Branko Šavija

Branko Šavija
Delft University of Technology | TU · Department of Structural Engineering

PhD

About

176
Publications
82,637
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,629
Citations
Citations since 2017
130 Research Items
3412 Citations
201720182019202020212022202302004006008001,000
201720182019202020212022202302004006008001,000
201720182019202020212022202302004006008001,000
201720182019202020212022202302004006008001,000
Additional affiliations
September 2010 - September 2014
Delft University of Technology
Position
  • PhD Student

Publications

Publications (176)
Article
Full-text available
This study aims to experimentally investigate the autogenous deformation and the stress evolution in restrained high-volume ground granulated blast furnace slag (GGBFS) concrete. The Temperature Stress Testing Machine (TSTM) and Autogenous Deformation Testing Machine (ADTM) were used to study the macro-scale autogenous deformation and stress evolut...
Chapter
Stress evolution of restrained concrete is directly related to early-age cracking (EAC) potential of concrete, which is a tricky problem that often happens in engineering practice. Due to the global objective of carbon reduction, Ground granulated blast furnace slag (GGBFS) concrete has become a more promising binder comparing with Ordinary Port-la...
Chapter
The study aims to investigate the mechanism of early-age cracks in different massive concrete structures (i.e. tunnels, bridge foundations and underground parking garages), with the objective of answering the following three specific questions: 1) How does the parameters of concrete proportion mix (e.g. w/c ratio, cementitious materials, aggregates...
Article
Full-text available
In this paper, optimization of vascular structure of self-healing concrete is performed with deep neural network (DNN). An input representation method is proposed to effectively represent the concrete beams with 6 round pores in the middle span as well as benefit the optimization process. To investigate the feasibility of using DNN for vascular str...
Article
In circumstances with wastewater and seawater, the behavior of multi-ions including calcium, chloride and others in concrete attracts attention. The present study investigated the multiple mechanisms that could happen under the special field situation above, including calcium leaching, chloride transport and multi-ion coupling. To realize the inter...
Article
Full-text available
The performance of engineered cementitious composites (ECCs) under coupled salt freezing and loaded conditions is important for its application on the transportation infrastructure. However, in most of the studies, the specimens were generally loaded prior to the freezing. The influence of sustained load was merely considered. To this end, four sus...
Article
Full-text available
This work presents a study of mechanical properties of foamed concrete at the meso-scale based on a combination of X-ray computed tomography (XCT) technique and a discrete lattice type fracture model. The microstructure of the foamed concrete with different densities was obtained by XCT technique and binarized as two-phase (pore/solid) materials. T...
Article
High-frequency vibration helps to improve the compactness of concrete, but also causes the settlement of coarse aggregates (CAs) and then affects the durability of hardened concrete. In this paper, a numerical study combining multi-phase CA settlement model and multi-component ionic transport model is performed to understand the influence of vibrat...
Article
Full-text available
Whilst the optical and structural properties of the glasses containing tantalum oxide have been considerably investigated, research into their mechanical properties is not substantially established. This work reports on the mechanical characterization of transparent germanate glass samples, obtained via the melt-quenching technique, with a molar co...
Article
Full-text available
The mechanical performance of engineered cementitious composite (ECC) depends greatly on fiber orientation and distribution. In this paper, the effect of fiber orientation on ECC's mechanical properties was investigated using two different casting methods: a flow-induced casting was used to enhance the fiber orientation within ECC mixture and compa...
Article
Full-text available
Generative networks are effective tools for digital materials (DM) inverse design. However, the optimization performance of generative networks is restricted by the increasing discrepancy between the optimized input and the prescribed input domain as the design loop increases. Herein, a correction technique is incorporated into generative deep neur...
Article
Full-text available
This paper explores buildability quantification of randomly meshed 3D printed concrete objects by considering structural failure by elastic buckling. The newly proposed model considers the most relevant printing parameters, including time-dependent material behaviors, printing velocity, localized damage and influence of sequential printing process....
Article
Full-text available
The resistance of cracked ECC against chloride ingress is mainly governed by the accumulated crack width of all the cracks rather than the maximum width of multiple cracks. However, most studies focus on the influence of a single fine crack (<100 μm), which is far smaller than the accumulated crack width. To this end, this study focuses on a relati...
Article
Bleeding is a common problem in concrete slabs, and may lead to serious damage. The goal of this article is to understand the impact of alternative binders and their properties on the bleeding of concrete. Therefore, the impact of the type of binder on the bleeding process is investigated. The results show that the addition of granite powder or fly...
Article
Full-text available
Engineered cementitious composites (ECCs) belong to a broad class of fibre-reinforced concrete. They incorporate synthetic polyvinyl alcohol (PVA) fibres, cement, fly ash and fine aggre�gates, and are designed to have a tensile strain capacity typically beyond 3%. This paper presents an investigation on the carbonation behaviour of engineered cemen...
Article
Full-text available
Early‐age stress (EAS) is an important index for evaluating the early‐age cracking risk of concrete. This paper encompasses a thermo‐chemo‐mechanical (TCM) model and active ensemble learning (AEL) for predicting the EAS evolution. The TCM model provides the data for the AEL model. First, based on Fourier's law, Arrhenius’ equation, and rate‐type cr...
Article
Full-text available
Conventionally, the properties of cementitious materials are tailored by a simple but efficient method: mixture proportion design. For a given cementitious mixture, the chemical and physical properties of cementitious materials have already been determined. Consequently, the mechanical performance of the hardened cementitious material is determined...
Article
Full-text available
Tailoring lattice structures is a commonly used method to develop lattice materials with desired mechanical properties. However, for cementitious lattice materials, besides the macroscopic lattice structure, the multi-phase microstructure of cement paste may have substantial impact on the mechanical responses. Therefore, this work proposes a multi-...
Article
Full-text available
Carbide residue activated blast furnace slag is a relatively new kind of eco-friendly construction materials. This work addresses the design of foamed lightweight concrete as road embankment material using such material. A statistical mixture design approach was adopted to assess the influence of each ingredient as well as the interaction between t...
Article
Full-text available
In this study, the flexural strength and fatigue properties of interfacial transition zone (ITZ) were experimentally investigated at the micrometre length scale. The hardened cement paste cantilevers (150 μm × 150 μm × 750 μm) attached to a quartzite aggregate surface were prepared and tested under the monotonic and cyclic load using a nanoindenter...
Article
Full-text available
This research studies the impact of localized damage and deformed printing geometry on the structural failure of plastic collapse for 3D concrete printing (3DCP) using the lattice model. Two different approaches are utilized for buildability quantification: the (previously developed) load-unload method, which updates and relaxes the printing system...
Article
Full-text available
The design of new insulating envelopes is a direct route towards energy efficient buildings. The combinations of novel materials, such as phase-change (PCM), and advanced manufacturing techniques, such as additive manufacturing, may harness important changes in the designing of building envelopes. In this work we propose a novel methodology for the...
Article
Full-text available
Microbiologically induced concrete corrosion (in wastewater pipes) occurs mainly because of the diffusion of aggressive solutions and in situ production of sulfuric acid by microorganisms. The prevention of concrete biocorrosion usually requires modification of the mix design or the application of corrosion-resistant coatings, which requires a fund...
Article
Full-text available
Extrusion-based 3D concrete printing (3DCP) results in deposited materials with complex microstructures that have high porosity and distinct anisotropy. Due to the material heterogeneity and rapid growth of cracks, fracture analysis in these air-void structures is often complex, resulting in a high computational cost. This study proposes a convolut...
Chapter
Previous research has shown that the material properties of a three-dimensional printed strain hardening cementitious composite (3DP-SHCC) can significantly vary, depending on the printing system with which it is produced. However, limited research has been performed on the reproducibility of hardened mechanical properties under identical printing...
Article
Full-text available
A good bond between the layers of 3D printed cementitious materials is a prerequisite for having high structural rigidity for the printed elements. However, the influence of printing process on an interlayer bond is still not well understood. This study investigates the influence of curing methods (i.e., air curing, plastic film covering, wet towel...
Article
Full-text available
Cracking is one of the main causes for deterioration of concrete structures. Self-healing concrete with 3D-printed vascular networks has excellent potential for autonomous self-healing. This approach is scarcely investigated: no studies have been devoted to the influence of printing parameters on the properties of vascular based self-healing concre...
Article
Full-text available
This paper presents a study on cracking characterization of engineered cementitious composites (ECC) under flexural cyclic load using digital image correlation (DIC) technique. Five stress levels, namely 0.65, 0.75, 0.8, 0.85 and 0.9 of the flexural strength, were applied. Strain map at the side surface was obtained by DIC and used to drive evoluti...
Article
Full-text available
Since the advent of three-dimensional concrete printing (3DCP), several studies have shown the potential of strain hardening cementitious composites (SHCC) as a self-reinforcing printable mortar. However, only a few papers focus on achieving sufficient buildability when developing printable SHCC. This study investigates the role of the particle siz...
Article
Full-text available
Stress evolution of restrained concrete is a significant direct index in early-age cracking (EAC) analysis of concrete. This study presents experiments and numerical modelling of the early-age stress evolution of Ground granulated blast furnace slag (GGBFS) concrete, considering the development of autogenous deformation and creep. Temperature Stres...
Article
Full-text available
This study aims to provide an efficient alternative for predicting creep modulus of cement paste based on Deep Convolutional Neural Network (DCNN). First, a microscale lattice model for short-term creep is adopted to build a database that contains 18,920 samples. Then, 3 DCNNs with different consecutive convolutional layers are built to learn from...
Article
Full-text available
Lattice models have been used to simulate mass transport to predict durability of cementitious materials. In particular, the use of dual lattice meshes allows for the coupling of fracture and transport processes, which commonly occur at the same time in these materials. Literature has shown good agreement between simulations and experimental result...
Article
Full-text available
This work focuses on combining digitally architected cellular structures with cementitious mortar incorporating micro-encapsulated phase change material (mPCM) to fabricated lightweight cementitious cellular composites (LCCCs). Voronoi structures with different randomness are designed for the LCCCs. Aided by the indirect 3D printing technique, the...
Article
Full-text available
Siliceous fly ash can be applied as a cement replacement material for mortars used in cement-based floor overlays. At present, there is no knowledge of the appropriate curing conditions that need to be applied on concrete floors. Moreover, previous research related to curing conditions has left research gaps related to the conditions in which such...
Article
Full-text available
Induction furnace steel slag is a secondary product obtained when molten steel is separated from the impurities in the steel-producing furnaces. Though numerous studies have been published on the mechanical strength of concrete/mortar made with steel slag as fine aggregate, relatively few studies focus on the shrinkage, durability (i.e., porosity,...
Article
The production of Portland cement is responsible for 6 - 8 % of total anthropogenic CO2 emissions. Half of this CO2 is released by the chemical decarbonisation reaction of limestone raw material (CaCO3→CaO + CO2↑), while the other half is coming from thermal energy requirement for clinkerisation reaction. Major sustainability improvements have alre...
Article
Full-text available
This study aims to provide an efficient and accurate machine learning (ML) approach for predicting the creep behavior of concrete. Three EML models are selected in this study: Random Forest (RF), Extreme Gradient Boosting Machine (XGBoost) and Light Gradient Boosting Machine (LGBM). Firstly, the creep data in Northwestern University (NU) database i...
Article
Full-text available
Clay brick is one of the major components of demolition waste, which is generally landfilled. Effective and new uses of recycled clay brick may provide sustainability benefits in terms of landfill reduction. Therefore, this research aims at applying Recycled fine clay brick aggregates (RFCBA) with sizes from 0.075 mm–4.75 mm to prepare Self-compact...
Article
Full-text available
This paper presents an experimental investigation on the short-term creep recovery of cement paste at micro-metre length scale. Micro-cantilever beams were fabricated and tested with 8 different loading series using the nanoindenter. It is found that cement pastes show high recovery ratios (>80%) even subjected to very high stress levels. Relativel...
Article
Full-text available
In this study, glass wool waste was utilized by means of alkali-activation with blast furnace slag. Reaction kinetics, workability, mechanical properties and autogenous shrinkage of alkali-activated slag and glass wool were comprehensively studied. Results indicated an optimal modulus (SiO2/Na2O) of the activator related to a long enough setting ti...
Article
The use of CSA cement in practice has been hindered by its unstable performance and short shelf-life caused by the prehydration of CSA clinker. In this study, the effect of ambient humidity on the prehydration rate and process of CSA clinker was investigated. The prehydration degree, ageing progress, and the dynamic change of mineral composition of...
Article
Full-text available
This study presents an experimental investigation of fatigue properties of cement paste at the microscale. A strong size dependence is found for the flexural fatigue life of the cement paste specimen. Microscopic observations on the fractured surfaces suggest that there is a higher density of nano-scale cracks generated during the fatigue loading c...
Article
Fresh concrete needs vibration to compact, fill the mould and reach a dense state. During the compaction process, coarse aggregates (CAs) tend to settle, affecting the homogeneity and eventually the long-term durability of hardened concrete. In this study, a 3-D, multi-phase numerical model for fresh concrete is developed for better understanding t...
Article
Full-text available
In this study, a numerical model using a 2D lattice network is developed to investigate the fatigue behaviour of cement paste at the microscale. Images of 2D microstructures of cement pastes obtained from XCT tests are used as inputs and mapped to the lattice model. Different local mechanical and fatigue properties are assigned to different phases...
Article
Full-text available
A R T I C L E I N F O Keywords: Strain rate sensitivity Micro-cantilever bending Cement paste Creep A B S T R A C T This study presents an experimental investigation of the rate-dependent mechanical properties of cement paste at the microscale. With the use of a nanoindenter, micro-cantilever beams with the size of 300 μm × 300 μm × 1650 μm were lo...
Article
Full-text available
In this work, the lattice model is applied to study the printing process and quantify the buildability (i.e., the maximum height that can be printed) for 3D concrete printing (3DCP). The model simulates structural failure by incorporating an element birth technique, time‐dependent stiffness and strength, printing velocity, non‐uniform gravitational...
Article
Full-text available
This paper presents a method to numerically investigate the microstructural effect on the creep behavior of cement paste at the microscale. The lattice fracture model is extended to consider local time‐dependent deformations of calcium‐silicate‐hydrate phases in the cement paste by imposing local forces. The term “experimentally informed model” is...
Article
Reinforced concrete (RC) structures may suffer from serious durability problems during long-term service. To investigate the deterioration of RC structures subjected to the dual attacks of chlorides and sulfates, this study proposes a coupled model for external sulfate attack (ESA) and its effect on chloride binding and diffusion. To account for th...
Article
Full-text available
The elastic modulus of corrosion product (Ecp) has been reported with significant variations in the literature. This study aims to investigate the Ecp of naturally-generated chloride-induced corrosion products formed in different concrete mixes. Microstructural characterization was conducted through nano-indentation, electron microscopy and Raman s...
Article
Full-text available
X-ray computer scanning tomography (CT scan) is an increasingly more available technique, which has been applied to material sciences for years. Although most of its use is qualitative for gaining insights on material behavior, quantitative analysis for estimations of deterioration rates is possible. This paper describes an unbiased, straightforwar...
Article
Full-text available
Compressive strength is the most significant metric to evaluate the mechanical properties of concrete. Machine learning (ML) methods have shown promising results for predicting compressive strength of concrete. However, at present, no in-depth studies have been devoted to the influence of dimensionality reduction on the performance of different ML...
Article
Full-text available
Cementitious materials are widely used in construction. For their low ductility, they typically need to be reinforced by steel rebars, which cause potential corrosion problems. Polymeric reinforcement, which does not have corrosion problems, has been used to replace steel rebars. However, a relatively high reinforcing ratio is usually required for...
Article
Full-text available
This paper discusses the state-of-the-art of the fine recycled concrete aggregates (fRCA), focusing on their physical and chemical properties, engineering properties and durability of concretes with fRCA. Based on the systematic review of the published literature, it is impossible to deduce without any further research the guidelines and tools to i...
Article
Full-text available
A combination of laboratory experiments and numerical simulations at multiple length scales can provide in-depth understanding of fracture behaviour of hydrated cement paste (HCP). To that end, the current work presents a numerical study on compressive failure of hydrated cement paste (HCP) at the micro-scale. Virtual specimens consisting of variou...