Boris Wembe

Boris Wembe
  • INP

About

17
Publications
925
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
30
Citations
Current institution
Additional affiliations
September 2018 - present
Université Toulouse III - Paul Sabatier
Position
  • PhD Student
Description
  • I am currently working with the IRIT-APO team.

Publications

Publications (17)
Article
Full-text available
Motivated by mechanical systems with symmetries, we focus on optimal control problems possessing certain symmetries. Following recent works (Faulwasser in Math Control Signals Syst 34:759–788 2022; Trélat in Math Control Signals Syst 35:685–739 2023), which generalized the classical concept of static turnpike to manifold turnpike we extend the expo...
Preprint
Full-text available
The depth of networks plays a crucial role in the effectiveness of deep learning. However, the memory requirement for backpropagation scales linearly with the number of layers, which leads to memory bottlenecks during training. Moreover, deep networks are often unable to handle time-series appearing at irregular intervals. These issues can be resol...
Preprint
Full-text available
Differential equations posed on quadratic matrix Lie groups arise in the context of classical mechanics and quantum dynamical systems. Lie group numerical integrators preserve the constants of motions defining the Lie group. Thus, they respect important physical laws of the dynamical system, such as unitarity and energy conservation in the context...
Preprint
Full-text available
Motivated by mechanical systems with symmetries, we focus on optimal control problems possessing symmetries. Following recent works, which generalized the classical concept of static turnpike to manifold turnpike, we extend the exponential turnpike property to the exponential trim turnpike for control systems with symmetries induced by abelian or n...
Article
Full-text available
In this article, the historical study from Carathéodory-Zermelo about computing the quickest nautical path is generalized to Zermelo navigation problems on surfaces of revolution, in the frame of geometric optimal control. Using the Maximum Principle, we present two methods dedicated to analyzing the geodesic flow and to compute the conjugate and c...
Article
Full-text available
In this article, we are interested in optimal aircraft trajectories in climbing phase. We consider the cost index criterion which is a convex combination of the time-to-climb and the fuel consumption. We assume that the thrust is constant and we control the air slope of the aircraft. This optimization problem is modeled as a Mayer optimal control p...
Preprint
Full-text available
In this article, we are interested in optimal aircraft trajectories in climbing phase. We consider the cost index criterion which is a convex combination of the time-to-climb and the fuel consumption. We assume that the thrust is constant and we control the flight path angle of the aircraft. This optimization problem is modeled as a Mayer optimal c...
Article
In this article, based on two case studies, we discuss the role of abnormal geodesics in planar Zermelo navigation problems. Such curves are limit curves of the accessibility set, in the domain where the current is strong. The problem is set in the frame of geometric time optimal control, where the control is the heading angle of the ship and in th...
Preprint
In this article, we use two case studies from geometry and optimal control of chemical network to analyze the relation between abnormal geodesics in time optimal control, accessibility properties and regularity of the time minimal value function.
Preprint
Full-text available
In this article, based on two case studies, we discuss the role of abnormal geodesics in planar Zermelo navigation problems. Such curves are limit curves of the accessibility set, in the domain where the current is strong. The problem is set in the frame of geometric time optimal control, where the control is the heading angle of the ship and in th...
Thesis
This work studies Zermelo problems on surfaces of revolution from the optimal control point of view in the Hamiltonian framework by combining so-called geometric and numerical methods. It is motivated by several case studies including the historical example of Carathéodory-Zermelo and the vortex problem" . The main goal is to construct an optimal s...
Thesis
Ce travail étudie les problèmes de Zermelo sur les surfaces de révolution du point de vue du contrôle optimal dans le cadre hamiltonien en combinant des méthodes dites géométriques et numériques. Il est motivé par plusieurs cas d'études notamment l'exemple historique de Carathéodory-Zermelo qui est l'un des problèmes fondateurs du calcul des variat...
Article
Full-text available
The first aim of this article is to present the link between the turnpike property and the singular perturbations theory: the first one being a particular case of the second one. Then, thanks to this link, we set up a new framework based on continuation methods for the resolution of singularly perturbed optimal control problems. We consider first t...
Chapter
Full-text available
In this work we are interested in controlling the displacement of particles in interaction with N point vortices, in a two-dimensional fluid and neglecting the viscous diffusion. We want to drive a passive particle from an initial point to a final point, both given a priori, in a given finite time, the control being due to the possibility of impuls...
Article
Full-text available
Helhmoltz-Kirchhoff equations of motions of vortices of an incompressible fluid in the plane define a dynamics with singularities and this leads to a Zermelo navigation problem describing the ship travel in such a field where the control is the heading angle. Considering one vortex, we define a time minimization problem, geometric frame being the e...
Preprint
Full-text available
Helhmoltz-Kirchhoff equations of motions of vortices of an incompressible fluid in the plane define a dynamics with singularities and this leads to a Zermelo navigation problem describing the ship travel in such a field where the control is the heading angle. Considering one vortex, we define a time minimization problem which can be analyzed with t...

Network

Cited By