamics (for discussions of the
various forms of the classical trajectory and path integral
approximations, see Ref. 7).

One major problem in all theoretical treatments of
multiphonon processes in HAS represents the question of
which approximations to introduce to make calculations
feasible, yet realistic and physically acceptable as regards
the particle scattering dynamics. Approximations can be
introduced in various ways and at various stages of solv-

'ing the collision problem, e.g., in the order of the Born
series expansion for the T inatrix if approach (i) is fol-
lowed in approximating the generally complicated matrix
elements of the interaction in each order of the expan-
sion, or in making use of various approximate forms for
the usually complicated phonon densities of states, etc.

Probably the most popular method used so far in the
treatment of inelastic atom-surface scattering is based on
the development of the scattering matrix in terms of the
distorted waves following approach (i) above. That is, if
the discussion is restricted only to Qat surfaces, as is com-
monly done in the case of HAS from (111)and (100) sur-
faces of fcc metals, the problem of elastic reAections of
the impinging atom (characterized by its mass M and
momentum and position operators p and r, respectively)
froin the static surface potential U (r) = U (z) can be ex-
actly solved in a closed form. This yields distorted in-
coming and outgoing waves y& '(r) and p&+'(r), respec-
tively, where k denotes the set of unperturbed distorted
wave quantum numbers. These states are stationary solu-
tions of the particle Hamiltonian HID=(p /2M)+ U (r),
and therefore describe elastic particle scattering
(reflection) by U (r) to all orders. Then, by treating the
dissipative particle-phonon interaction V(r) as a pertur-
bation, one arrives at the expression for the inelastic
reflection coefficient R; f =cr; f/L cos8;, or the scatter-
ing cross section per efFective illuminated surface area
I. cos8;, ' which describes scattering of the particle from
its initial state characterized by the quantum number k,
to a final state characterized by the quantum number
1 .7, 16, 15, 17
Kf o

U(r) = U (r)+ V(r) = g u (r —R, —r —
u& ), (2)

1, m

where RI+r denotes the equilibrium position of the
mth atom in the Ith surface unit cell of the solid,

U (r)= gv (r —
R&

—r )
l, m

is the static atom-surface potential, and uI denotes the
displacement of the atom of the solid from its equilibrium
position RI+r at point r within the 1th surface unit
cell with a basis.

From here on one can proceed in two ways in treating
the dynamic component V(r) of the total potential U(r)
given by Eq. (2). The first, most commonly followed
prescription, is to assume that u& is small and then ex-
pand U up to first order in the displacements to obtain
the harmonic approximation expression for V(r):

Here i and f label the initial and final states of the
scattering system, respectively, j„.is the incident current
of particles normal to the surface, and E; and Ef denote
the total energy of the scattering system before and after
the collision, respectively. T is the scattering matrix
generated by the dissipative atom-phonon interaction
V(r) in the Hilbert space of distorted waves, and p~i, (n;)
is the distribution of initial phonon states ~n; ). The sum-
mation over phonon states I nf j is carried out over the
sets of all normal-inode quantum numbers f Q,jj, where
Q is the lateral phonon momentum (parallel to the sur-
face), and j denotes the multitude of all other phonon

V(r)=V(r, Iur j)= gF, (r) u, (4)
E, m

Here

F& (r) = —Vu (r —R& —r )

is the force exerted by the (l, m)th atom on the impinging
He atom. Quantization of uI then leads to the expres-

Rk (kf)= . g p h(n;) g ~T~;~ 5(Ef E;) . —
jzi In I I nf I
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=gv (kf —k;}
I, m

—i (kf —k,. ).(Rl+r +ul m (6)

where now ~k) denote the particle plane-wave states of
momentum k, and then setting up the full scattering ma-
trix T generated by the total scattering potential U(r)

+ 0 ~ ~

+ ~ ~ ~

FiG. 1. (a) Series of Feynman diagrams representing He-
atom scattering through emission of real phonons in the first-,
second-, and third-order perturbation expansion. These types of
diagrams are generated by the T matrix (see text) in which un-

perturbed particle propagators are diagonal on distorted-wave
states corresponding to the potential U (r) of Eq. (3), and each
interaction vertex derives from the application of the potential
V(r) of Eq. (4). (b) Feynman diagrams representing real pho-
non excitations in He-atom scattering processes which are gen-
erated by the T matrix set up in terms of the full atom-surface
potential U(r) of Eq. (2). Here the unperturbed particle propa-
gators correspond to the free-atom motion described by plane
waves. Note the di6'erent interaction vertices denoted by dots,
squares, and open circles associated with one- and simultaneous
two- and three-phonon-emission processes, respectively.

sion for V(r) in terms of creation and annihilation opera-
tors for substrate phonon modes. Using this, one sets up
the T~ matrix in terms of V(r), which exhibits a property
that only one phonon can be either created or annihilated
in each interaction vertex appearing in an nth-order dia-
gram of such scattering matrix [i.e., only one phonon
propagator terminating in a single vertex, cf. Fig. 1(a)].

Inclusion of higher-order anharmonic terms, propor-
tional to quadratic and higher-order powers of u~ [gen-
erally of nth-order terms which were omitted from Eq.
(4}] would give rise to n-fold phonon vertices in the
scattering matrix. The problem of including such
anharmonic terms is usually dealt with somewhat
differently, and represents an alternative approach to the
one just described. It starts by writing the matrix ele-
ments of the total interaction as

(kf ~
U(r) ~k; ) = U

encompassing both the static surface potential and its
temporal variation due to the vibrations of the atoms in
the solid. As, according to (6), the matrix element
Uk k contains displacements to all orders, already thef i

Ufirst-order term in the Born expansion of (kf ~T ~k;),
now given by Eq. (6), will give rise to phonon-scattering
processes to all orders in the number of phonons, but
each of them appearing only once [cf. Fig. 1(b)]. Higher-
order Born expansion terms of T in powers of U may
then give rise to any combination of repeated phonon
vertices with any number of terminating phonon propa-
gators. Again, the Glauber —van Hove method can be
formally applied to calculate the refiection coeScient in
terms of T, but this task usually becomes formidable
beyond the standard first-order Born approximation
(BA). Hence various approximate forms and ansatze for
Tk k have been introduced in order to make calcula-f' i

tions feasible. In particular, a separable BA-like form of
the scattering operator deriving from Eq. (6), with
v (kf —k; ) replaced by some effective single-center
scattering operator ~ (kf, k, ), has been used in several
analyses of inelastic atom-surface scattering problems. '

However, such approximations, in which the particle and
phonon dynamics are completely decoupled, neglect the
peculiarities of the quantal particle propagation in the in-
termediate states of the collision event and therefore omit
all quantum recoil effects which take place between suc-
cessive particle interactions with phonons. This problem
has been realized rather early, ' but was not pursued in
detail until later on.

As is seen from the above discussion, one can generalLy
distinguish two types of multiphonon contributions to the
atom-surface scattering processes. A multiphonon pro-
cess can arise as a result of either a repeated harmonic or
single-phonon emission or absorption processes
(represented by single-phonon vertices in the expansion
of T or by the linear term in the first-order Born expan-
sion of T ), or from a simultaneous, anharmonic emis-
sion or absorption of phonons in a single vertex generated
by anharmonic terms in the perturbation expansion of
T . Thus a general multiphonon process of the nth order
may comprise a combination of n& harmonic single-
phonon processes, n2 two-phonon processes, etc. , where
n, +n2+ . . +n =n. However, due to different
strength of the coupling matrix elements, ' single and
multiphonon vertices will generally bear different weights
in the perturbation series expansion of the scattering ma-
trix (cf. Fig. 1).

The extraction of phonon-dispersion curves and spec-
tra from the experimental data is usually based on the
DWBA description of real one-phonon emission and ab-
sorption processes generated by a harmonic inelastic
atom-surface interaction V(r) of the form given by Eq.
(4). The matrix elements of potential (4) comprise the
products of the matrix elements of force (5) and the ten-
sor of the single phonon density of states D(co). ' ' In
the single-phonon-scattering regime the knowledge of
these quantities enables in principle a relatively accurate
reproduction of the experimentally observed single-
phonon-dispersion curves. ' '



12 310 A. BILIC AND B. GUMHALTER 52

A substantially difFerent situation may take place in the
regime of multiphonon excitations in HAS, even in the
case in which the vibrational coupling to the solid can be
well described in the harmonic approximation. Here the
quantum nature of the particle dynamics may begin to
play a decisive role in the regimes in which the effects of
the recoil of the scattered particle become important.
These will occur in regions of the parameters space in
which we do not expect that the conditions of either the
single-center scattering regime or impulse (fast) collisions,
or the classical trajectory approximation for the particle
motion, would be met. Our main goal in this paper is to
examine and illustrate on some concrete collision systems
how relevant an exact quantum treatment of scattered
particle dynamics in the calculation of multiphonon He-
atom scattering spectra may become.

The outline of the paper is as follows. In Sec. II we
start by demonstrating some general properties of inelas-
tic and elastic reflection coefficients, particularly the uni-
tarity condition they must obey, and introduce the notion
of the Debye-Wailer factor which will be used
throughout our discussions of HAS from surface pho-
nons. Then we formulate an expression for the scattering
spectrum, demonstrate its relation to the reflection
coefficients, and also point out some of its most important
features which will prove essential in the later elaboration
of the HAS spectra. Starting from this formulation, in
Sec. III A we present a detailed and rigorous quantum-
mechanical derivation of the angular- or momentum-
resolved scattering spectrum based on the cumulant ex-
pansion for the scattering amplitude. The main merit of
this approach is that the obtained expression for the
scattering spectrum is amenable to various approximate
treatments, particularly perturbative ones. In Sec. III 8
we use these rigorous results as a point of departure for
deriving the exponentiated Born approximation (EBA)
formula for the angular-resolved scattering spectrum
which should hold whenever the amplitudes of higher-
order correlated phonon emission processes can be
neglected relative to the uncorrelated ones. We also
demonstrate some of the basic properties of the EBA and
discuss the regimes in which other popular semiclassical
and approximate descriptions may emerge from it as lim-
iting cases. Then, in Sec. IV, we establish the criteria for
estimating the validity of the EBA in HAS which enables
us to define an exact treatment of atom scattering from
surface excitations. The exact treatment can be estab-
lished for those scattering regimes in which the EBA re-
sult makes the major contribution to the scattering spec-
trum, and in which the error introduced by neglecting
higher-order correlated excitation processes not account-
ed for by the EBA can be controlled and estimated to be
of the order of only a few percent. From this exact treat-
ment a few other approximate and semiclassical ones may
follow upon replacing the exact quantum-mechanical in-
teraction matrix elements in the scattering amplitude by
their quasiclassical or classical counterparts. The
differences between results obtained in the exact and vari-
ous semiclassical treatments for specific collision systems
then demonstrate which effects such popular and widely
used approximations may miss or give rise to. As typical

examples of these effects and the validity of the EBA, in
Secs. IV A and IV B we consider the multiphonon spectra
of He atoms scattered by surface phonons of Einstein-
and Debye-like character whose existence has recently
been detected in a number of systems. These findings en-
able us to draw fairly general conclusions as to the impor-
tance of quantum versus semiclassical treatments of mul-
tiphonon processes in HAS.

II. GENERAL PROPERTIES OF
MULTIPHONON REFLECTION COEFFICIENTS

AND SCA 1"I'ERING SPECTRA

In this section we shall demonstrate the relation be-
tween the two quantities most frequently used in a
description of atom-surface scattering experiments; the
commonly discussed inelastic reflection
coefficient, ' ' ' '7' and the somewhat less exploited
expression for the scattering spectrum ' ' ' ' which,
however, is often easier to calculate using various approx-
imation schemes. This relation is usually not shown ex-
plicitly for the case of two coupled quantum fields (here
the fields of the particle and the substrate phonons),
which may sometimes lead to ambiguities as to the very
important unitarity property of the reflection coefficient
itself. However, in formulations of the complete
reflection coefficient and the scattering spectrum, unitari-
ty arises naturally as an important general property and
manifests itself through the so-called Debye-Wailer fac-
tor (DWF) which describes the probability of elastic
scattering. The standard notion of the Debye-Wailer fac-
tor has usually been associated with the expression for
the scattering spectrum, where it appears as a common
multiplicative factor which accounts for the normaliza-
tion proper of the spectrum. Its existence in the total
reflection coefficient is more implicit, but can be demon-
strated once an explicit connection between the two
quantities describing the scattering event has been estab-
lished.

Discussions of both the structural and dynamic proper-
ties of surfaces are often carried out so as to define first
the unperturbed surface which, as regards the scattered
particle-surface interaction, is described by a laterally
averaged static potential U (r)=U (z). This potential
gives rise only to specular reflections of the scattered
atoms. The wave functions corresponding to the particle
motion in U (z) are taken as a basis of distorted waves
for treating either diffraction efFects, if the perturbation
to U (z) is a potential describing the corrugation of the
surface, or inelastic effects if the perturbing potential de-
scribes dynamic particle-surface interactions. A com-
bined treatment is also possible and was carried out in
Ref. 32 to investigate one-phonon scattering about the
diffraction peaks. However, it is much less frequently
used due to its extreme complexity, particularly in the
case of multiphonon processes, unless some simplifying
approximations regarding the particle dynamics are in-
troduced. Thus, without losing generality in the discus-
sion of the essential properties of multiphonon reflection
coefficients and scattering spectra, we shall resort to dis-
torted waves corresponding to U (z). The wave func-
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tions of these states will be given by

e' 'i'y + (k„z)~(+ )(r )—
'((/ L, L,

e' ' y' '(k„z)

"((/L, L,

(7)

An extension to include reciprocal-lattice vectors into
these equations was presented in Ref. 32.

Next, we make use of the formal identities

~2~5(E& E—, )~
=. lim 5(E& E;—)t

5(E/ E; )—
fig„

where k=(K, k, ), and the incident particle current (fiux)
perpendicular to the surface is then given by

Z

Iv.; I

L,

In the present box normalization this quantity has the di-
mension and meaning of the inverse of the collision time.
Obviously, the optical theorem expressing the conserva-
tion of the particle flux in a scattering experiment can
also be formulated in terms of the particle states defined
by (7) and (8).

The multitude of the phonon excitation energies in the
final and initial state of the crystal will be denoted by c&
and c.;, respectively, and the multitude of the excited pho-
non momenta by IiriQj. The distorted-wave particle en-
ergy will be denoted by e),=ez k =iri (K +k, )/2M.
Thus e& =e; and e& =@I. Recalling that for flat surfaces

t f
the total lateral momentum in the particle-surface in-
teractions is conserved, i.e., K&+IQj =K;, where + cor-
respond to phonon emission/absorption, for the argu-
ment of the energy-conserving 5 function in (1) we can
write

iriK I A'Q j I A'Q j
' & kz/

f '

M 2M

+By E, .

A k„.
2M

(10)

where K and p denote the momentum and radius vector
of the particle in the direction parallel to the surface (la-
teral direction), g' ' and y( ' are the eigenstates of
Ho=(p, /2M)+ U (z) and denote the outgoing and in-
coming distorted waves describing particle motion per-
pendicular to the surface, respectively, z is the coordinate
of the particle in this direction taken positive outward the
surface, and k, is the asymptotic value of the perpendicu-
lar component of the particle momentum far away from
the surface where U (z) is already negligible. For a fiat
surface the difference between y'+ ' and y' ' is only an ir-
relevant phase factor, because the eigenstates g(k„z) of
Ho are nondegenerate. Hence, again without any loss of
generality, the stationary waves y(k„z) may be taken to
be real, ' satisfying y(k„z ~~ )—+2 cos(k, z +5k ).

z

Froin now on we shall use these states in defining (7) un-
less stated otherwise, and hence omit the superscripts
(+ ) and ( —) in yi, defined by Eq. (7). Also, we have as-
sumed the box normalization, the quantization length
parallel and perpendicular to the surface being L, and L„
respectively. Taking into account all these premises we
find that the distorted wave functions yi, are normalized
according to

5k, k e(k.'~ »

where the first one is standard in the formal scattering
theory, and the other two follow from Eqs. (9) and (10)
and by converting the 5 function into a Kronecker sym-
bol according to

5(E/ E; ) =— 5(k,I—k,~)e(k,~ )
flU y

5„„- 6(k, ),
2MU &

~f'
(12)

where again + and —stand for phonon emission and ab-
sorption processes, and

2M +A'K ( A'Q j I i)iQ j
'Ii kz~i

zk g2 M 2M 2M f I

(13)

The step function e(k, + ) appearing in (11) allows transi-
tions only into channels in which the energy of motion in
the z direction is positive. This means that the processes
leading to capture of the particle into the bound states of
the surface potential well have been excluded from the
present formulation of the reflection coefticient. The con-
version 5(k, —k,')=(L, /2m. )5„„,made in (12) enables

z' z

the k summations in all expressions containing 5 func-
tions to be carried out without difhculties or ambigui-
ties. ' Substituting expressions (9), (10), and (12) into Eq.
(1), we obtain

(14)

where the matrix elements T&, are now calculated withV

the wave functions y normalized to the unit current in
the z direction:

e' i'y(k„z )

QL,'U,

Here it should be observed that in this normalization the
dimension of T&; is equal to the dimension of A, and that
for zero surface temperature only the term p~h(n; =0)= 1

contributes to the sum in (14). For the sake of clarity and
simplicity, in the following we shall restrict our discus-
sion to the case of zero initial temperature of the surface.
The consequences of finite temperatures will be briefly
outlined in Sec. III B.

We proceed by recalling that according to time-

R), (kI)= g p~h(n;) g 2 ~T&;5k k e(k +)~, fWj,
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dependent perturbation theory the matrix elements of the
evolution operator U(t, to) of the interacting system, cal-
culated the wave functions (7) and taken in the limit
( t ~~, to ~—~ ) appropriate to the scattering boundary
conditions, are given by

(j'IU(, — )Ii. & =sf,.

=(fli &
—2~i(flT lt &5(Ef—E;) .

(16)

The meaning of S&, is that within the normalization
chosen it gives the amplitude of the i +f tr—ansition of the
system in the course of the collision. By manipulating
with the energy-conserving 5 function as in Eq. (12), we
find that the total probability of elastic scattering
Ii & ~ Ii & or elastic reflection, usually termed the Debye-
%'aller factor and for later convenience denoted as e
is given by

Is, , I'=R, , =e

The last term on the right-hand side of (17) follows from
an optical theorem also valid in the Hilbert space
spanned by the complete set of distorted waves (15). ~

Here the summation ranges over all open scattering
channels differing from the incident one. For later con-
venience we shall call such a Debye-Wailer factor "com-
plete". Analogously, for the state-to-state inelastic-
scattering probability or inelastic reAection Ii & ~ If &, we

find

Rf, = Isf, I'=
Tf 5„k e(k, + )

zf' z+
(18)

R;;+ g Rf;=1,
f (Ai)

(19)

This expression will prove useful below in discussions of
the properties of the scattering spectra. As is now seen
from (17) and (18), the reflection coefficients obey the uni-
tarity requirement

g
1 ——T"ll

Tf;5k k e(k,g )

(17)

which is simply a consequence of the optical theorem
which, in turn, derives from the unitarity of the S matrix.
The familiar expression for the inelastic differential
reAection coefficient is then obtained by converting the
summation over the particle final states in (19) into in-
tegration, and making use of the conversion formula (12)
and definition (14):

y I Tf„l'5(Ef E,)—.

f (Ai) kI ~»
I nI I

Lz Ls Mky 2~ y= fd~fdQf 3 2 g . ITfjI'5(Ef Ej)
(2m) A' („)&j„"f

dR„(ef, Qf )= f defdQfp «(ef)R~ (kf )=fdEfdQf (20)

appearing as the integrand on the right-hand side of Eq.
(20) is independent of the quantization lengths L, and L„
as it should be. With these definitions we can establish
the desired relation between the reAection coefficient and
the scattering spectrum.

In defining the scattering spectrum we first observe
that, due to the total-energy conservation in the collision,
the energy lost by the particle will be transferred to the
phonon system. This allows us to define the scattering
spectrum either with respect to the particle energy loss
(gain) or with respect to the energy gain (loss) of the pho-
non system. The latter alternative usually turns out to be
more convenient, because it is much simpler to deal with
the phonon (boson) operator algebra than with the alge-
bra of particle operators. With this in mind and follow-
ing Ref. 7, we define the scattering spectrum Nz (e)
which describes the probability of the energy transfer c
from the scattering particle to phonon excitations in the
course of the collision by

LzLs 3 LzLs

(2n. ) (2m ) fi
kf deaf dQf p gzt(Ef )dEfdQf

(21)

and denoted by p «(ef ) the density of the final particle
states. Hence the inelastic differential rehection
coe%cient

dR|, (ef, Qf) =p~«(ef )R g (kf )
E'y

pp (~f«) g „. I Tf, ( I'5(Ef E;)—
I pg I Izi

(22)

where, in going from the phase space of the final particle
momenta to the phase space in which the final energy of
the scattered particle lies in the interval (ef Ef+dEf)
and the momentum in the solid angle (Qf, Qf +d Qf ), we
have used
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Nq (e)=
t

lirn
t —+ oo, fo~ —oo

& e(t, t, ) l5[s —(H["—E, ) ] le (t, t, ) &,

(23)

Hl%'(t)) =i%(Blat)lql(t) &, (24)

where c; is the initial energy of the crystal phonon field
described by the unperturbed phonon Hamiltonian Hf",
and l%'(t, to) ) is the wave function of the collision system
obtained as the time-dependent solution of the
Schrodinger equation

phonon interaction, respectively. g is the coupling con-
stant which we have introduced for later convenience. In
the case of the scattering boundary conditions in the in-
terval (t~ao, to~ —co ), we assume the solution of (24)
at instant to —+ —~ in the form l+0)
= li ) = e ' 'l k; ) l0). Here k; denotes the incident par-
ticle quantum number (free-particle wave vector far away
from the surface), and l0) is the initial ground state of
the phonon system [the generalization of all the expres-
sions to finite substrate temperature is straightforward,
cf. Eq. (1) and Eq. (68) below). Then

where H is the total Hamiltonian of the interacting sys-
tem lirn lq(t, t, })=

t —+ oo, to~ —oo
lim U(t, t )lV )g~ oo, f'0~ —oo

H =H~() +H$" +g V=HO+g V, (25}
(26)

with Ho=(p /2M)+ U(r) and V= V(r) denoting the
unperturbed particle Hamiltonian and the particle- and, consequently,

Nz (e)= &i lS 5[a—(H(" —e; )]Sli )

= gRq (kf nf', )5[a (—ef —e;)]
f

= g Rz (nf)5[a —(Ef—E;)]=gR& (kf)5(e+ef —e, ),
In kI

(27)

where

R~ (nf)= gR~ (kf, nf),
k~

R~ (kf)= g Rq (kf, nf),
f n~ I

(28)

and the cumulative index f =
t kf, nf j now ranges over

all open scattering channels, both elastic and inelastic.
Here we have exploited the fact that in the collision
'E' ef ef —e; [cf. Eqs. ( 10)—( 12)]. The energy conser-
vation also affects the summation over the final particle
states, so as that it effectively ranges only over the lateral
wave vector Kf. The final expression on the right-hand
side of (27) for the scattering spectrum (23) has the ap-
pearance of the probability density per unit energy inter-
val and, hence, can be also identified with the total
refiection spectrum R& (s) for the particle.

t

The lateral momentum-transfer-resolved scattering
spectrum for a Aat surface at zero temperature is then
given by a generalization of Eq. (23):

H f"= g itive)o

QJ
(31)

where coQ is the frequency of the corresponding mode,
the operators H$" and P commute, and, hence, the
correctness of the definition (29) is guaranteed. It should
also be noted that both scattering spectra (23) and (29)
are inherently normalized to unity.

Making use of Eqs. (17), (18), and (29), the lateral
momentum-resolved scattering spectrum can now be ex-
pressed in terms of the reAection coefficients:

I

with &Q standing for the surface phonon number opera-
tor of the mode (Q,j}. For convenience we have again
expressed the energy and lateral momentum transfer in
terms of the phonon rather than particle operators for
the reasons mentioned earlier, and because the quasiclas-
sical limit of the particle motion is easier to retrieve in
this representation. Now, since in terms of the operators
8'Q the unperturbed Harniltonian of the surface phonon
field is written as

limt~ oo, tO —+ —oo
N~ (e, b,K)=

t
& 0 (t, t, ) l5[e —(H$" —e, )] Nt (e, bK)= gRz (kf, nf)5[a —(sf —e;)]

f

P= Q irtQR'o

Qi
(30)

x5(irtb K—P) l%(t, t, ) ), (29)

where 6K=K, —Kf, and P is the lateral momentum
operator of the phonon field

X5(A'hK —[iriQj ) . (32)

The weight of the elastic line in this spectrum is then
given by Eq. (17), which justifies the identification of R;;
with the Debye-Wailer factor. Again, one may express
the arguments of the 5 functions in (32) in terms of the
particle quantities and convert the 5 functions into
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Kronecker symbols following Eq. (12). Then, by multi-
plying each side of Eq. (32) by Mkf /fi, we obtain

A kf kzf N„(s,hK)

L,L, Mkf g R), (k,~, K; bK—;nf )
(2m. ) fi

dRQ (Ef Qf )

=R„(k,~,K, —b K)pp, „(ef) =

re6ection coeKcients is then straightforward by means of
Eqs. (32) and (33). These features cannot easily be re-
trieved in approaches based on standard approximate
treatments of the T matrix in Eq. (1), especially in the
case of low-order perturbative solutions such as the
DWBA, which may completely miss out the unitarity
property.

III. ANGULAR-RESOLVED SCATTERING
SPECTRUM AND THE DEBYE-WALLER FACTOR

(33)

where R ), ( k, +,K; —hK ) is defined in accord with Eq.
(28), including also the case f =i A.n equivalent rela-
tionship has been quoted in Ref. 7. The generalization to
the case of finite crystal temperatures, in which the pho-
non initial-state distribution is given by p„h(n;), is then
straightforward. Note here that the reQection coefficient
on the right-hand side of (33}should bear the same nor-
malization as does the scattering spectrum. Now, as even
perturbative approaches based on a partial summation of
certain classes of contributions to the scattering ampli-
tude produce unitary scattering spectra and the Debye-
Waller factor in exponential form (see Sec. III), the same
unitarity properties should also hold for the reAection
coefficients obtained through Eq. (33). Moreover, as due
to the normalization of N), (s, hK} the right-hand side of

t

Eq. (32) should also integrate to unity, one can retrieve
the optical theorem (19) and thereby the unitarity of the
reAection coefFicients directly from the properties of the
scattering spectrum. In Sec. III we shall demonstrate a
very systematic and rigorous derivation of a general
quantum-mechanical expression for the scattering spec-
trum of a particle interacting with phonons (generally bo-
sons) which naturally lends itself to various approximate
treatments which preserve the unitarity property. A pas-
sage to the corresponding approximate but still unitary

I

In this section we shall first present a formal derivation
of a rigorously exact expression for the energy and lateral
momentum-resolved scattering spectrum in terms of per-
turbation V, and demonstrate some of its general proper-
ties and features like the Debye-Wailer factor, etc. Using
the formulas obtained we shall then introduce the ex-
ponentiated Born approximation (EBA) expression for
this spectrum and point out other approximations which
naturally derive from it as the limiting cases. These are,
for instance, the impulse or fast collision approximation
(IA), the trajectory approximation (TA), and some others,
all of which are commonly used in the theoretical
descriptions of HAS.

A. Formal derivation of the energy-
and momentum-resolved scattering spectrum

A convenient expression for the scattering spectrum,
which is also amenable to application of the various ap-
proximations popular in atom-surface scattering theory
and which gives the ubiquitous Debye-Wailer factor in an
explicit form, can be obtained by making use of a trick
similar to the one employed by van Hove' and Glauber'
in their derivation of the inelastic scattering cross section
in terms of phonon correlation functions. By expressing
the energy- and momentum-conserving 5 functions in (29)
as Fourier transforms of exponentials of the operators
H$" and P (cf. Refs. 13 and 14), we obtain

N), (s, bK)= f
2 he(i')[sr A(i)K)R]( iIi(

—
)~

) ~f )~qi( ) )
27rfi (2~)2

d R ( ys)[.~—t(tre)R]~
~

t —('~")(tto"'—.
2M (2~)

R (~)( ( ))~
~

—('
2M (2~)2 (34)

Here R=(X, Y) is a two-dimensional radius vector parallel to the surface plane, where the capital letters have been in-
troduced to avoid confusion with the coordinates (x,y) of the particle; St is the S operator in the interaction picture

lim
t —+ oo, tp ~—oo

U, (t, t, ), (35)

(37)

Now, according to a general theorem the operator Ut(t, to), and thereby St, can be represented in an exponential

(i/A)Hp(t tp ) (i/A)Hp t —(i /A)Hp tpUt(t to}=e U(t to}=e U(t, to)e, and the canonically transformed operators appearing
in the last line of Eq. (34) are defined by

~"=StH$"St, (36)

& =Sit~„s, ,

P, =SttI;S (38)
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form:

—iG(~, tp)
UI(t, tp)=e ' ' = exp —i g G„(t,tp)

n=1
(39)

where 6(t, tp) is a Hermitian operator which has a nested commutator expansion in powers of the coupling constant
g.35

Gi(t t())= dti VI(ti )
g

tp

G2(t, tp)= — f dti f dt2[VI(t, ), VI(t2)],
i (g/A')

(g /i)i)
63(t tP)= f dt, f dt2 f dt3[VI(ti)[VI(t2)yVI(t3)]]

+ f dt, f dt, f dt3[[VI(ti)yVI(tg)] VI(t3)](g /i)I)3

(40)

(42)

etc., where all other higher-order terms in the coupling
constant comprise higher-order commutators
[.,[,[.. . , ] ]] of the particle-boson interaction opera-
tors:

K(h

(cog, —Q, —Q ) ( v(), vi, v2) =v,

P„ I'
~(&pp&iy&p) JV

(47)

( i /A )Ho t —( i /A') Ho t
(43)

Thus the S matrix in the interaction picture can be writ-
ten in a general form:

where, due to the property that K$" and P commute, the
components of the operator %F also commute with each
other, i.e.,

Sr= lim e
' =e ' ' ' '=e—iG(tt )

t —+ oo, tp —+ —oo
(44)

[%i,%i ]—0 .

Using the notation of Eqs. (45)—(48), we can write

(49)

From now on the formal solution of Eq. (34) can be
presented much more clearly by introducing a unified
vector notation for the variables and exponentiated
operators:

—r —(b,K)R= g e,g, =a/,
1=0

KI)" P Py

fi
X— Y= g &if(=%Fg,

(50)

(51)

(r, X, Y)~ (kp~ k)~ 4) (45) X=(Xp,X,,X3)=Sl&SI, (52)

bIC, —bK ~(s—p, E„s2)=a, which enables us to express Eq. (34) in a compact form
amenable to various approximate treatments:

Nz (E,b,K)=Nz (E)=f" f" f 3
e xp(i ag') &i

~
exp( iXg)~i & . — (53}

The standard energy-resolved spectrum Nz (s) defined by Eq. (23) and elaborated in Refs. 9 and 10 is obtained by re-
C

stricting the right-hand side of (53) to a single component i =0.
To obtain a perturbative solution to Eq. (53},we proceed by making use of the operator identity

oo

X=S &S =e' &e ' = g 6"[&]
0 n!

(54)

where 6"[A]=[6,[G, . . . , [G,A]] is the nth-order repeated commutator of 6 with arbitrary operator A. Using this
we find

d3
Nz (e, bK)=Nh (a)= f f f 3 exp(i ga') i&~ exp[ i(&+'N)g—]~i &, (55)

where, according to Eq. (54),

%V= Q, 6"[&].
n

(56)
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The diagonal matrix element of the exponential operator on the right-hand side of (53) and (55) can be evaluated on
noticing that each of the exponentiated lth components of this operator has the appearance qf an evolution operator in

gt space:

I I I
—i(% +%V )g' ' 'V'I exp i—f''~I(k)dk'r

0
(57)

where the symbols Tt stand for the ordering operators, each acting only in its own g& subspace (in r space this is the
usual time-ordering operator). Note also that Tl's commute with each other.

The averages (here diagonal values) of the exponential operators appearing in the above expressions can be obtained
by a generalized cumulant expansion, and in the present case this gives

iV„(E,~K.)=iiik (a)= f f f 3 exp(isa) exp g C„(g)
t —~ (2M) n=1

(58)

where C„(g') stands for the nth-order cuinulant generated by the operators 'Nt(g& ), whose time dependence in the in-
teraction picture in the g& space is governed by &I ..

%' =eI
i''g( ~Ie (59)

Explicitly, these cumulants read

(
—i)"

Cn(koki 4)=, & &i&i'Ti-f dt's, f dpi f dg, f dg, f
I l' I"=0 p l p m p 0 p 0 1

7

dg, &i~'N, (g', ) 'N, (g, „)~i )„m+p+q =n . (60)

Here (i ~. . . ~i ), denotes the cumulant average of the
product of n interaction operators %' (g).

Equations (58) and (60) represent a formal closed-form
solution for the required energy- and lateral-momentum-
resolved scattering spectrum (34) of the particle-phonon
collision system. It is exact as no approximations regard-
ing either the particle or the phonon dynamics have been
employed yet Also, i.t exhibits the unitarity property, i.e.,
normalization to unity. The elastic line 5-function com-
ponent of the spectrum is weighted by the Debye-Wailer
factor which appears in the form of an exponentiated
sum of all g,.-independent terms remaining in the cumu-
lants after the integration over all dummy g'& variables
has been carried out. Hence it is the intrinsic property of
the present method that it gives the DWF as an exponen-
tial of an infinite series in powers of the coupling constant
g. This is in contrast to the right-hand side of Eq. (17),
where the DWF has a formal appearance of an ordinary
expansion in powers of g.

Another important characteristic of the so-derived
DWF is its completeness or unitarity. That is, in the
present formulation the Debye-Wailer exponent 2W is
obtained by carrying out a summation over all Anal
scattering channels different from the incident one, which
is in accord with the optical theorem and the quantum
reflection coefficient derived from it [cf. the discussion
following Eqs. (17) and (19)],but also with the semiclassi-
cal theories of particle scattering by surface pho-
nons. ' ' ' Such a DWF is conceptually somewhat
di6'erent from the analogous quantity appearing in the
standard van Hove —Glauber Born approximation
descriptions of x-ray and neutron scattering by the vi-
brating crystal lattices, and their later extensions to sur-
face scattering problems. In these theories the attenua-

tion of the scattered beams arises as a consequence of a
disarray introduced into the system through the thermal
motion of the crystal ions (i.e., the scattering centers) and
nonlinear projectile-phonon coupling. The correspond-
ing DWF plays a role in the normalization of the
(kf —k, ) component of the exponentiated-lattice-atom-
displacement correlation function, and originates from
the noncommutativity of the crystal vibration operators
at di8'erent instants. Obviously, such a DWF is indepen-
dent of the matrix elements of the atom-surface interac-
tion potential, and incomplete because it is associated
only with phonon momentum and energy exchanged in a
particular transition k;~kf of the particle. As the cal-
culations of the inelastic reAection coefficient Rf; based
on either the BA or its improvements in treating the total
scattering potential U(r) leave out the true elastic line
(17), they can yield only such an incomplete or single-
channel DWF. Hence, to obtain unitarity of the
reQection coefficient in this case, one has to sum up con-
tributions over all final scattering channels

~f ), as point-
ed out here in connection with Eqs. (17) and (19) and also
earlier in Refs. 7 and 24. On the other hand, in the for-
mulation of the scattering spectrum through Eqs. (29),
(34), and (58) the thus-obtained complete DWF gives the
depletion of the particle Aux in the specularly rejected
beam due to inelastic scattering through real phonon
emission or absorption, i.e., through transitions into all
scattering channels di6'erent from the elastic one. There-
fore, the corresponding Debye-Wailer exponent involves
matrix elements describing dissipative atom-surface in-
teraction denoted by V in Eq. (25) even in the simplest
case of linear coupling of the atom to the boson field.

Despite the fact that the exponentiated cumulant series
appearing on the right-hand side of (58) gives a compact
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closed-form solution for the scattering spectrum, it still
involves an infinite number of terms, each of which itself
contains contributions to all orders in the coupling con-
stant. Hence a tractable form of Ni, (c,, hK) can be ob-

i

tained only in certain limiting cases. This will occur if
the series can be truncated after a relatively small number
of terms, or easily summed up by using some common
functional properties of the cumulants arising from the
specificities of the interaction studied. Here it should be
observed that one of the major advantages of using the
cumulant approach is that it produces the scattering
spectrum (58) which retains the unitarity property and
the corresponding Debye-Wailer factor of the exponen-
tial form irrespective of the approximations employed in
the derivation of 6 or %'(g). In the following we shall
demonstrate how this procedure can be carried out in a
particular case of a particle coupled linearly to phonons,
as discussed in connection with the inelastic particle-
surface interaction described by Eq. (4).

B. Energy- and momentum-resolved scattering
spectrum in the exponentiated

Born approximation

To demonstrate the derivation of the exponentiated
Born approximation (EBA) expression for the scattering
spectrum (29) or (34), we must specify the unperturbed
atom and phonon states and the dynamic atom-phonon
interaction V(r). Here we first make use of the hitherto
assumed translational invariance of the static atom-
surface potential U (r) = U (z) which yields distorted
particle waves yz(r) and the corresponding energies e& kz

defined in Sec. II. The phonon excitations of the surface
are characterized by their quantum numbers (Q,j)
defined earlier, and the dispersion relation reads co=coQ . .
Inelastic atom-surface processes will be described by a
harmonic interaction of the type given by Eq. (4). Then,
in terms of these quantities, the Hamiltonian of the sys-
tem acquires in second quantization a simple form,

H=Hp+gV g 6~k CK k cx k + QACOQ&QQ&QQ J
Kk Qj

+g X X Vg' k ~K', K+Qc~' k' K, k Q, J+H'c'K', K, Q

K,K', k, k Q J

(61)

where cK k, cK k and aQ j aQ j are the particle and phonon creation and annihilation operators, respectively, and the

appearance of the Kronecker 5 is a consequence of the translational invariance of the surface. The phonon operators
satisfy the ordinary boson commutation relations, whereas the particle operators may obey either bosonic or fermionic
commutation rules. The explicit expression for the interaction matrix element V, ' 'Q will be given and discussed in

Sec. IV within the context of HAS from some specific surfaces.
With the interaction Hamiltonian defined, the EBA expression for the scattering spectrum is obtained by retaining in

the operator series for 6 [Eq. (39)] the full Gi (proportional to g) and only the diagonal components of G2 (proportional
to g ). Physically, this means the neglect of the correlated multiphonon processes in the spectrum relative to the effects

brought about by the multiple excitation or absorption of uncorrelated phonons. The justification of this approxima-
tion in the case of HAS will be given in Sec. IV. The various aspects of this approximation have been discussed in Refs.
9 and 10. With such an approximate 6 substituted into Eq. (56), we obtain an approximate %'&,

(62)

in which

'N', "=i [G, ,&,]=
K, Q, k, k,j

Vk' „, . ( —)c~+Q „, & k Q, + . . ] g
kz, kz'~ K+Q, k z

(63)

IVI '= —
—,'[6, , [6„&i]]= g c~ „c „, g A'vi[V„Q„, (+)]*V„;,Qk, .(+)~g (64)

and other terms in (64) containing phonon operators are small. ' The next term

'NI" =i [62,%, ] ~g',
and higher-order ones in powers of g in Eq. (56), which give rise to correlated phonon processes, are neglected within

the EBA. Thus, in contrast to standard perturbational treatments in powers of the coupling constant g, the EBA ex-

pansion is based on a tradeoff'between the magnitude of g and the small overall contribution of correlated phonon pro-
cesses described by the terms %I"' for n & 2.

The o6'-diagonal matrix elements of G& giving the probability amplitude of one-phonon absorption and emission pro-

cesses, viz. ,

cyK, Q (+ )k, k,j

K, K', Qk' j ~K', K+Q
dt&e

+(i/A)(e, —eK k +%co& . )t&K', k ' z 7

z

VK, K+Qg e(k 2
)



12 318 A. BILIC AND B. GUMHALTER 52

which appear in the operators 'N((" and 'LV(t ' are, following the arguments of Sec. II, first-order DWBA probability am-
plitudes for the on-the-energy-shell state-to-state transition ~K, k, )~~K', k,'') of the particle. Here the tilde denotes
matrix elements calculated in accord with the normalization of Eq. (15), and k, + is defined by Eq. (13). Now, according
to (18), the absolute square of the expression on the right-hand side of (66) gives the particle inelastic refiection proba-
bility from the state ~K, k, ) to the state ~K+Q, k,') in the DWBA.

To obtain X), (E,AK) for zero substrate temperature, we substitute (62) into Eqs. (58) and (60). Then, on noticing
t

that 'N(t ' is to a good approximation proportional to the particle number operator which commutes with %'(t", we find
that 'Nt makes a contribution only to the first cumulant in (58) which is linear in gt, and which is canceled by an iden-
tical expression arising from %'(t') in the second cumulant. ' Thus there are no terms linear in g& (so-called relaxation
shifts) in the final expression for the EBA scattering spectrum. Taking all this into account and reverting back to the
original variables (r,X, F), we obtain the result alluded to in Ref. 9:

d d R~p)3&(e gK)= " e(i~e)[«—+«)&) ex — y ~V " (+)~'[I—e
' Qi' '] (67)

where (K;,k„.) denotes the incident particle quantum numbers.
Generalizing the same procedure to the case of finite substrate temperatures T, (i.e., both phonon emission and ab-

sorption processes), we find

~EBA ( 8 gK ) e (i /R)[Er —R(«)R] exp [2WEBA(R, r) —2WEBA(0, 0) ]—~ (2M)
where

(68)

2W (R,~)= g [~Vk"„, j(+)~ [n())lcoQ )+1]e Q' +[V„"„j(—)~ n(()tcoQ )e Q' ]
Q, j,k

(69)

is the so-called driving function which is generally complex and whose zero-point value 2W (0,0)=2WT gives the
S

DWF exponent in the EBA. Here coQ is again restricted only to positive values and n h(E) is the Bose function
describing the initial distribution of phonons thermally excited in the substrate kept at finite temperature T, . Equations
(67) and (68) describe the scattering spectrum containing all uncorrelated real multiphonon processes, and this will be a
good approximation of the exact spectrum (58) (which comprises both all uncorrelated and correlated multiphonon pro-
cesses) under the conditions discussed in Sec. IV (cf. also discussions in Refs. 9, 10, and 11).

The EBA expression for the Debye-Wailer factor which describes specular elastic scattering and corresponds to Eq.
(17) is then given by the 5(e)|)(b,K) component of the scattering spectrum. For substrates at finite temperatures, this
reads

= exp . —g [I Vk '", k, ,(+ ) I' [n ph(~~Q j )+1]+I Vk", k, ,j ( ) I'n ph(~~Q j )] .
Q,J, kz

jt DWBAf (Wt') f.=e (70)

where f is now short for the set of quantum numbers
Ik„Q,j}.This important relationship gives the expres-
sion for the DWF in the EBA as a function of the total
inelastic reflection coefticient obtained in the DWBA. As
has been shown earlier, ' the physical meaning of on-
the-energy-shell quantity 2W can be identified with
the mean number of uncorr elated real phonons ex-
changed during the collision event.

Although it is presently not clear whether a generaliza-
tion of Eq. (70) beyond the EBA would be a prohibitive
task, it is already obvious at this stage that in both repre-
sentations of the Debye-Wailer factor, viz. , the one deriv-
ing from the optical theorem (17) and the other following
from the cumulant expansion (58), the probability of elas-
tic scattering is obtained from expressions involving sum-

mations over all final states in all open scattering chan-
nels differing from the incident one. However, it is only
in the latter representation that this quantity also appears
as a common multiplicative factor for all other inelastic
peaks in the spectrum characterized either by finite ener-
gy or momentum transfer. This property can easily be
verified by factorizing out of the triple integral in (58) all
( g) gp g3 ) = ( r, R )-independent terms appearing in the ex-
ponentiated curn ulants and expanding the remaining
(~,R)-dependent exponential into a series in powers of

lCO

e ' and e'Q . On the other hand, that such a com-
mon exponential factor would always exist is much less
obvious in the standard T -matrix approach, where it
could emerge only after a tedious resummation of infinite
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sequences of various higher-order perturbation contribu-
tions to the scattering amplitude. For this reason the
present approach via Eqs. (34)—(60) is far more advanta-
geous and elegant regarding the explicit form of the
DWF.

Now, it is straightforward to see that, in the weak-
coupling limit g « 1, the EBA expression for the scatter-
ing spectrum turns into the DWBA formula upon ex-
panding the exponential in the integrands on the right-
hand side of Eqs. (67} and (68) into a power series and re-
taining only the zeroth- and first-order terms in

I V. . .(+)I'.
The TA limit of scattering spectrum (67) or (68) is ob-

tained upon replacing the DWBA scattering probability
amplitude by its classical limit

lVEBA (s gK )

exp
(e g~)2 (fihK„) (AEK )

2cro(T ) 2cr (T ) 2cr»(T )

(2ir)' 'cro(T, )cr„(T, )cr»( T, )
(73)

where the mean energy transfer is defined as

be=Pi g ~Vk "k (+)~ co~
Q, j,k

(74)

and the mean square deviation as

oi(T., )=fi g Vk "k (+)~ [2n h(cog )+1]A,i,
Q, j,k

l =O, x,y , (75)

~VPq(+fico' ), . (71)

V„'„(+)=2irV„,'„*.5(e „, eK—
k +incog )z' zt 'J k, k,J z z

where A,o=coq, A, = —Q, and A»
= —

Q», in accord
with (47). Hence in the high-temperature limit, in which
[2n h(co& )+ 1]o- T„ the angular-resolved EBA spec-
trum bears a normalization prefactor proportional to
z

—3/2
S

where the correspondence is achieved if the 5 function on
the left-hand side of the arrow is handled as outlined in
Eqs. (10)—(13) and V+&( + fico) = V+&(+A'co)' is taken to
be the +Qth component of the time Fourier transform of
V(r(t)) taken along the classical trajectory r(t}. ' The
expression thus obtained is then in full correspondence
with those obtained earlier which were derived by using
the classical trajectory assumption in (29) and (67) from
the very outset.

The impulse or fast collision approximation (IA) for
the scattering spectrum is derived upon replacing the
true matrix elements in (66) by their limiting values
reached in the fast collision regime. This approximation
will be justified if the momentum recoil of the particle in
the perpendicular and lateral directions is small relative
to the inverse range d of the inelastic atom-surface in-
teraction potential in the normal direction and to the in-
cident lateral momentum, respectively. For Rat surfaces,
one finds in this case from conservation laws that the
only important z components of the matrix elements of
force (5) appearing in V(r) are given asymptotically by

lim F„,' ' ' =fi(k, +k,')f(Q),
(k —k )d —+O, Q K,.

(72)

where f (Q~O) =1. Substitution of such expression into
(66} and this into (67) and (68) would yield the impulse
approximation expression for the scattering spectrum.

The EBA spectrum (68) reduces to a particularly sim-
ple Gaussian or classical form in the extreme rnultipho-
non limit in which the quantity ~ Vz,'oz .(+ ) ~

can be con-

sidered invariant with respect to the change
(Q~ Q, fico& J

—+ —A'coO J ) and —2IV &.&1. In this
case,

IV. VALIDITY OF THE EBA AND
QUASICLASSICAL APPROXIMATIONS IN HAS

l', '=l(flG, li)I', f&i (76)

gives the probability of one-phonon emission in the
state-to-state transition ~i )~ ~f ). This probability is, by
the definition of G„uncorrelated. On the other hand,
the quantity

l'2" = l(f'IGp li ) I', f'&t (77)

gives the probability of a correlated two-phonon emission
event in the state-to-state transition ~i )~ ~f ' ) . The
latter is correlated because G2 involves a commutator of
the interaction potentials in which neither the phonon
nor the particle operators commute at different instants.
A manifestation of this correlation is the particle propa-
gation in the intermediate states between two successive
phonon emission events.

Thus, for an angular integrated EBA spectrum, we can
introduce a measure of the probability of uncorrelated
one-phonon ernissions by

(78)
fbi

where we have made use of the completeness of the set of
the scattering states [ ~j ) ] of the system. Analogously,
the same measure of the probability of the correlated
two-phonon excitation events would be given by

The basic approximation leading to the EBA expres-
sion for scattering spectrum (68) has meant the neglect of
the off-diagonal components of the operator G2 and all
higher operators G„relative to the diagonal components
of G2 and the complete G& in all manipulations with the
exponential form of the evolution operator (39). A mere
inspection of Eqs. (40) and (41) shows that, in the case of
atom-phonon coupling (61), the quantity
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(79)

The significance of P2 is that in the absence of any corre-
1ated motion of the particle between two successive pho-
non emission events (as, e.g., in the TA) one has P2 =0.
Thus P& and P2 have the appearance of the mean-square
deviation or the autodistribution function of the opera-
tors G, and G2, respectively, where the mean is defined
with respect to the initial state ~i &. Then, if

Pq « 1,
P)

(80)

the angular-integrated EBA spectrum is expected to pro-
vide a fairly accurate description of the scattering event.
A similar criterion has been introduced in Ref. 9.

For an angular-resolved EBA spectrum, one can estab-
lish a completely analogous condition

P2(k~, k; ) «1,
P, (kI, k; )

(81)

in which the summation in each P (k& k; ) has been car-
ried out over all final momenta of excited phonons which
comply with the total energy and momentum conserva-
tion.

Obviously, the magnitudes of P& and P2, as well as of
P&(k&, k;) and Pz(k&, k;), depend on very many factors,
e.g., impact parameters of the collision, including the
mass of the scattered particle, phonon densities of states,
distorting and inelastic potentials U (r) and V(r), respec-
tively, etc. Thus conditions for the validity of the EBA
[(80) and (81)] should be investigated for each particular
collision system and for a whole range of impact parame-
ters of interest. Once the EBA is established to provide a
satisfactorily accurate description of the scattering spec-
tra (23) and (29) in the sense of Eqs. (80) and (81), respec-
tively, the validity of other quantal and semiclassical ap-
proximations deriving from the EBA can then be estimat-
ed by comparing the results they predict with the exact
ones obtained in the EBA. This procedure will be fol-
lowed in Secs. IVA and IVB.

In the case of He-atom scattering from surface pho-
nons, the values of the particle incident energies e; lie in
the interval (10 meV &e; (100 meV), as this spans the
range of nozzle beam energies cornrnonly utilized in HAS
experiments. In order to make a semiquantitative esti-
mate of P& and P2 in the multiphonon regime for which,
say, e, ~ 30 meV, it would sufBce to approximate the He-
atom-surface interaction U (z) by an electronic overlap-
induced exponential repulsion U,,~(z) = U,, e ' ", as
this should make the dominant contribution to the total
interaction energy if e, »Do, where Do-5 —7 meV is a
typical value of the surface potential well depth. In this
case the particle wave functions (7) and the interaction
matrix elements (66) are known in analytic form. The
last problem of the surface-projected phonon densities of
states cannot be circumvented so easily, because they are
extremely substrate specific. However, a general estimate
of the validity of the EBA and related approximations

can be obtained on noticing that in many systems which
have been investigated by HAS the various surface pho-
non and adsorbate vibrational modes can be roughly
characterized as giving rise to either Debye- or Einstein-
like phonon densities of states. Such surface phonons
giving rise to a nearly Debye-like phonon density of
states are the high intensity longitudinal resonance modes
on surfaces of d-band metals, ' of which Cu(001),
Ag(001), ' and Pt(111) (Ref. 2) are typical examples. On
the other hand, almost dispersionless Einstein-like pho-
non modes of various origins (A'coo-4 —6 meV) have been
detected in adlayers of rare-gas atoms on Ag(111) (Ref.
42) and graphite, alkali atoms on graphite, and CO on
Pt(111), Ni(001), Fe(110), Cu(001), and Rb(111).
Thus, by demonstrating that the EBA is valid for the
phonon densities of states corresponding to these two
limiting cases which are canonical or textbook examples
of the phonon spectra, one may envisage that it should
also be valid in other cases interpolating between these
two extremes. Hence, to demonstrate the general appli-
cability of our formalism developed in Secs. II and III
and to illustrate the method on the systems for which
multiphonon features have been unambiguously detected,
we shall investigate the validity of the EBA and related
approximations in describing He scattering from
Einstein-like frustrated translation mode of CO rnolecules
adsorbed on Rh(111) (Ref. 5) and from the Debye-like
longitudinal resonance mode and Rayleigh wave typical
of the Cu(001) surface. ' ' An additional estimate of
the validity of the EBA in HAS from metal surfaces for
which computed phonon densities of states are available
will be postponed for future publications.

A. Validity of EBA and quasiclassical approximations
in HAS from Einstein-like phonons

CO molecules adsorbed on Rh(111) surfaces exhibit
two ordered phases at submonolayer coverage. The first
one is a CO (&3Xv 3)8 30' structure corresponding to
8CQ 3

in which the CO molecules occupy only on-top
sites. The other one corresponds to OCQ= —,', in which
CO molecules occupy both on-top and bridge sites to
form a CO(2X2)-ordered structure. . In both phases
the CO molecules may exhibit frustrated (hindered)
translations in directions parallel to the surface for which
the corresponding restoring force is relatively very weak,
giving rise to vibrational frequencies (energies) of the or-
der 5 —6 meV. In particular, for the structure at OCQ 3

the next-nearest-neighbor interactions between the CO
molecules are extremely weak and the frequency of the
hindered translation mode shows no observable disper-
sion, making this phonon almost truly Einstein-like with
fico0=5. 75 meV. Due to their low excitation energy
these modes are already thermally activated at low sub-
strate temperatures.

The angular-resolved HAS experiments carried out on
the CO(+3Xv'3)R30'/Rh(111) adsorption system, for
incident He energies e; around and above 50 meV, pro-
duce the TOF spectra which, when converted to energy
loss, exhibit pronounced multiphonon peaks in both loss
and gain regions. Thus, for instance, for substrate tem-
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perature T, = 128 K, e; =57. 16 meV, incident angle

0,.=50', and scattering angle ef =40.5', and up to seven
loss peaks and two gain peaks are visible in the angular
resolved scattering spectrum (cf. Fig. 2). This signifies
that a true multiphonon-scattering regime has already
been reached at these moderately high incident energies.
Higher-order phonon excitations have also been detected
for the CO(2X2)/Rh(111) structure at eco= —,', albeit
with a smaller number of clearly detectable peaks and
with an additional superposition of the substrate pho-
nons. All this is surprising at first sight, and calls for a
careful examination and interpretation of the experimen-
tal data.

In order to interpret the high multiphonon intensity in
the HAS spectra of the CO/Rh(111) system, and in par-
ticular the higher intensities for the ordered phase at
lower CO coverage, we make the following observation.
At eco= —,

' the He beam atom wave functions y(k„z)
describing motion perpendicular to the surface will be
rejected dominantly at turning points corresponding to
the He-Rh(111) static surface potential. Hence the CO
molecules which stick out as bumps from the surface will
in this case strongly overlap with such wave functions,
i.e., will be embedded in y(k„z). On the other hand, by
increasing the CO coverage the turning points of g(k„z)
will be squeezed out into the region of the outer part of
the electronic density of adsorbed CO molecules, giving
rise to a smaller overlap between the whole body of the
CO molecule and such shifted wave functions through
which the interaction matrix elements V, 9 in (61) are

calculated. This effect should be most pronounced for
the superstructure closest to the saturation coverage,
which in the present case corresponds to ecQ= —,'. For
this reason the magnitude of such matrix elements can be
expected to be weaker for the case ecQ= —,

' than for

ecQ 3 A similar effect, usually termed the Armand
effect, ' ' is known to give rise to a reduction of the
Debye-Wailer exponent in atom-surface scattering be-
cause of the simultaneous collision of the projectile atom
with several target atoms.

Thus, in the description of the strength of the coupling
of He atoms to the dissipative component of the surface
potential for the case of the CO(+3X+3)R30/Rh(111)
system, we shall assume that g(k,', z) and y(k„z) appear-
ing in the interaction matrix elements of the perturbation
V on the right-hand side of (61) are those corresponding
to the laterally averaged He-Rh(111) static surface poten-
tial U (z). To model the embedding effect we shall first
take the inelastic potential V(r ) between the He atom
and the CO molecule as centered on the molecule, i.e.,
shifted by some effective coverage-dependent distance z,ff

away from the surface defined by z =0 in U (z), and then
laterally average it. As a function of GCQ the embedding
depth z,z should vary between the maximum value at-
tained in the low-coverage limit (which should be of the
order of the size of the CO molecule but less than the
height of CO islands detected on Hat surfaces of some
metals ), and the minimum value in the opposite limit of
saturation coverage when the turning points of He atoms

are shifted toward the oxygen end of the densely packed
CO overlayer. However, z,s. may also depend on e; and
the angle of incidence 0;.

In the present discussion of multiphonon features in
the HAS spectra of the CO/Rh adsorption system, we
shall disregard the effects of diffuse elastic scattering of
He atoms from adsorbates, first because they are not go-
ing to affect significantly the multiphonon processes
which are the primary object of our investigations, and,
second, because a proper account of diffuse scattering
would require the introduction of an additional static
perturbation into the total Hamiltonian (61). ' A
simultaneous perturbational treatment of both elastic and
inelastic perturbing potentials proves almost formidable
unless certain simplifying but usually heuristic approxi-
mations regarding the structure of the T matrix are in-
voked. However, as such a more complicated two-
potential approach would go beyond the purpose of our
analyses of inelastic multiphonon scattering events, we
shall not pursue it in our estimates of the validity of the
EBA. Neither shall we resort to the description based
from the very outset on the trajectory or similar approxi-
mations, since their validity is going to be investigated in
connection with the EBA. Hence we shall adopt an ap-
proach which includes the following.

(i) The scattering matrix elements V, ' ''9 are calcu-

lated from the inelastic component of the potential V(r)
first obtained from the pairwise summation of the He-CO
pair potentials and then averaged over the unit cell of the
CO(+3 X +3)R 30 superstructure. As a result of this the
obtained matrix elements are periodic functions of the
momentum transfer within the first Brillouin zone of the
superstructure. Hence the phonon momenta are now re-
stricted to the first Brillouin zone and the total lateral
momentum conservation is satisfied up to values of the
reciprocal-lattice vectors corresponding to the mesh of
the superstructure, viz. K; —Kf =Q+Cr.

(ii) The elastic component of V(r) giving rise to diffuse
scattering at low coverage is altogether neglected. At
higher coverages, however, it is precisely this elastic com-
ponent of the potential which after averaging causes
shifting of the He-atom wave functions outwards. Hence
in such a situation the neglect of its overall effect on
y(k„z) would not be justified.

The situation encompassing (i) and (ii) can then be
modeled by the Hamiltonian of Eq. (61), with the interac-
tion matrix elements given by Eq. (82) below.

The form and parameters of the He-CO pair potential
will be taken from Ref. 56. On the other hand, since the
exact form of the He-Rh(111) potential is presently not
available, we shall replace it by a plausibly similar He-
Cu(111) potential calculated earlier for which the best
fit for the range d of the laterally averaged repulsive corn-
ponent U„(z)=U„e '~" around the turning point zo
for e; =50 meV gives d =0.Sa~. The standard evaluation
of V ', '~ corresponding to the laterally averaged inelas-

tic He-surface interaction then proceeds by taking the
matrix elements of the gradient of the static He-adsorbate
interaction suitably averaged over the unit cell of the CO
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superstructure, following the procedure outlined in Ref.
58. For the matrix elements of the force the CO over-
layer exerts on the He atoms, this yields

Fq(k,', k, ) = 2'

Xe '{g„,
i iQ, V„(z)iyk ) .

(82)

Here Q, is the Armand cutoff wave vector obtained after
averaging the pairwise He-CO interaction over the sur-
face, A, is the area of the surface unit cell of the CO:su-
perstructure, and V,,~(z) = V exp( —z/5) is the repulsive
z component of the laterally averaged static He-adsorbate
potential of strength V and range 5. This gives

Q,j X K —K'( kz'& kz )~K—K', Q+ Gk, k,j (83)

where the vector uQ - is a two-dimensional Fourier trans-
form of the quantized displacement uI of the vibrating
adsorbate from its equilibrium position at RI+R at the
surface. ' ' Explicitly, uI is expanded in terms of uQ .

as

u&
= g exp(iQR&)u& .

Qi

= +exp(iQRI )

Qi co s~Q j
Xe (Q,j)(a& . +a & -),

1/2

(84)

where e (Q,j) is the polarization vector of the mode
(Q,j), and N, is the number of surface cells in the surface
area of the quantization box.

Now we are in a position to make explicit use of our
assumption of the wave-function shifting in the quantita-
tive estimate of the expression on the right-hand side of
(82). That is, on noticing that the strengths U„and V„
and ranges in the z direction d and 5 of U (z) and V(r),
respectively, are very similar for the present scattering
system, we may obtain a good representation of (82) by
replacing V„(z)by the z,s-shifted U„(z). This yields

monolayer, i.e., in the case in which Q, and A, reach
their maximum and minimum values, respectively.
Hence the factor exp(z, s/d) in (85) indeed plays a role of
an Armand-like factor in the perpendicular direction, in
contrast to the ordinary one exp( —Q /2Q, ) which intro-
duces a cutoff in the lateral momentum exchange.

To proceed in estimating the validity of the EBA for
the present scattering system [i.e., to find the appropriate
ratio P 2{kf,k;)/P&{kf, k;) as a function of impact pa-
rameters], we need to select particular values of Q, and
z ff. The former will be calculated following Ref. 58, and
for the latter we shall first take a plausible value which
will be then justified a posteriori as the optimum one in
the calculation of the angular-resolved EBA scattering
spectrum which compares best with experiments. Thus
we tentatively set z,&=2.29az, which is the distance be-
tween the centers of the electronic charge accumulated in
the outermost m.„backbonding orbitals around the C
and 0 atoms in the COCu5 cluster which simulates chem-
ical aspects of CO adsorption on Cu (cf. Fig. 3 of Ref.
59). This distance is very close to the intramolecular C-0
separation dco=2. 17a~. We determine Q, =0.45a~ '

by using the prescription of Ref. 58, take the lattice con-
stant of Rh from tables (a =7.18az ) and identify the lat-
tice constant of the CO superstructure as roughly given
by a/V 2. By making use of the matrix elements (85) and
the impact parameters corresponding to Fig. 2, we find
the energy dependence of angular-resolved one-phonon
uncor related emission probabilities and two-pho non
correlated emission probabilities shown in Fig. 3.

It is seen in Fig. 3 that condition (81) for the validity of
the EBA is satisfied in the entire interval of experimental
energies of interest for given angles of incidence and
scattering. Although Pz(kf, k, ) and P, (kf, k,. ) may de-
pend significantly on the angles of incidence and scatter-
ing, the main trend regarding the magnitude of their ratio
persists for all other angles we have investigated. This
enables us to approximate with a high degree of accuracy

Fg(k,', k, )=
Q, A,

&I

UJ

z'.
Ts

(85)

which can be expressed in analytic form as the remaining
matrix element on the right-hand side of (85) is obtained
as a three-dimensional analog of the one-dimensional
Jackson-Mott formula given explicitly in Refs. 9—11.

The exact value of z,z is not known a priori, and should
be determined independently. However, by increasing
ecQ the value of z,z should diminish and eventually
reach zero in the limit of a most closely packed CO

I liIP"'~" )
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FIG. 2. Angular-resolved scattering spectrum corresponding
to the He~CO(&3 X&3)R30'/Rh(111) collision system. The
experimental spectrum (Ref. 5) is given by the full line. The
dashed line denotes the theoretical spectrum calculated in the
exponentiated Born approximation (EBA) and expressed as a
function of He-atom energy loss e= —c.
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FIG. 3. Angular-resolved probabilities of uncorrelated one-
phonon and correlated two-phonon emission events, P&(kf, k;)
(full line) and P2(kf, k;) (dashed line), respectively, for the sys-

tem He~CO(&3X&3)R30'/Rh(111) plotted as functions of
the He-atom incident energy. P, (kf, k; ) and P&(kf, k; ) are
defined through Eqs. (76), (77), and {81).

the full, exact DWF by its EBA counterpart given by Eq.
(70), and the full spectrum by the EBA expressions (68)
and (69). In doing so we also observe that with the
present input parameters the imaginary part of driving
function (69), which is a fastly oscillating odd function,
makes an insignificant contribution to the final spectrum
and, hence, can be neglected.

Having now all the prerequisites for the description of
the HAS from the CO/Rh(111) adsorption system stud-
ied, we may calculate the angular-resolved scattering
spectrum in the EBA by using the tentative value of zeff
quoted earlier and then check if the experimental intensi-
ty ratios of, for instance, the first and second loss peaks
are correctly reproduced. Note that here we are using a

l

true multiphonon spectral feature to quantify the extent
of shifting or squeezing out of the particle wave function,
and that this information could not be extracted by con-
sidering only the characteristics of the first-order peaks
which all scale linearly with this effect. Now it turns out
that by taking z,ff and other parameters as quoted above
we can perfectly reproduce the required experimental
peak intensity ratios from the spectrum depicted in Fig.
2. Moreover, an excellent overall agreement between the
shapes of the calculated EBA spectrum and the experi-
mental one is achieved (see Fig. 2) after a correction is
made for the finite width of the loss and gain peaks which
may arise due to various effects, including the instrumen-
tal and phonon lifetime broadening. This also provides
an a posteriori justification of the consistency of our as-
sumptions regarding the wave-function-shifting effect in
the estimate of the validity of the EBA.

The mean energy loss of the atom or average energy
transfer he(e, , 8;,8f) to the phonon heat bath in the
course of a particular scattering event defined by the col-
lision parameters e;, 0;, and 8f is obtained by computing
the first moment of the corresponding angular-resolved
scattering spectrum. In the case of the spectrum shown
in Fig. 2, we find be(e;, 8;,8f ) = 14.4 meV.

Neglecting phonon and experimental broadening of the
loss and gain lines, one may obtain the angular-integrated
spectrum for the present system in a closed form by in-
tegrating (69) over all the exchanged momenta b,K. For
finite substrate temperature T, a relatively simple result
is obtained only in the limit of negligible effect of particle
recoil on the interaction matrix elements, i.e., in the
recoilless approximation (RA) in which

XQ,j,k I+k, k . ,j( )I XQj, k I+k, k . ,j(+ )I 2~Q

Following standard procedures, ' this yields"

jVRA (E)—e (86)

where k~ is the Boltzmann constant and I&(z) is the
Bessel function of the imaginary argument. This spec-
trum is correctly normalized, i.e., integrates to unity,
which once again demonstrates the consistency of the
formalism based on Eqs. (58) and (60) and the approxima-
tions introduced in obtaining tractable solutions for the
scattering spectrum. It should be noted that such con-
sistency and unitarity requirements would be much more
complicated to satisfy by resorting to a more standard T-
matrix approach in the description of the present
multiphonon-scattering regime.

Now, since the criteria for the validity of the EBA for
the present collision system are satisfied, we are in a posi-
tion to estimate the validity of other approximations by
comparing the results they predict with the exact ones
obtained in the EBA. Here we shall make such compar-
isons for the trajectory (TA) and impulse or fast collision
(IA) approximations as they both naturally arise as the
limiting cases of the EBA (cf. Sec. III B). The physical

quantity which we find most relevant for comparison is
the Debye-Wailer exponent or, according to Eq. (70), the
total one-phonon inelastic reflection coefficient calculated
in the respective approximations. Figure 4 shows the
dependence of such normalized Debye-Wailer exponents
2Wo/e; as a function of the He-atom incident energy E;
for incident angle fixed by the experiment and zero sub-
strate temperature. The normalization, i.e., the division
by the incident energy, has been introduced for pictorial
convenience to illustrate the transition from quasiadia-
batic to nonadiabatic behavior of the Debye-Wailer ex-
ponent around e;=20 meV. The temperature factor
n~h(ficoQ j ) && 1 is irrelevant here because for a single Ein-
stein frequency ficop &&kT, it factorizes as an overall mul-
tiplicative factor. As is clear from Fig. 4, in the scatter-
ing regime defined by the parameters given, both the TA
and IA can overestimate the magnitude of the exact EBA
values of 28'p by a significant amount, reducing in some
cases the weight of the elastic line by almost an order of
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magnitude. In all this the TA turns out to be a much
better approximation than the IA, except for very low in-
coming energies below the excitation threshold where the
former is bound to fail anyhow. This is an important
finding, as quite often the IA has been considered superi-
or to the TA, in particular for higher incoming energies
of the scattered atom.

In summary of this subsection, we may state that the
EBA can be used with confidence in model calculations
of the multiphonon features appearing in the angular-
resolved scattering spectrum and the differential
reQection coefFicient pertaining to the HAS from the
CO(+3 X+3)R 30'/Rh(111) adsorption system. More-
over, the EBA provides a far more general and thereby
superior description of the scattering event in the rnulti-
phonon regime, and is not more complicated to irnple-
ment than any of the other two popular and frequently
employed approximations, viz. the TA and IA, which ap-
pear just as its special limiting cases.

B. Validity of the EBA and quasiclassical
approximations in HAS from Debye-like phonons

Investigations of the dynamics of the Cu(001) surface
by HAS have provided detailed information about the
characteristics of the various phonon modes which the
He atoms can interact with in the course of the col-
lision. ' ' Careful analyses of HAS time-of-Aight inten-
sities have revealed that at moderately high nozzle beam
energies the scattering spectra already exhibit both
single-phonon and multiphonon structures. ' The study
of the former indicate the existence of three distinct
surface-localized vibrational modes which have been as-
cribed to the Rayleigh wave (RW), the longitudinal bulk
resonance (LR), and a further acoustic bulk resonance at
somewhat higher-energy transfers. The LR was found to

c, [meV]

FIG. 4. Debye-Wailer exponent or the total inelastic
reflection coe%cient for the system He ~CO( &3X&3)R 30'/
Rh(111) calculated in the exponentiated Born approximation
(EBA), trajectory approximation (TA), and impulse scattering
(IA) approximations, denoted by full, dashed, and dashed-
dotted lines, respectively. The plots show its behavior as a func-
tion of and as scaled (divided) by the He-atom incoming energy
e; for a fixed incoming angle 0;=50 .

couple strongly to the scattering He atoms, producing
peaks which are more intense than those corresponding
to the RW for a wide range of impact parameters. In
particular, in the ( 110) symmetry direction the LR peak
in the HAS spectrum was found to be four times more in-
tense than the RW. The phonon density of states (DOS)
corresponding to the LR mode can be assumed as almost
Debye-like, with the Debye temperature OD =267 K. '

The estimates for the Debye temperature of the RW for
the same surface varied in the interval 230 K
~6 ~280 K (cf. Table 2 in Ref. 6). The third detect-
able single-phonon peak in the spectrum has been desig-
nated as mode 2 and attributed to a maximum in the
transverse vertical polarized density of bulk phonon
states. Its intensity, however, was found to be much
smaller than those of the LR and RW.

Fitting of the HAS TOF spectra for the Cu(001) sur-
face by Gaussians shows that already at 30-meV He beam
incident energy the multiphonon component makes a
significant contribution to the overall spectral weight. '

Given the fact that the single-phonon components of the
spectra are dominated by modes whose DOS may be con-
sidered Debye-like, one can envisage that the major con-
tribution to the multiphonon features will also come from
the same type of modes. Thus in our estimates of the va-
lidity of the EBA in the case of the He~Cu(001) scatter-
ing system, we shall investigate the behavior of the single-
and correlated two-phonon emission probabilities for the
phonon DOS modeled by the Debye spectrum, and the
impact parameters characteristic of the multiphonon re-
gime reached in experiments.

The estimate of the magnitude of P, (k&, k;) is carried
out for fixed impact parameters and momentum transfer
to yield an energy loss typically of the order of the mean
energy loss Ae observed in the multiphonon-scattering re-
gime. This is somewhat in contrast with the situation en-
countered in the case of Einstein-like modes for which
the single-phonon energy loss was independent of the irn-
pact parameters and the momentum transfer. The same
type of arbitrariness appears in the definition and esti-
mate of P2(k&, k, ), since here the angular-resolved final
state may be characterized by the final energy varying in
the interval (e;,e; —20D). For the purpose of our esti-
mate we again fix the final energy at the value e& =e; —Ae
and allow the intermediate energies to vary continuously
and integrate over all phonon wave vectors which comply
with total energy and momentum conservation. The ac-
tual calculation of P& (k&, k; ) and P2(k&, k, ) is performed
by using the interaction Hamiltonian (61) and the interac-
tion matrix elements given by (82) in which u& and
F~ K.(k,', k, ) now correspond to the atoms of the
Cu(100) surface. Thus uI will be obtained from Eq. (84)
upon replacing Mco by Mc„and F~ &.(k,', k, ) from Eq.
(82) with unshifted U„~(z), i.e., the one in which we set
z,&=0 and change the range to d =0.45az, which is ob-
tained from the best fit around the turning point corre-
sponding to e; =82 meV. The total phonon density of
states is taken to be Debye-like, with 0~=267 K. We
have adopted such a relatively simple approach because
the present analysis of the validity of the EBA requires
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FIG. 5. Plots of the uncorrelated and correlated transition
probabilities PI(k&, k;) (full line) and P2(k~, k;) (dashed line),
defined by Eqs. (76), (77), and (81), for the He~Cu(001) system
in the case of the total He-atom energy loss 5@=12meV. The
kinematic parameters are fixed at e;=82 meV, O;=50.9', and
Of =44.9'. For parameters of the interaction potential, see main
text.

neither introducing refinements into the expressions for
the force matrix elements nor using an exact computed
phonon DOS corresponding to the Cu(001) surface,
since details of the single-phonon features are washed
away by very small Debye-Wailer factors under extreme
multiphonon conditions.

Figure 5 shows the behavior of Pi(k&, k;) and
P2(k&, k; ) defined by Eqs. (76), (77), and (81), as functions
of incident He-atom energy e; and impact parameters of
the experiment described in Ref. 6. Here we have set
e&=eI.=e, —Ae with 6@=12 meV, which is slightly
above the value of the mean energy loss of 9 meV detect-
ed under extreme multiphonon scattering conditions at
T, =800 K. These results demonstrate that in the ener-

gy interval e; & 100 meV and for other parameters and in-
teractions fixed as above, the EBA may be considered as
providing an almost exact description of the scattering of
He atoms by Debye-like surface phonons. In particular,
typical quantities which characterize the scattering spec-
trum, such as the DWF and the mean energy transfer hc
to the phonon heat bath, will be given by the correspond-
ing EBA expressions of Eq. (70) above and Eq. (63) of
Ref. 10, respectively. Hence their values can then be
used as the reference ones in an estimate of the accuracy
of other approximations employed in the description of
the same scattering event.

Figure 6 shows the magnitude of the normalized DW
exponent 2W& /e; as calculated in the EBA, TA, and IA,

S

for substrate temperatures T, =0 and 800 K. The quali-
tative behavior of all three curves is very similar to those
found for the CO/Rh(111) surface discussed in Sec.
IVA. On account of the exactness of the EBA in the
scattering regime for which e; ~ 100 meV (cf. Fig. 5), we
again find that the TA turns out to be a much better ap-
proximation than the IA in the interval 50 me V
~ e; ~ 100 meV over which the intensity of the multipho-
non component in the He~Cu(001) scattering spectrum
exhibits a significant increase. ' Another clear message
deducible from Fig. 6 is that within the present descrip-
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FIG. 6. Upper panel: Debye-Wailer exponent or the total in-
elastic reAection coeKcient for the system He~Cu(001) for
zero substrate temperature and normalized to the incident He
energy e;. Values calculated in the exponentiated Born approxi-
mation (EBA), trajectory approximation (TA), and impulse
scattering (IA) approximations are denoted by full, dashed, and
dashed-dotted lines, respectively. Lower panel: Same as above
but for substrate temperature T, =800 K.

tion the multiphonon conditions reached in the experi-
ment for T, =800 K and e,. =82 meV cannot be explained
as being due to the strong projectile-phonon coupling but
rather to the effect of high substrate temperature. For
T, =0 and e; =82 meV the mean number of phonons nph
excited in the collision (as given by the value of the DW
exponent' ) is still low, namely noh=0. 66 which would
favor the single-phonon scattering regime, whereas for
T, =800 K it rises dramatically to n h

= 12.
In Fig. 7 we show a comparison between the experi-

mental scattering spectrum for the system He~Cu(001)
(Refs. 6 and 62) and the corresponding angular-resolved
EBA spectrum for He-atom scattering by Debye phonons
under extreme multiphonon conditions reached in the ex-
periment. The mean energy transfer to the phonon heat
bath computed from this EBA spectrum is
he(e'„8,., 8&)=9.3 meV. Cxiven the fact that we have
used a very simple model of the phonon DOS and have
not introduced any adjustable parameters in our calcula-
tions, the agreement between the two spectra is remark-
ably good and indicates two mutually interdependent
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FIG. 7. Comparison of experimental (full line) and theoreti-
cal angular-resolved (dashed line) scattering spectra for the col-
lision system He —+Cu(001) under extreme multiphonon condi-
tions (e; =82 meV, T, =800 K). The experimental spectrum is
taken from Ref. 6, and the theoretical spectrum is calculated in
the exponentiated Born approximation (EBA) and expressed as
a function of He-atom energy loss e= —c,. All parameters are
the same as in Figs. 5 and 6.

characteristics of the present model of multiphonon HAS
from surfaces: (i) If the gross features of the densities of
states of the multitude of surface and surface-projected
phonon modes characteristic of the Cu(001) surface can
be well modeled by a Debye spectrum, then (ii) the EBA
provides a fairly accurate description of multiphonon
scattering of He atoms from the Cu(001) surface in acces-
sible collision regimes already investigated experimental-
ly. This is not the case with the results of the TA and IA,
which may deviate most strongly from the exact ones just
in the intermediate-energy regime where the EBA
description of multiphonon scattering is valid.

V. CONCLUSIONS

In this work we have studied the effects of multipho-
non processes in inelastic He-atom-surface scattering
which have recently emerged as an interesting object of
experimental investigation in their own right. The infor-
mation which can be deduced from the multiphonon-
scattering spectra is of notably different character than in
the regime of single-phonon excitations which have been
studied primarily to extract the phonon-dispersion curves
and one-phonon densities of states for comparison with
theoretical predictions. These differences arise, first, due
to the fact that the total energy and momentum conserva-
tion applies in this case to the whole multitude of pho-
nons exchanged between the particle and the surface.
Hence the multiphonon-scattering spectra will be charac-
terized by integrated quantities such as the Debye-Wailer
factor, mean energy transfer, etc. In our derivation of
the scattering spectra which is based on a special cumu-
lant expansion for the scattering amplitude, we have
shown that a proper account of these quantities guaran-
tees a consistent and unitary treatment of the scattering

event. This is otherwise difficult to achieve in low-order
perturbative treatments such as the DWBA which
proved so useful in establishing the connection between
the inelastic reflection coefficients and the one-phonon
densities of states. Using the cumulant approach we have
demonstrated that a proper unitary treatment of multi-
phonon scattering yields a complete Debye-Wailer factor
describing the total probability of elastic scattering in the
form e in which the Debye-Wailer exponent 28'en-
compasses the probabilities of uncorrelated and correlat-
ed phonon excitations in all inelastic-scattering channels.
We have also shown that in regimes in which the contri-
butions of correlated phonon excitation processes can be
neglected relative to those of the uncorrelated ones, the
overall multiphonon-scattering spectrum acquires a par-
ticularly simple form which has the appearance of the ex-
ponentiated Born approximation (EBA), and that the cor-
responding DWF is expressed as an exponential function
of the total inelastic reAection coefficient as obtained in
the DWBA [cf. Eq. (70)]. This still fully quantal expres-
sion can then be used as a point of departure for deriving
several other semiclassical limits of the scattering spectra,
including ones obtainable in the trajectory approximation
for a description of the scattered particle dynamics. A
second important difference with respect to single-
phonon-scattering regime also arises from the unitary
property of the multiphonon spectra, and removes the ar-
bitrariness related to the absolute strength of the DWBA
inelastic reQection coefficients which otherwise violate
unitarity unless heuristic corrections are introduced.
This further implies that various moments of the scatter-
ing spectra can be used to estimate the magnitude of in-
elastic atom-surface coupling, and this should represent
an additional motivation for studying multiphonon
scattering.

By exploiting the advantages of the developed formal-
ism we were able to introduce and define general quanti-
tative criteria for the validity of the EBA in HAS. This is
based on the estimate of relative weights of the contribu-
tions of uncorrelated and correlated phonon emission
processes to the scattering amplitudes. We have found
that for scattering systems in which phonons can be
typified by Einstein- and Debye-like densities of states,
such estimates are relatively easy to carry out numerical-
ly. This has enabled us to apply these criteria to estimate
the validity of the EBA in studies of the collision sys-
tems He ~CO/Rh(111) and He ~Cu(001), whose
multiphonon-scattering spectra were found to be dom-
inated by excitation of Einstein- and Debye-like modes,
respectively. We have shown on examples of these two
representative collision systems that the EBA can be con-
sidered almost exact for treating multiphonon excitation
dynamics in a wide range of impact energies of interest in
HAS. Using this and the available parameters character-
izing He-surface interactions, we have computed the
EBA spectra for both collision systems and obtained ex-
plicitly the characteristic spectral quantities such as the
DWF, mean energy transfer, etc. A good agreement be-
tween experimental data and theoretical predictions has
been found which has also enabled us to estimate and
compare the validity of other semiclassical approxima-
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tions in the description of the same collision systems un-
der the same scattering conditions. Here we have found
that in the multiphonon-scattering regime the TA and IA
give results which may deviate substantially from the
nearly exact ones obtained in the EBA. Interestingly
enough, the TA proved to be a better approximation than
the IA in a wide range of impact energies and substrate
temperatures defining multiphonon-scattering conditions
in HAS. Together with some earlier findings, ' this
sheds additional light on the general applicability of vari-
ous approximations for treating inelastic HAS from sur-
faces in the regimes in which they have hitherto been
used only heuristically. Of course, further refinements of
the model, both in introducing a more detailed form of
the interaction matrix elements ' and using realistic
computed phonon densities of states, could only addition-
ally test our conclusions. However, although rigorously
substantiated only for Einstein- and Debye-like surface
phonon densities of states, these conclusions should prove

of more general significance due to the universality of the
criteria employed in analyses of the validity of the EBA
in HAS.
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