Brandon H Toyama

Brandon H Toyama
Salk Institute for Biological Studies · Molecular and Cell Biology Laboratory

PhD

About

22
Publications
1,874
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,553
Citations
Citations since 2016
1 Research Item
1427 Citations
2016201720182019202020212022050100150200
2016201720182019202020212022050100150200
2016201720182019202020212022050100150200
2016201720182019202020212022050100150200
Additional affiliations
June 2004 - October 2009
University of California, San Francisco
Position
  • PhD Student

Publications

Publications (22)
Article
Full-text available
Many adult tissues contain postmitotic cells as old as the host organism. The only organelle that does not turn over in these cells is the nucleus, and its maintenance represents a formidable challenge, as it harbors regulatory proteins that persist throughout adulthood. Here we developed strategies to visualize two classes of such long-lived prote...
Data
Table S3. Functional Enrichment of Affected Transcripts and Proteins, Related to Figure 2
Article
Full-text available
Aging is associated with the decline of protein, cell, and organ function. Here, we use an integrated approach to characterize gene expression, bulk translation, and cell biology in the brains and livers of young and old rats. We identify 468 differences in protein abundance between young and old animals. The majority are a consequence of altered t...
Article
Intracellular proteins with long lifespans have recently been linked to age-dependent defects, ranging from decreased fertility to the functional decline of neurons. Why long-lived proteins exist in metabolically active cellular environments and how they are maintained over time remains poorly understood. Here, we provide a system-wide identificati...
Article
Protein turnover is an effective way of maintaining a functional proteome, as old and potentially damaged polypeptides are destroyed and replaced by newly synthesized copies. An increasing number of intracellular proteins, however, have been identified that evade this turnover process and instead are maintained over a cell's lifetime. This diverse...
Article
Full-text available
To combat the functional decline of the proteome, cells use the process of protein turnover to replace potentially impaired polypeptides with new functional copies. We found that extremely long-lived proteins (ELLPs) did not turn over in postmitotic cells of the rat central nervous system. These ELLPs were associated with chromatin and the nuclear...
Article
Prion proteins can adopt multiple infectious strain conformations. Here we investigate how the sequence of a prion protein affects its capacity to propagate specific conformations by exploiting our ability to create two distinct infectious conformations of the yeast [PSI(+)] prion protein Sup35, termed Sc4 and Sc37. PNM2, a G58D point mutant of Sup...
Article
Many, perhaps most, proteins, are capable of forming self-propagating, β-sheet (amyloid) aggregates. Amyloid-like aggregates are found in a wide range of diseases and underlie prion-based inheritance. Despite intense interest in amyloids, structural details have only recently begun to be revealed as advances in biophysical approaches, such as hydro...
Article
Full-text available
Aggregation-prone proteins often misfold into multiple distinct amyloid conformations that dictate different physiological impacts. Although amyloid formation is triggered by a transient nucleus, the mechanism by which an initial nucleus is formed and allows the protein to form a specific amyloid conformation has been unclear. Here we show that, be...
Article
Full-text available
Many amyloid inhibitors resemble molecules that form chemical aggregates, which are known to inhibit many proteins. Eight known chemical aggregators inhibited amyloid formation of the yeast and mouse prion proteins Sup35 and recMoPrP in a manner characteristic of colloidal inhibition. Similarly, three known anti-amyloid molecules inhibited beta-lac...
Article
Among the many surprises to arise from studies of prion biology, perhaps the most unexpected is the strain phenomenon whereby a single protein can misfold into structurally distinct, infectious states that cause distinguishable phenotypes. Similarly, proteins can adopt a spectrum of conformations in non-infectious diseases of protein folding; some...
Article
Full-text available
Among the many surprises to arise from studies of prion biology, perhaps the most unexpected is the strain phenomenon whereby a single protein can misfold into structurally distinct, infectious states that cause distinguishable phenotypes 1–3 . Similarly, proteins can adopt a spectrum of conformations in non-infectious diseases of protein folding;...
Article
A principle that has emerged from studies of protein aggregation is that proteins typically can misfold into a range of different aggregated forms. Moreover, the phenotypic and pathological consequences of protein aggregation depend critically on the specific misfolded form. A striking example of this is the prion strain phenomenon, in which prion...

Network

Cited By