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1 IntroductionIn many �elds, such as the physical sciences and economics, the hypothesis that a processis composed of many features which occur at di�erent scales is quite natural. Recently,attention has been given to identifying and modelling so-called long memory processes. Acommon model for such processes is that the observations Y0; : : : ; YN�1 constitute one por-tion of a stationary Gaussian fractionally di�erenced (FD) process Yt. This process can berepresented as Yt = 1Xk=0 �(k + d)�(k + 1)�(d) �t�k;where the long memory parameter jdj < 12 , and �t is a Gaussian white noise process withmean zero and variance �2� . The spectral density function (SDF) for this process is given byS(f) = �2� j2 sin(�f)j�2d for jf j � 12 . When 0 < d < 12 , the SDF has an asymptote at zero,the process exhibits slowly decaying autocovariances and constitutes a simple example ofa long memory process; see Granger and Joyeux (1980), Hosking (1981), and Beran (1994,Sec. 2.5).In practice, one may question if the process are truly stationary, or composed of severalstationary segments. We prefer to view this problem by considering a time series with anunknown number of variance change points. A number of methods have appeared in theliterature for investigating the presence of multiple change points. Hinkley (1971) studiedthe use of cumulative sum tests for detecting a change point and then estimating its loca-tion, which are adaptable to the presence of multiple change points through a sequentialalgorithm. Haccou and Meelis (1988) proposed a hierarchical likelihood ratio test for de-termining the number of change points in a sequence of exponentially distributed randomvariables, and Meelis et al. (1991) generalized the well-known test by Pettitt (1979) intoa Kruskal{Wallis test for determining the number of change points in a sequence of inde-1



pendent random variables. Incl�an and Tiao (1994) investigated the detection and locationof multiple changes of variance in sequences of independent Gaussian random variables byrecursively applying a cumulative sum of squares test to pieces of the original series. Chenand Gupta (1997) utilized the Schwartz information criterion in order to both detect andlocate multiple changes of variance. Recently, Khalil and Duchêne (1999) compared autore-gressive and multiscale approaches to identify multiple events in piecewise stationary timeseries with application to uterine electromyogram signals.The discrete wavelet transform (DWT) decomposes a process into di�erent scales, orbands of frequency. The DWT has already proven useful for investigating various types ofnonstationary events. For example, Wang (1995) tested wavelet coe�cients at �ne scalesto detect jumps and sharp cusps of signals embedded in Gaussian white noise, Ogden andParzen (1996) used wavelet coe�cients to develop data-dependent thresholds for removingnoise from a signal and Whitcher et al. (1998) investigated a single change of variance in longmemory processes. The key property of the DWT that makes it useful for studying possiblenonstationarities is that it transforms a time series into coe�cients that reect changes atvarious scales and times. For FD and related long memory processes, the wavelet coe�cientsfor a given scale are approximately uncorrelated; see, Tew�k and Kim (1992), McCoy andWalden (1996) and Whitcher et al. (1998). We propose to test for multiple variance changepoints in FD processes using an iterated cumulative sum of squares statistic applied to theoutput from the DWT. By testing the output from the DWT we also gain the ability toidentify the scale at which the inhomogeneity occurs. Using a variation of the DWT, the`non-decimated' DWT, we can estimate the times at which the variance change points occur.Section 2 provides a brief description of the DWT and `non-decimated' DWT. Section 3establishes our procedure for testing multiple variance change points. The cumulative sum2



of squares test statistic is de�ned and a bisection algorithm is outlined in order to recursivelytest a vector of coe�cients. Simulation results are provided to determine the empirical sizeand power of our procedure. Using an auxiliary testing procedure, we also provide a methodfor locating multiple variance change points. We apply this methodology to a series ofvertical ocean shear measurements. Not only does the procedure isolate two visually obviousnonstationary segments, but also a much more subtle region.2 Discrete Wavelet TransformsLet h1 = fh1;0; : : : ; h1;L�1; 0 : : : ; 0g denote the wavelet �lter coe�cients of a Daubechiescompactly supported wavelet for unit scale (Daubechies 1992, Ch. 6), zero padded to lengthN by de�ning h1;l = 0 for l � L. LetH1;k = N�1Xl=0 h1;l e�i2�lk=N ; k = 0; : : : ; N � 1;be the discrete Fourier transform (DFT) of h1. Let g1 = fg1;0; : : : ; g1;L�1; 0; : : : ; 0g be thezero padded scaling �lter coe�cients, de�ned via g1;l = (�1)l+1h1;L�1�l for l = 0; : : : ; L� 1,and let G1;k denote its DFT. Now de�ne the length N wavelet �lter hj for scale �j = 2j�1 asthe inverse DFT ofHj;k = H1;2j�1kmodN j�2Yl=0G1;2lkmodN ; k = 0; : : : ; N � 1:When N > Lj = (2j � 1)(L� 1) + 1, the last N � Lj elements of hj are zero, so the wavelet�lter hj has at most Lj non-zero elements.Let Y0; : : : ; YN�1 be a time series of length N . For scales such that N � Lj, we can �lterthe time series using hj to obtain the wavelet coe�cientsWj;t = 2j=2fWj;2j(t+1)�1; l(L� 2) �1� 12j �m � t � jN2j � 1k ;3



where fWj;t = 12j=2 Lj�1Xl=0 hj;lYt�l; t = Lj � 1; : : : ; N � 1:The Wj;t coe�cients are associated with changes on a scale of length �j and are obtained bysubsampling every 2jth value of the fWj;t coe�cients, which forms a portion of one versionof a `non-decimated' DWT called the `maximal overlap' DWT (see Percival and Guttorp(1994) and Percival and Mofjeld (1997) for details on this transform). In practice the DWTis implemented via a pyramid algorithm (Mallat 1989) that, starting with the data Yt, �ltersa series using h1 and g1, subsamples both �lter outputs to half their original lengths, keepsthe subsampled output from the h1 �lter as wavelet coe�cients, and then repeats the above�ltering operations on the subsampled output from the g1 �lter. A simple modi�cation, notsubsampling the output at each scale and inserting zeros between coe�cients in h1 and g1,yields the algorithm for computing fWj;t described in Percival and Mofjeld (1997).3 Testing for Multiple Variance ChangesIf Y0; : : : ; YN�1 constitutes a portion of an FD process with long memory parameter 0 < d <12 , and with possibly nonzero mean, then each sequence of wavelet coe�cients Wj;t for Yt isapproximately a sample from a zero mean white noise process. This enables us to formulateour test for multiple variance change points using wavelet coe�cients for FD processes.3.1 The Test StatisticLetX0; : : : ; XN�1 be a time series that can be regarded as a sequence of independent Gaussian(normal) random variables with zero means and variances �20; : : : ; �2N�1. We would like totest the hypothesis H0 : �20 = � � � = �2N�1. A test statistic that can discriminate betweenthis null hypothesis and a variety of alternative hypotheses (such as H1 : �20 = � � � = �2k 6=�2k+1 = � � � = �2N�1, where k is an unknown change point) is the normalized cumulative sums4



of squares test statistic D, which has previously been investigated by, among others, Brownet al. (1975), Hsu (1977) and Incl�an and Tiao (1994). To de�ne D, letPk � Pkj=0X2jPN�1j=0 X2j ; D+ � max0�k�N�2 k + 1N � 1 � Pk! and D� � max0�k�N�2 Pk � kN � 1! :The desired statistic is given by D � max(D+; D�). Critical levels for D under the nullhypothesis can be readily obtained through Monte Carlo simulations for arbitrary samplesize. Incl�an and Tiao (1994) established the asymptotic distribution of D and also provideda relationship with the usual F -statistic for testing the equality of variances between twoindependent samples and the likelihood ratio.3.2 Iterated Cumulative Sums of Squares AlgorithmIn practice, a given time series may exhibit more than one change in variance. A naturalapproach is to test the entire series �rst, split at a detected change point and repeat untilno change points are found. This is known as a `binary segmentation' procedure studied byVostrikova (1981), who proved its consistency. Incl�an and Tiao (1994) and Chen and Gupta(1997) have both recently used this in order to detect and locate variance change points. Thetest statistic used by Chen and Gupta (1997) is based on the Schwarz information criterion(SIC). All subsequent simulation studies were attempted to be duplicated using the SICprocedure, but we were unable to replicate the empirical size of the test in both Lisp and Ceven after correspondence with one of the authors.We propose to use the iterated cumulative sum of squares (CSS) algorithm to test formultiple variance changes from the output of the DWT { in e�ect partitioning the series intostationary segments. Thus, each series of wavelet coe�cients are put through the iteratedCSS algorithm producing a multiscale analysis of the original series. In order to reducethe computational time we use the asymptotic approximation for the critical values of D.5



This has been shown to be an adequate approximation for sample sizes of 128 or greater(Whitcher et al. 1998). For a time series Y0; : : : ; YN�1, the iterated CSS algorithm proceedsas follows (Incl�an and Tiao 1994):1. Compute the partial DWT (order J) of Y0; : : : ; YN�1, as de�ned in Section 2 using aDaubechies family wavelet �lter;2. Discard all coe�cients on each scale that make explicit use of the periodic boundaryconditions;3. Determine the test statistic D, via the equations in Section 3.1, and record the pointk1 at which D is attained. If D exceeds its critical value for a given level of signi�cance�, then proceed to the next step. If D is less than the critical value, the algorithmterminates.4. Determine the test statistic D for the new time series Y0; : : : ; Yk1�1. If D exceeds itscritical value, then repeat this step until D is less than its critical value.5. Determine the test statistic D for the new time series Yk1; : : : ; YN�1. Repeat this stepuntil D is less than its critical value.6. Go through the potential change points as outlined in the following paragraph.Incl�an and Tiao (1994) included an additional step when detecting multiple variancechange points. After the bisection algorithm had terminated, each potential change pointwas tested again using only those observations between its two adjacent change points. Forexample, a vector of length 128 containing potential change points at 26, 69, and 108, wouldagain test 26 using only observations 1; : : : ; 69, test 69 using observations 26; : : : ; 108 and test108 using observations 69; : : : ; 128. This was to compensate for an apparent overestimation6



of the number of variance change points. Simulations were run both with and without thisadditional procedure. The rejection rates for the �rst two scales were found to change upto 4% for low variance ratios and up to 1% for larger variance ratios. All tables using theiterated CSS algorithm include this extra step.3.3 Empirical Size and PowerWhitcher et al. (1998) established the empirical size of the cumulative sum of squares testunder the alternative hypothesis of a single variance change. Since the iterated proceduresimply utilizes this speci�c hypothesis test recursively throughout the separate scales of theDWT, the empirical size for the iterated CSS algorithm follows immediately.The procedure outlined in Section 3.2 was repeated a large number of times for a speci�csample size N = 656, signi�cance level � = 0:05 and long memory parameter d = 0:40,with a partial DWT of order J = 4. A vector of independent Gaussian random variables wasadded to the �rst 100 observations of the FD processes. Instead of adjusting the long memoryparameter, the variance of the �rst 100 observations was adjusted { producing variance ratiosbetween the �rst 100 and subsequent observations of � 2 f1:5; 2; 3; 4g.Table 1 displays simulation results for the iterated CSS method when detecting oneunknown variance change point for the Haar, D(4) and LA(8) wavelet �lters and scales�j = 1, 2, 4 and 8; here `D(4)' and `LA(8)' refer to the Daubechies extremal phase �lter withfour nonzero coe�cients and to her least asymmetric �lter with eight coe�cients (Daubechies1992). We see the iterated CSS procedure does quite well at locating the single variancechange point for all variance ratios. With a ratio of � = 2 or greater, it errs only towardsmultiple change points { always indicating at least one change point in the �rst few scales.For larger variance ratios (� � 3) the procedure produces rejection rates around 90% orgreater in the �rst two scales, and it errs on the side of three or more change-points with7



Haar D(4) LA(8)Level 0 1 � 2 0 1 � 2 0 1 � 2� = 1.5 1 9:5 85.2 5:3 7:6 87.8 4:6 7:3 88.8 3:92 58:9 39.8 1:2 58:9 39.7 1:4 60:4 38.5 1:23 87:5 12.2 0:3 88:2 11.6 0:2 90:3 9.5 0:24 95:1 4.9 0:0 95:2 4.8 0:0 95:9 4.1 0:0� = 2 1 0:1 93.0 6:9 0:1 93.5 6:4 0:1 94.2 5:72 17:7 79.6 2:8 17:9 79.5 2:6 20:6 77.1 2:33 69:2 30.1 0:7 71:2 28.2 0:6 77:2 22.4 0:44 90:8 9.2 0:0 91:2 8.8 0:0 93:5 6.5 0:0� = 3 1 0:0 92.9 7:1 0:0 93.6 6:4 0:0 93.8 6:22 1:3 95.4 3:3 1:2 95.5 3:3 1:9 95.0 3:23 33:8 64.7 1:5 38:3 60.4 1:2 49:4 49.6 1:04 79:4 20.6 0:0 80:9 19.1 0:0 87:2 12.3 0:0� = 4 1 0:0 92.9 7:1 0:0 92.7 7:3 0:0 93.2 6:82 0:1 96.3 3:6 0:1 96.3 3:6 0:2 96.5 3:33 16:6 81.5 1:9 19:1 79.1 1:8 29:1 69.4 1:54 66:0 34.0 0:0 69:1 30.9 0:0 79:4 20.6 0:0Table 1: Empirical power of iterated CSS algorithm for FD processes (N = 512; d = 0:4)with one variance change (k = 100). Variance ratios are given by �.greater frequency.Table 2 displays simulation results for the iterated CSS when detecting two unknownvariance change points. Again, all tests were performed at the � = 0:05 level. Gaussianrandom variables, of length 100, were added to the middle of the series creating two variancechanges at k1 = 250 and k2 = 350. The iterated CSS method once again performs quite wellfor small variance ratios � = 1:5, with a slight increase in power as the wavelet �lter increasesin length. For larger variance ratios, the �rst scale gives a maximum rejection rate of 94%and then hovers around 90% for very large �. All errors in the �rst scale, for higher varianceratios, are towards overestimating the number of variance changes. The second scale, whichexhibits almost no power for smaller variance ratios, rapidly approaches the 90{95% range8



Haar D(4) LA(8)Level 0 1 2 � 3 0 1 2 � 3 0 1 2 � 3� = 1.5 1 14:5 9:3 71.8 4:3 11:7 10:4 73.6 4:2 11:2 11:4 74.2 3:22 67:4 20:8 11.7 0:1 67:3 22:6 10.0 0:1 67:7 23:8 8.5 0:13 88:7 10:1 1.1 0:0 88:8 10:6 0.6 0:0 90:4 9:2 0.4 0:04 94:6 5:4 0.0 0:0 100:0 0:0 0.0 0:0 100:0 0:0 0.0 0:0� = 2 1 0:1 0:2 91.8 7:9 0:0 0:2 92.4 7:3 0:0 0:3 94.0 5:82 26:7 17:2 55.4 0:7 26:2 22:1 51.1 0:6 27:2 26:4 45.8 0:53 75:8 18:5 5.6 0:0 77:3 19:0 3.7 0:0 78:8 18:3 2.9 0:04 91:5 8:5 0.0 0:0 100:0 0:0 0.0 0:0 100:0 0:0 0.0 0:0� = 3 1 0:0 0:0 90.4 9:6 0:0 0:0 91.4 8:6 0:0 0:0 92.5 7:52 1:6 2:2 93.8 2:3 1:6 4:0 92.5 1:9 2:2 5:5 90.4 1:93 48:0 24:0 27.8 0:2 49:7 29:8 20.3 0:2 55:2 29:4 15.3 0:14 83:5 16:5 0.0 0:0 100:0 0:0 0.0 0:0 100:0 0:0 0.0 0:0� = 4 1 0:0 0:0 89.5 10:5 0:0 0:0 90.5 9:5 0:0 0:0 91.4 8:62 0:1 0:2 96.5 3:2 0:1 0:7 96.6 2:6 0:1 0:9 96.3 2:83 26:3 18:8 54.4 0:6 29:6 28:0 42.1 0:4 34:9 28:9 35.7 0:54 74:0 26:0 0.0 0:0 100:0 0:0 0.0 0:0 100:0 0:0 0.0 0:0Table 2: Empirical power of the iterated CSS algorithm for FD processes (N = 512; d = 0:4) with two variance changes(k1 = 250; k2 = 350). Variance ratios are given by �.
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for � � 3 and errs primarily towards overestimating the number of variance changes also.The 100% rejection rates for the D(4) and LA(8) wavelet �lters in the fourth scale occursbecause of a reduction, due to boundary a�ects, in the number of wavelet coe�cients belowa minimum established threshold.3.4 Locating Multiple Variance ChangesAs discussed in Whitcher et al. (1998), the DWT su�ers from a loss of resolution by down-sampling at each level of the transform. An alternative test statistic fD, using the MODWT,is utilized to estimate the location of multiple variance changes. The procedure involvesmuch more bookkeeping than in the single variance change scenario, but is easily manage-able. For each iteration of the algorithm, estimated locations of the variance change pointsfor both the DWT and MODWT are recorded. The DWT estimates are used to test forhomogeneity of variance and the MODWT estimates are used to determine the location ofthe variance change. Obviously, the estimated location of the variance change is discardedif the test statistic is found not to be signi�cant.Figures 1{4 displays the estimated location of variance change for various FD processeswith one change of variance. We see more and more of the area of the histogram centeredat k = 100 as the variance ratio increases. There also appears to be a small percentageof rejections to the right of the main peak across all levels and wavelet �lters. This is tobe expected, since we are not forcing the testing procedure to stop at only one change ofvariance. The small percentage of second or third variance changes (cf. Table 1) in the samescale appear as an increase in the right tails of these histograms. With this feature in mind,the procedure still performs quite well when the variance ratio is relatively large (� � 2),especially in the �rst two scales. The third and fourth scales are quite spread out and notrecommended for estimating simple variance change points in practice.10



Figures 5{8 display the estimated location of variance change for various FD processeswith two variance changes. For small variance ratios (� = 1:5) the iterated CSS proceduredoes a good job of locating the variance change points in the �rst scale, with mixed resultsfor the second scale. As before, we do not expect much information to come from looking athigher scales. Although, as the magnitude of the variance ratio increases the higher scales(j = 3; 4) do exhibit structure similar to the �rst two. Regardless, we shall strictly usethe �rst two scales for inference in the future. With respect to the �rst two scales, as thevariance ratio increases to, say, � = 3 or 4, then the bimodality is readily apparent. As wasthe case for a single variance change, the longer wavelet �lters give a slightly more spreadout distribution for the locations of the variance changes. To be more precise, the estimatedlocations appear to be skewed to the right at k1 = 250 and k2 = 350 for the D(4) and LA(8)wavelet �lters, especially in the second scale.4 Vertical Ocean Shear MeasurementsPercival and Guttorp (1994) analyzed a set of vertical ocean shear measurements using thewavelet variance. The data were collected by dropping a probe into the ocean which recordsthe water velocity every 0.1 meter as it descends. Hence, the `time' index is really depth(in meters). The shear measurements (in s�1) are obtained by taking a �rst di�erence ofthe velocity readings over 10 meter intervals and applying a low-pass �lter to the di�erencereadings. Figure 9 shows all 6875 observations available for analysis. We see two sections ofgreater variability, one around 450m and the other around 1000m, with a fairly stationarysection in between. Percival and Guttorp (1994) commented on this fact and only looked at4096 observations ranging from 489.5m to 899.0m in their paper.The inuence of the ends of the time series (i.e., the observations outside the vertical11



dotted lines in Figure 9) is most evident when comparing its wavelet variance to the waveletvariance between the middle 4096 observations; see Figure 10. The bursts of increased vari-ability observed in the �rst 5 scales make a signi�cant contribution to the wavelet variance.For those scales, the con�dence intervals do not overlap between the full and truncated timeseries, whereas the con�dence intervals do overlap for all subsequent scales. This featurehints at a possible heterogeneity of variance in the �rst 5 scales.Figure 11 shows the MODWT wavelet coe�cients for the �rst �ve scales of the verticalocean shear measurements. The vertical dotted lines are the estimated locations of variancechange points using the DWT to test and the MODWT to locate with asymptotic criticalvalues (� = 0:05). The procedure does a good job of isolating the two regions of increasedvariability at 450m and 1000m in each scale, except for the second scale. There, the �rstburst has been `picked apart' by the procedure with 10 distinct stationary regions. This doesnot seem appropriate and it is unclear why this only occurred on the second scale when thethird scale appears to be similar in changing variability with time. Besides the two obviousregions of increased variability, there appears to be a third burst around 800m. It is present,to di�ering degrees, in the �rst four scales whereas most other bursts disappear after the�rst and second scale. This is a much more subtle type of nonstationarity, compared to theobvious bursts at 450m and 1000m, and not particularly visible in the original time serieswith the naked eye.5 ConclusionsWe have presented an iterated CSS algorithm for detecting and locating multiple variancechanges in time series with long-range dependence. The �rst scale of wavelet coe�cientsis quite powerful for detecting single or multiple variance change points when the variance12



ratio is a factor of 2 or greater. The second scale is also equally powerful, but when thevariance ratio is a factor of 3 or greater. This procedure also performs well at locatingsingle or multiple variance change points using the auxiliary test statistic computed via theMODWT.Currently, the procedure for detecting and locating multiple variance changes via theDWT is in its infancy. More work is needed in order to re�ne the procedure and furtherinvestigate its properties. Areas for future research include obtaining exact critical values forthe DWT test statistic and adapting the MODWT test statistic to not only locate but alsotest for a variance change point. Given the ability of the DWT to remove heavy amounts ofautocorrelation in time series, this method has wide application in many �elds. The pointbeing that this test can handle high amounts of autocorrelation, as found in long memoryprocesses, through the fact that limited assumptions are made with respect to the underlyingspectrum of the observed time series.ReferencesBeran, J. (1994). Statistics for Long-Memory Processes, Volume 61 of Monographs onStatistics and Applied Probability. New York: Chapman & Hall.Brown, R. L., J. Durbin, and J. M. Evans (1975). Techniques for testing the constancyof regression relationships over time. Journal of the Royal Statistical Society B 37,149{163.Chen, J. and A. K. Gupta (1997). Testing and locating variance changepoints with applica-tion to stock prices. Journal of the American Statistical Association 92 (438), 739{747.Daubechies, I. (1992). Ten Lectures on Wavelets, Volume 61 of CBMS-NSF RegionalConference Series in Applied Mathematics. Philadelphia: Society for Industrial and13
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Figure 1: Estimated locations of a single variance change (k = 100) for FD processes (N =656; d = 0:4) using the iterated CSS procedure and MODWT. The rows denote the variouswavelet �lters, the columns denote the levels of the MODWT and the variance ratio is� = 1:5. 16
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Figure 2: Same as Figure 1 with variance ratio � = 2.
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Figure 3: Same as Figure 1 with variance ratio � = 3.
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Figure 4: Same as Figure 1 with variance ratio � = 4.
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Figure 5: Estimated locations of two variance changes (k1 = 251; k2 = 350) for FD processes(N = 656; d = 0:4) using the iterated CSS procedure and MODWT. The rows denote thevarious wavelet �lters, the columns denote the levels of the MODWT and the variance ratiois � = 1:5. 20



0

10

20

30

40

Level 1
D(4)
2:1

0 100 200 300 400 500

Level 2
D(4)
2:1

Level 3
D(4)
2:1

0 100 200 300 400 500

Level 4
D(4)
2:1

Level 1
Haar
2:1

Level 2
Haar
2:1

Level 3
Haar
2:1

0

10

20

30

40

Level 4
Haar
2:1

0

10

20

30

40

Level 1
LA(8)
2:1

Level 2
LA(8)
2:1

0 100 200 300 400 500

Level 3
LA(8)
2:1

Level 4
LA(8)
2:1

0 100 200 300 400 500

Wavelet Coefficient

P
er

ce
nt

 o
f T

ot
al

Figure 6: Same as Figure 5 with variance ratio � = 2.
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Figure 7: Same as Figure 5 with variance ratio � = 3.
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Figure 8: Same as Figure 5 with variance ratio � = 4.
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Figure 9: Plot of vertical shear measurements (inverse seconds) versus depth (meters). Thetwo vertical lines are at 489.5m and 899.0m, and denote the roughly stationary series usedby Percival and Guttorp (1994). This series can be obtained via the World Wide Web athttp://lib.stat.cmu.edu/datasets/ under the title `lmpavw'.
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Figure 10: Estimated wavelet variance of the vertical ocean shear measurements using theD(4) wavelet �lter and MODWT. The light grey con�dence intervals correspond to all 6875observations, while the dark grey con�dence intervals correspond to the middle 4096 obser-vations as analyzed in Percival and Guttorp (1994).
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Figure 11: Estimated locations of variance change for the vertical ocean shear measurementsusing the D(4) wavelet �lter displayed on the MODWT wavelet coe�cients. Only the �rst�ve scales were found to have signi�cant changes of variance. Asymptotic critical valueswere used for the hypothesis testing at the � = 0:05 level of signi�cance.26


