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Tissue Characterization With an Electrical Spectroscopy
SVM Classifier

Shlomi Laufer∗ and Boris Rubinsky

Abstract—This feasibility study introduces the use of a classifier based
on electrical spectroscopy measurements for breast cancer tissue charac-
terization. The classifier is of the support vector machine type, and the
vector of data is made of electrical voltage measurements at 12 discrete
electrical excitation frequencies over the β dispersion range of the ana-
lyzed tissue and at discrete locations selected from information produced
by conventional medical imaging. The database was generated through
a mathematical simulation model. The performance of the classifier was
evaluated through a test of its ability to distinguish between simulations
of malignant and benign tissues in the breast. The results demonstrate the
feasibility of the concept and illustrate the tissue characterization ability of
this classifier.

Index Terms—Classifiers, electrical spectroscopy, mammography,
support vector machine (SVM).

I. INTRODUCTION

Breast cancer is the most common cancer among women in the
Western world [1], and X-ray mammogram is the standard screening
tool for breast cancer. However, while mammogams identify suspi-
cious areas, the character of these areas is frequently inconclusive and
a needle biopsy is often performed. There are several types of biop-
sies, but they are all invasive and expensive, and none are risk-free.
Furthermore, in about 60%–85% of the cases, the suspicious tissues
are found to be benign [2], [3]. Although imaging techniques, such
as sonography, have been shown to reduce the number of unnecessary
biopsies [4], [5], the problem is yet to be solved. The classifier concept
developed in this study could alleviate the need for needle biopsies for
tissue characterization.

Studies have shown that cancerous breast tissue and normal breast
tissue have different impedance values [6]–[9], making it reasonable
to assume that electrical impedance measurements can be used as an
imaging and diagnostic tool. As an imaging system, several electrical
impedance tomography (EIT) systems have been developed [10], [11].
The classical approach of EIT is to use the electrical measurements
to reconstruct the impedance image of the tissue, from which the tu-
mor location and properties can be determined. However, this method
suffers from low resolution [12].

In this paper, we suggest that the mammogram image be used to
define the suspicious area and that the usage of spectroscopic electrical
measurements be limited to distinguishing between benign and ma-
lignant tumors. This makes the problem one of classification, which
can be solved using standard classification tools, such as support vector
machines (SVMs) [13], [14]. Considering the large number of unneces-
sary biopsies performed, we believe that reducing this number through
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Fig. 1. Three-dimensional model used in this theoretical study. The complete
3-D model with the five square cubes can be seen in the center of the figure.
The four pairs of electrodes used are marked in the four smaller images.

the use of this noninvasive, not harmful, and inexpensive method is of
practical value.

It should be noted that there are previous publications combining
EIT and SVM [15]–[17]. To the best of our knowledge, the novelty
of our study is the use of SVM as a two-class classifier, rather than
a regression method, and the employment of discrete multifrequency
electrical spectroscopy in order to distinguish between benign and
malignant breast tumors. This is a first-order feasibility study in which
a mathematical simulation model is used to create the database.

II. METHODS

A. Data Collection

1) Geometrical Model: We assume that the data which will be
available for the construction of the classifier consists of a mammog-
raphy image, electrical measurements of currents and voltages from
electrodes, and needle biopsy data. The biopsy data are needed only
in the construction of the classifier. In this theoretical study, the elec-
trical measurements are replaced by the solution of the field equation
obtained from a computer simulation of the problem. The biopsy data
correspond to the tissue properties used in the mathematical simulation.

The mathematical model attempts to mimic the information that is
available from the X-ray mammography and the biopsy. We assume
that the electrical measurements are performed in a configuration simi-
lar to the one suggested by Myoung-Hwan et al. [10], meaning that the
breast tissue has the same geometry during the electrical measurements
as during the mammography and that the measurement electrodes are
on the mammography plates (see Fig. 1). This particular configuration
was chosen since we assume knowledge of the suspicious tissue loca-
tion from the mammogram image, and this method avoids the need to
register the mammogram image. The breast between the mammogra-
phy plates is modeled as a 3-D box. The rounded edges of the breast
are ignored assuming that they are “far enough” from the suspicious
tissue.

It is also assumed that the mammogram image provides only rough
information of the suspicious tissue’s characteristics and dimensions
and that it is impossible to extract the exact size and shape of the
suspicious tissue. In order to simulate this partial knowledge situation,
we assumed that the suspicious tissue has a cube-like geometry, as
shown in the center of Fig. 1, with randomly generated variations of
the tissue composition.

2) Mathematical Model of Electrical Measurements: Measure-
ments made with electrodes are simulated through the solution of the
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Fig. 2. Typical data used with the classifier: (a) Raw data. (b) Normalized data
as in (2). (c) Homogenized data as in (3). Using the normalized preprocessing,
it can be seen that the effect of tumor size of 0.4 cm is less than 1%, which may
explain the difficulty in classifying small tumors in the presence of noise. w —
square cube width.

field equation
∇ · (σ∇u) = 0, x ∈ Ω (1)

in the geometry of Fig. 1. It is assumed for boundary conditions that the
entire outer surface of the cube is insulated except for two electrodes
used for injecting the currents, I and −I. The measurement is the
calculated voltage on the sites of two measurement electrodes. The
voltage measurement electrodes can either be the same electrodes as the
current injection electrodes or different ones. For each electrode couple,
the voltage is measured for “n” different current injection frequencies.

B. Data Preprocessing

Several different types of data preprocessing were evaluated and
found to be useful

Vnorm alized ,j = Vtum or ,j /Vregu lar ,j (2)

Vhom ogen ized ,j = Vtum or ,j − Vregu lar ,j (3)

Vsh ift ,j = Vtum or ,j − Vm ean (4)

where {Vj | j = 1 . . . n} are a set of measurements (n frequencies) for
a specific electrode configuration. Vtum or are measurements done near
the suspicious tumor. Vregu lar are measurements done far enough from
the tumor, or on the other breast. This regular area can be verified using
the mammography image. Finally Vm ean = 1

n

∑n

j=1 Vtum or ,j .
The first two preprocessing steps can be useful in two ways. First,

they help in estimating the influence of the tumor on the measurements
with respect to regular tissue, as can be seen in Fig. 2. The second
point is related to the fact that the electrical properties of normal tissue
vary among different women. In using these data processing steps, we
can, to some extent, mask these differences and emphasize the changes
caused by the tumor. The third preprocessing step will result in shifting
all the measurements around a mean value of zero. By using this shift,
we can improve the classifier’s generalization for different tumor sizes.

Fig. 3. Results of last classifier in Table I. w—square cube width.

C. SVM Classifier Training

An SVM classifier was used in order to distinguish between malig-
nant and benign breast tumors.

The data are presented as

{(x1 , y1 ), . . . , (xm , ym )}, x ∈ R
n , y ∈ {−1, 1}. (5)

In our case, the vector xi is a vector of length n, and each entry
in the vector is a voltage value measured for a different electrical
excitation frequency. yi = 1 for a malignant tumor and yi = −1 for a
benign tumor. The index {i = 1 . . . m} is one index for each “simulated
woman’s electrical spectroscopy study.”

D. Measurement Noise

The robustness of the classifier to measurement noise was also
checked. Noise was added in the following manner [18]:

(V0 )∗ = V0 (1 + Aν ) (6)

where V0 is a vector of voltage measurements, ν is a vector of nor-
mally distributed random numbers, with mean 0 and variance 1 (same
dimensions as V0 ), and A is the noise level.

E. Electrode Combination

The basic configuration used only one pair of electrodes. A more
complex classifier can use multiple electrode configurations. These
multiple measurements were used in two ways.

Majority: Train a separate classifier for each configuration,
then give each classifier a binary score (1 for malignant
and −1 for benign), and finally sum all the classifiers. (7)

Summation: Sum all the measurements and then train
one classifier. (8)

III. RESULTS

A. Model Description

A 3-D mesh (∼40 000 elements) was created using Comsol Multi-
physics Version 3.3. The solution of (1) was obtained using the forward
solver of EIDORS [19]. The size of the box was 10 × 10 × 4 (length
× width × height). In total, we used 18 electrodes (3 × 3 on each
side), of which four pairs were sufficient for this study (Fig. 1). Five
different-sized square cubes were used to represent the suspicious tis-
sue, with widths of 0.4, 0.8, 1.2, 1.6, and 2.0, respectively. In a study
conducted by Jossinet [8], [9], the electrical impedance values of breast
tissue were measured for 12 frequencies in the β dispersion range. The
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TABLE I
RESULTS OF CLASSIFIERS WITH NO SUSPICIOUS AREA SIZE

TABLE II
RESULTS OF CLASSIFIERS WITH SUSPECT AREA SIZE

mean values from that study were used in our simulations. For the nor-
mal tissue, we used the properties of adipose tissue (AT: normal breast
tissue). We differentiated between the following pathological tissues:
carcinoma (CA: malignant tumors) versus mastopathy (MA: a general
term covering various benign breast diseases) and fibroadenoma (FA:
benign tumors of the breast). In order to simulate the variations in tis-
sue properties and their uncertainty associated with imaging and biopsy
(see Section A.1), we randomly chose 75%–90% of the cube and set
its connectivity to one of the three pathological tissues. The rest of the
box was left with AT.

B. Data Collection

All the data for training and testing the classifiers were obtained
from the computer simulations. For each different pathological tissue
type (three types) and for each different suspicious tissue cube size
(five sizes), we ran 100 different simulations (a total of three tissue
types × five cube sizes ×100 random selections). Thus, a total of
1500 simulations were completed. In each simulation, we randomly
chose 75%–90% of the cube to be the pathological tissue and the rest
to be adipose tissue. This means that each simulation had a unique
impedance distribution. Each simulation included 16 different combi-
nations of electrode current and voltage pairs and was simulated for the
12 different frequencies. In relation to real life classifiers, each model
represented one woman for whom the mammography and biopsy were
known and on whom electrical measurements were done.

C. Classifiers

Several classifiers were trained in order to examine the different
parameters discussed in the Section II. In the first group of classifiers,
the suspicious area size was ignored. The different classifiers in this
group are presented in Table I, and the SVM scores for one of them in
Fig. 3. In the second group, the information on the suspicious area size
was used, and five different classifiers were trained, one for each size.
The results for several different noise levels are provided in Table II.

Since the main aim of this method is to reduce the number of un-
necessary biopsies with a minimal number of subsequent malignancy
misses, we set the minimal sensitivity (the percent of malignant tumors

classified as such) at 95%. The specificity (the number of benign tu-
mors classified as such) can be seen as the percent of unnecessary
biopsies avoided. Similar assumptions have been made in other stud-
ies [2], [20]. All the classifiers in this study were trained and tested
using the program svmLight [21].

IV. DISCUSSION

This feasibility study introduced the use of a classifier based on
multifrequency electrical spectroscopy measurements for breast cancer
tissue characterization. The results of the study show that the usage of
more than one electrode can, in fact, improve the classification of
benign and malignant breast tumors. It also appears that knowledge
of the estimated tumor size can improve the classifier’s capabilities.
This size estimation can be provided by the radiologist or by a CAD
program. In clinical examinations, more information can be extracted,
such as different classifiers for microcalcifications and for suspicious
masses. Further clinical work can also investigate the option of adding
electrical data to existing CADx systems in order to improve their
present classification capabilities and to facilitate the construction of
one multimodality classifier. In the presence of noise, the electrical
measurements do not appear to be sufficient for the classification of
small tumors (0.4 cm and 0.8 cm for 2% noise and above).

V. CONCLUSION

This study was conducted to evaluate the ability of a classifier us-
ing noninvasive electrical spectroscopy measurements to distinguish
between malignant and benign tumors in a suspicious area iden-
tified on mammography. The results demonstrate the feasibility of
this tissue characterization technique. Obviously, much more research
is needed to optimize the design of the classifier for this use and
to build a clinical database of information. However, the technique
should have the potential to improve the characterization abilities
of conventional imaging with relatively simple electrical measure-
ments. Furthermore, it may provide a convenient alternative to needle
biopsies.
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Metabolic Prosthesis for Oxygenation
of Ischemic Tissue

Elias Greenbaum∗, Member, IEEE,
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Hugh M. O’Neill, and Barbara R. Evans

Abstract—This communication discloses new ideas and preliminary re-
sults on the development of a metabolic prosthesis for local oxygenation of
ischemic tissue under physiologically neutral conditions. We report for the
first time selective electrolysis of physiological saline by repetitively pulsed,
charge-limited electrolysis for the production of oxygen and suppression of
free chlorine. Using 800-µA amplitude current pulses and <200 µs pulse
duration, we demonstrate prompt oxygen production and delayed chlorine
production at the surface of a fused 0.85-mm diameter spherical platinum
electrode. The data, interpreted in terms of the ionic structure of the elec-
tric double layer, suggest a strategy for in situ production of metabolic
oxygen via a new class of “smart” prosthetic implants for ischemic disease
such as diabetic retinopathy. We also present data indicating that collateral
pH drift, if any, can be held constant using a feedback-controlled three-
electrode electrolysis system that chooses an anode and cathode pair based
on pH data provided by a local sensor.

Index Terms—Debye length, ischemic tissue, metabolic prosthesis, oxy-
genation, pH clamp.

I. INTRODUCTION

Physiological saline (and all physiological fluids) contains dissolved
sodium (Na+ ) and chloride (Cl−) ions. When a dc electric current
is passed through saline, oxygen and chlorine gases are produced at
the anode via oxidation of water and Cl− and hydrogen is primarily
produced at the cathode. The anodic reactions are

2H2O → O2 + 4H+ + 4e− (1)

and
2Cl− → Cl2 + 2e−. (2)

The primary cathodic reaction is

2H2O + 2e− → H2 + 2OH−. (3)

When the objective of the electrochemistry is to produce chlorine and
sodium hydroxide, as in the chloralkali process, the net reaction of
interest is

2NaCl + 2H2O → Cl2 + H2 + 2NaOH. (4)

Oxygen evolution is always present. Unlike the present application,
the goal of the chloralkali process is to maximize chlorine production
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