

236

Optimization of logic area for System on
Programmable Chip based on hardware-software

partitioning

Mehdi Jemai, Sonia Dimassi, Bouraoui Ouni and Abdellatif Mtibaa

Laboratory of Electronic and Microelectronic, Faculty of Science at Monastir

Monsatir 500, Tunisia

jmehdie@gmail.com, sdimassi@yahoo.com, ouni_bouraoui@yahoo.fr, abdellatif.mtibaa@enim.rnu.tn

Abstract—T In this paper, we propose an approach based on

hardware-software partitioning to minimize logic area of a SOPC
circuit "System on a Programmable Chip". This approach
minimizes the SOPC area while satisfying a time constraint. To
minimize this area, we propose an algorithm to determine the
critical path with the largest number of hardware tasks in a given
data flow graph. Once these hardware tasks are determined, they
will be implemented on the software. In this way we minimize the
number of tasks used by the HW and increase the number of
tasks used by the SW, where we have a minimization of the area.

Index Terms— Logic area, hardware-software partitioning
algorithm, temporal constraint, SOPC.

I. INTRODUCTION
A system on programmable chip SOCP is a circuit

comprising multiple functions such as one or more processors,
one or more reconfigurable areas, signal processor DSP
(Digital Signal Processor), various peripherals and memory or
analog parts. These circuits are increasingly used because of
their small size and reduced costs compared to the use of
various circuits for performing the same function. Using
SOPC is increasingly common in embedded applications.
Therefore, many hardware and software techniques must be
developed to satisfy specific constraints in terms of area,
performance, power consumption, etc. Thus, in this paper, we
present an effective approach based on hardware-software
partitioning to implement a control data flow graph on SOPC
circuit while minimizing the logic area. In this paper, firstly
we have implemented all tasks of the graph on the hardware
part of architecture. However, implementation of the hardware
modules may degrade the design in terms of area. Hence, to
reduce the area, we have implemented the tasks of the
hardware part on the software part of architecture. Therefore,
the main objective of our hardware/software partitioning
approach is to balance all the design parameters to find a
better compromise between the logic area of the application
and its execution time.

This paper is structured following six parts. After the
introduction, we give an overview of the related work; in the

third section, we present the hardware/software partitioning
model. The fourth section shows our partitioning algorithm. In
the fifth one, we present the experiments and results. Finally,
we end up with a conclusion.

II. RELATED WORK
Cutting or hardware/ software partitioning is an important

phase in the system design (and especially the architecture
exploration phase) and is to seek the best compromise
software/hardware. It is in this phase that are made choices
leading to a realization hardware or software of the various
constituent parts of the system. In general, the software is used
to reduce design costs and equipment to increase performance.
Many techniques and algorithms have been proposed to assist
the designer in this task. The ultimate goal is of course to
automate this task.

Behavioral specification is divided into sub-functions, the
choice of their implementation, hardware or software, is
posed. The question that arises is how to choose between
software and hardware? The choices made in the partitioning
step are definitive choices, which are not challenged in the
following design steps. A bad choice at this level then requires
restarting the design cycle of partitioning until the co-
simulation. We must therefore pay great attention to this step.

In the context of the system design, the software may be
defined as "a sequence of operations running on a
programmable machine necessary for the functioning of a set
of information processing". Programmable machines on
which is running the software are of different types: general
processor, signal processor (DSP), etc. The material is defined
by opposition to the software. It is "a non-programmable
physical structure." Its functionality is fixed in the design. It is
not possible as for the software to make a change for a new
feature. ASIC (Application-Specific Integrated Circuit) is
hardware because this particular circuit is designed for a given
application.

In system design, an optimization method generally
involves applying an optimization algorithm on the set of sub-

237

functions of the specification. We then seek to minimize a
criterion (or set of criteria) given as the surface, the execution
time, consumption, etc. The partitioning algorithm is an
optimization algorithm (in our case minimization) seeking one
or more achievements optimized for a given problem. In our
approach, we seek to minimize the logic area according to a
time constraint. We also find a comparison of several
minimization algorithms applied to software/hardware
partitioning [1].

In the literature, different research has already been made
on the partitioning software/hardware; we note that they have
treated the problem of reducing the overall cost of the
application in term of hardware resources or the improvement
of its performance in term of execution time. In fact the
implementation of a software module requires more flexibility
and less cost, but more executing time, and vice versa in case
of hardware. Therefore, the main goal of most approaches of
hardware/software partitioning is to balance all the parameters
to find a compromise between cost and application execution
time. In this context, we quote the exact algorithms that based
on: integer linear programming [2], dynamic programming [3]
and branch and bound [4]. However, exact algorithms are very
slow and can be applied only for small size graphs. Thus, to
overcome the drawbacks of exact algorithms, researchers have
tried heuristic algorithms that are more flexible and efficient
as network throughput [5], simulated annealing [6], tabu
search [7], genetic algorithm [8], combined algorithm [9] and
greedy algorithm [10]. As mentioned earlier these
optimization algorithms seek one or more achievements
optimized for a given problem. In this paper, we have
proposed an algorithm for hardware/software partitioning that
minimizes the logic area of SOPC circuit.

III. HARDWARE/SOFTWARE PARTITIONING MODEL AND
FORMULATION

The HW/SW partitioning model defined in this section
considers the following characteristics: granularity, metrics
associated with the functional blocks, computational model,
representation of the solution and the cost function.
The behavioral description given in a high-level language is
transformed into a control data flow graph. Each node v!∈ V
corresponds to a part of the application that itself belongs to the
base granularity (a single instruction or a basic block). Hence, a
control data flow graph G (V; E) is a directed acyclic graph
describing the dependencies between the operations of an
application. Where V= v!, v!,… , v! is the set of nodes, n is
the number of nodes and E is the set of edges {e!"|1≤ i, j ≤n}.
The critical path, CPg, of a graph G is a path from its source
node to its sink node.

Once the system is represented under this model, values for
the metrics are associated to each node v!. The following
metrics are used: software latency (L!(v!)), occupied hardware
area in slice (A(v!)), and the hardware latency (L!(v!)).

In this model, a partitioning solution is expressed as an
indicator vector Xm that is defined as follows: Xm=Xm(i);
Where: i∈[1,n] and Xm (i) = 1, if node (i) will be implemented

in hardware; however, Xm (i) = 0, if the node (i) will be
implemented in software.

Hence, our optimization problem can be modeled as
follows:

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑋! 𝑖 A 𝑣! !!∈ ! (𝟏)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 L(G) ≤ T (𝟐)

IV. THE ALGORITHM
In this section, we propose an algorithm to solve the

partitioning problem. The overall methodology of the proposed
algorithm is illustrated in figure 1. The methodology starts by
transforming Control Data Flow Graph G (V, E) to the Data
Flow Graph G’ (V, E), and assign all nodes of the transformed
graph G’ (V, E) to the hardware part of the architecture. Then
we finds the critical path (CPg) in G’ (V, E) that has the
highest cost function related to the hardware area in slice, and
assigns all nodes of this critical path to the software part of the
architecture. However, we calculate the latency of the graph
related to the new indicator vector Xm. In each iteration, the
latency of the graph of each indicator vector Xm is evaluated
until the latency outdated the temporal constraint T. The
HW/SW partitioning solution is the penultimate indicator
vector. The detail of the algorithm is shown in figure 2.

Fig.1: Main procedures for the proposed algorithm

238

Fig.2: Pseudo-code of our algorithm

V. EXPERIMENTS AND RESULTS
To confirm our approach, we have implemented the 16-

DCT task graph on FPGA Xilinx Virtex®-5. The Xilinx
Virtex®5 development kit enables high performance
embedded design in Xilinx FPGAs. In our approach software
resource is the PowerPC and the hardware resources are
configurable logic blocs (CLBs). Hence, to compute the
parameters of each node and to access to the PowerPC, we
have used Xilinx ISE tool and Xilinx EDK tool. These Xilinx
design tools provide resources and timing report incorporates
timing delay and resources to provide a comprehensive area
and timing summary of the design. Our algorithm has been
written in JAVA language and executed under Windows-7 on
Acer-PC (Intel Core 2 Duo T5500; 1, 66 GHz; 1GB of RAM).
In order to demonstrate the effectiveness of the proposed
algorithm, we compare it with simulated annealing and genetic
algorithm. The simulation results are presented in the table 1.

Table 1: DESIGN RESULTS

Algorithm Run time
(ms)

Latency
(ns)

Area
(Slice)

Proposed algorithm 1.377 830 5215

simulated annealing algorithm 1.723 759 5724

Genetic algorithm 1.882 810 5460

As shown in the experiment results, we can find that the

genetic algorithm needs more time, which means more
iteration to satisfy the temporal constraint. Furthermore, the
hardware area get by the simulated annealing algorithm is
higher. Therefore, we conclude that our proposed algorithm

produces low hardware area, and generates the solution at a
faster speed.

VI. CONCLUSION
Partitioning software/hardware has become a marginal,

even with some work. Many methods and algorithms have
emerged in the late 90s and these works do not provide
satisfactory solutions. The evolution of design, synthesis and
compilation, the characteristics of the components and the
complexity of applications and architectures are certainly
responsible for the ineffectiveness of solutions in this field. In
this paper we have presented a new approach based on high
level hardware/software partitioning to reduce logic area. Our
partitioning algorithm has been tested and compared to
simulated annealing and genetic algorithm. Design result,
shows that our approach provides better design results in term
of logic area.

REFERENCES
[1] M. LOPEZ, J. LOPEZ., "On the Hardware-Software Partitioning
Problem: System Modeling and Partitioning Techniques", ACM
Transactions On Design Automation of Electronic Systems
(TODAES), vol.8, n° 3, pp. 269-297, juillet 2003.
[2] S. Banerjee, E. Bozorgzadeh, and N. D. Dutt, "Integration
physical constraints in hw-sw partitioning for architectures with
partial dynamic reconfiguration," IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 14, no. 11, pp. 1189 -1202,
nov. 2006.
[3] J. Wu and T. Srikanthan, "Low-complex dynamic programming
algorithm for hardware/software partitioning," Information
processing letters, vol. 98, no. 2, pp. 41- 46, 2006.
[4] K. Chatha and R. Vemuri, "Hardware-software partitioning and
pipelined scheduling of transformative applications," IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol.
10, no. 3, pp. 193-208, 2002.
 [5] H. Liu and D. F. Wong, "Efficient network flow based multiway
partitioning with area and pin constraints", IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst., vol. 17, no. 1, pp. 50–59, Jan. 1998.
[6] Z. Peng and K. Kuchcinski, "An Algorithm for Partitioning of
Application Specific Systems," Proc. European Conf. Design
Automation(EDAC’93),pp.316-321, 1993.
 [7] T. Wiangtong, P.Y.K. Cheung, and W. Luk, "Comparing Three
Heuristic Search Methods for Functional Partitioning in
Hardwaresoftware Codesign," Design Automation for Embedded
Systems, vol. 6, no. 4, pp. 425-449, 2002.
[8] Hong jun He; Qiang Dou and Weixia Xu , "Hardware/Software
Partitioning for Heterogeneous Multicore SoC Using Genetic
Algorithm", IEEE Intelligent System Design and Engineering
Application (ISDEA), pp 1267 – 1270, Jan. 2012
[9] Yu Jiang, Hehua Zhang, Xun Jiao, Xiaoyu Song, William N. N.
Hung, Ming Gu, and Jiaguang Sun," Uncertain Model and Algorithm
for Hardware/Software Partitioning", IEEE Computer Society
Annual Symposium on VLSI,2012.
[10] K.S. Chatha and R. Vemuri, "Magellan: Multiway Hardware-
Software Partitioning and Scheduling for Latency Minimization of
Hierarchical Control-Dataflow Task Graphs," Proc. Ninth.
Hardware/Software Codesign (CODES ’01), pp. 42-47, 2001.

