Boris Mansencal

Boris Mansencal
Laboratoire Bordelais de Recherche en Informatique ; Bordeaux-INP

About

62
Publications
8,279
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
610
Citations

Publications

Publications (62)
Article
Background and objectives: Thalamic atrophy can be used as a proxy for neurodegeneration in multiple sclerosis (MS). Some data point toward thalamic nuclei that could be affected more than others. However, the dynamic of their changes during MS evolution and the mechanisms driving their differential alterations are still uncertain. Methods: We p...
Article
Full-text available
In medicine, abnormalities in quantitative metrics such as the volume reduction of one brain region of an individual versus a control group are often provided as deviations from so-called normal values. These normative reference values are traditionally calculated based on the quantitative values from a control group, which can be adjusted for rele...
Article
Full-text available
Multimedia approaches are strongly required in multi-modal data processing for the detection and recognition of specific events in the data. Hybrid architectures with time series and image/video inputs in the framework of twin CNNs have shown increased performances compared to mono-modal approaches. Pre-trained models have been used in transfer lea...
Article
Full-text available
Brain charts for the human lifespan have been recently proposed to build dynamic models of brain anatomy in normal aging and various neurological conditions. They offer new possibilities to quantify neuroanatomical changes from preclinical stages to death, where longitudinal MRI data are not available. In this study, we used brain charts to model t...
Article
Full-text available
Age is an important variable to describe the expected brain's anatomy status across the normal aging trajectory. The deviation from that normative aging trajectory may provide some insights into neurological diseases. In neuroimaging, predicted brain age is widely used to analyze different diseases. However, using only the brain age gap information...
Conference Paper
Full-text available
Alzheimer's disease and Frontotemporal dementia are common types of neurodegenerative disorders that present overlapping clinical symptoms, making their differential diagnosis very challenging. Numerous efforts have been done for the diagnosis of each disease but the problem of multi-class differential diagnosis has not been actively explored. In r...
Preprint
Full-text available
Alzheimer's disease and Frontotemporal dementia are common types of neurodegenerative disorders that present overlapping clinical symptoms, making their differential diagnosis very challenging. Numerous efforts have been done for the diagnosis of each disease but the problem of multi-class differential diagnosis has not been actively explored. In r...
Article
Full-text available
Atrophy related to multiple sclerosis (MS) has been found at the early stages of the disease. However, the archetype dynamic trajectories of the neurodegenerative process, even prior to clinical diagnosis, remain unknown. We modeled the volumetric trajectories of brain structures across the entire lifespan using 40,944 subjects (38,295 healthy cont...
Preprint
Full-text available
Age is an important variable to describe the expected brain's anatomy status across the normal aging trajectory. The deviation from that normative aging trajectory may provide some insights into neurological diseases. In neuroimaging, predicted brain age is widely used to analyze different diseases. However, using only the brain age gap information...
Preprint
Full-text available
Background Atrophy related to Multiple Sclerosis (MS) has been found at the early stages of the disease. However, the archetype dynamic trajectories of the neurodegenerative process, even prior to clinical diagnosis, remain unknown. Methods We modeled the volumetric trajectories of brain structures across the entire lifespan using 40944 subjects (...
Article
Full-text available
Alzheimer's Disease is the most common cause of dementia. Accurate diagnosis and prognosis of this disease are essential to design an appropriate treatment plan, increasing the life expectancy of the patient. Intense research has been conducted on the use of machine learning to identify Alzheimer's Disease from neuroimaging data, such as structural...
Article
Introduction: The three clinical variants of frontotemporal dementia (behavioral variant [bvFTD], semantic dementia, and progressive non-fluent aphasia [PNFA]) are likely to develop over decades, from the preclinical stage to death. Methods: To describe the long-term chronological anatomical progression of FTD variants, we built lifespan brain c...
Preprint
Full-text available
Sports video analysis is a widespread research topic. Its applications are very diverse, like events detection during a match, video summary, or fine-grained movement analysis of athletes. As part of the MediaEval 2022 benchmarking initiative, this task aims at detecting and classifying subtle movements from sport videos. We focus on recordings of...
Preprint
Accurate diagnosis and prognosis of Alzheimer's disease are crucial to develop new therapies and reduce the associated costs. Recently, with the advances of convolutional neural networks, methods have been proposed to automate these two tasks using structural MRI. However, these methods often suffer from lack of interpretability, generalization, an...
Preprint
Alzheimer's disease and Frontotemporal dementia are common forms of neurodegenerative dementia. Behavioral alterations and cognitive impairments are found in the clinical courses of both diseases and their differential diagnosis is sometimes difficult for physicians. Therefore, an accurate tool dedicated to this diagnostic challenge can be valuable...
Conference Paper
Full-text available
Alzheimer’s disease and Frontotemporal dementia are two major types of dementia. Their accurate diagnosis and differentiation is crucial for determining specific intervention and treatment. However, differential diagnosis of these two types of dementia remains difficult at the early stage of disease due to similar patterns of clinical symptoms. The...
Article
Full-text available
The detection of new multiple sclerosis (MS) lesions is an important marker of the evolution of the disease. The applicability of learning-based methods could automate this task efficiently. However, the lack of annotated longitudinal data with new-appearing lesions is a limiting factor for the training of robust and generalizing models. In this st...
Preprint
Full-text available
The detection of new multiple sclerosis (MS) lesions is an important marker of the evolution of the disease. The applicability of learning-based methods could automate this task efficiently. However, the lack of annotated longitudinal data with new-appearing lesions is a limiting factor for the training of robust and generalizing models. In this wo...
Preprint
Alzheimer's disease and Frontotemporal dementia are two major types of dementia. Their accurate diagnosis and differentiation is crucial for determining specific intervention and treatment. However, differential diagnosis of these two types of dementia remains difficult at the early stage of disease due to similar patterns of clinical symptoms. The...
Preprint
Accurate diagnosis and prognosis of Alzheimer's disease are crucial for developing new therapies and reducing the associated costs. Recently, with the advances of convolutional neural networks, deep learning methods have been proposed to automate these two tasks using structural MRI. However, these methods often suffer from a lack of interpretabili...
Article
Full-text available
The chronological progression of brain atrophy over decades, from presymptomatic to dementia stages, has never been formally depicted in Alzheimer’s disease. This is mainly due to the lack of cohorts with long enough MRI follow-ups in cognitively unimpaired young participants at baseline. To describe a spatiotemporal atrophy staging of Alzheimer’s...
Article
Full-text available
In this article, we present an innovative MRI‐based method for Alzheimer disease (AD) detection and mild cognitive impairment (MCI) prognostic, using lifespan trajectories of brain structures. After a full screening of the most discriminant structures between AD and normal aging based on MRI volumetric analysis of 3,032 subjects, we propose a novel...
Preprint
Sports video analysis is a prevalent research topic due to the variety of application areas, ranging from multimedia intelligent devices with user-tailored digests up to analysis of athletes' performance. The Sports Video task is part of the MediaEval 2021 benchmark. This task tackles fine-grained action detection and classification from videos. Th...
Preprint
Full-text available
In this paper, we present an innovative MRI-based method for Alzheimer s Disease (AD) detection and mild cognitive impairment (MCI) prognostic, using lifespan trajectories of brain structures. After a full screening of the most discriminant structures between AD and normal aging based on MRI volumetric analysis of 3032 subjects, we propose a novel...
Article
Recently, segmentation methods based on Convolutional Neural Networks (CNNs) showed promising performance in automatic Multiple Sclerosis (MS) lesions segmentation. These techniques have even outperformed human experts in controlled evaluation conditions such as Longitudinal MS Lesion Segmentation Challenge (ISBI Challenge). However, state-of-the-a...
Conference Paper
Full-text available
Accurate diagnosis and prognosis of Alzheimer’s disease are crucial to develop new therapies and reduce the associated costs. Recently, with the advances of convolutional neural networks, methods have been proposed to automate these two tasks using structural MRI. However, these methods often suffer from lack of interpretability, generalization, an...
Preprint
Full-text available
Recently, segmentation methods based on Convolutional Neural Networks (CNNs) showed promising performance in automatic Multiple Sclerosis (MS) lesions segmentation. These techniques have even outperformed human experts in controlled evaluation condition. However state-of-the-art approaches trained to perform well on highly-controlled datasets fail...
Article
Full-text available
Whole brain segmentation of fine-grained structures using deep learning (DL) is a very challenging task since the number of anatomical labels is very high compared to the number of available training images. To address this problem, previous DL methods proposed to use a single convolution neural network (CNN) or few independent CNNs. In this paper,...
Article
Full-text available
Mental-Imagery based Brain-Computer Interfaces (MI-BCI) present new opportunities to interact with digital technologies, such as wheelchairs or neuroprostheses, only by performing mental imagery tasks (e.g., imagining an object rotating or imagining hand movements). MI-BCIs can also be used for several applications such as communication or post-str...
Preprint
Full-text available
Whole brain segmentation using deep learning (DL) is a very challenging task since the number of anatomical labels is very high compared to the number of available training images. To address this problem, previous DL methods proposed to use a single convolution neural network (CNN) or few independent CNNs. In this paper, we present a novel ensembl...
Conference Paper
Full-text available
Whole brain segmentation using deep learning (DL) is a very challenging task since the number of anatomical labels is very high compared to the number of available training images. To address this problem, previous DL methods proposed to use a global convolution neural network (CNN) or few independent CNNs. In this paper, we present a novel ensembl...
Preprint
Full-text available
Whole brain segmentation using deep learning (DL) is a very challenging task since the number of anatomical labels is very high compared to the number of available training images. To address this problem, previous DL methods proposed to use a global convolution neural network (CNN) or few independent CNNs. In this paper, we present a novel ensembl...
Article
Full-text available
Most digital libraries that provide user-friendly interfaces, enabling quick and intuitive access to their resources, are based on Document Image Analysis and Recognition (DIAR) methods. Such DIAR methods need ground-truthed document images to be evaluated/compared and, in some cases, trained. Especially with the advent of deep learning-based appro...
Conference Paper
Full-text available
The IRIM group is a consortium of French teams working on Multimedia Indexing and Retrieval. This paper describes its participation to the TRECVID 2016 instance search task.
Conference Paper
Full-text available
The IRIM group is a consortium of French teams supported by the GDR ISIS and working on Multime-dia Indexing and Retrieval. This paper describes its participation to the TRECVID 2015 semantic indexing (SIN). Our approach uses a six-stages processing pipelines for computing scores for the likelihood of a video shot to contain a target concept. These...
Conference Paper
Full-text available
The IRIM group is a consortium of French teams working on Multimedia Indexing and Retrieval. This paper describes its participation to the TRECVID 2012 semantic indexing and instance search tasks. For the semantic indexing task, our approach uses a six-stages processing pipelines for computing scores for the likelihood of a video shot to contain a...
Conference Paper
Full-text available
The paper addresses the problem of object search in video content. Both Query-By-Example paradigm and context search are explored. In QBE paradigm the object of interest is searched by matching of object signatures built from SURF descriptors with on-the-fly computed signatures in frames. The ”context” search is understood as a query on the whole f...
Article
Full-text available
The IRIM group is a consortium of French teams working on Multimedia Indexing and Retrieval. This paper describes its participation to the TRECVID 2011 semantic indexing and instance search tasks. For the semantic indexing task, our approach uses a six-stages processing pipelines for computing scores for the likelihood of a video shot to contain a...
Conference Paper
Full-text available
With a standard compact disc (CD) audio player, the only possibility for the user is to listen to the recorded track, passively: the interaction is limited to changing the global volume or the track. Imagine now that the listener can turn into a musician, playing with the sound sources present in the stereo mix, changing their respective volumes an...
Conference Paper
Full-text available
The IRIM group is a consortium of French teams working on Multimedia Indexing and Retrieval. This paper describes its participation to the TRECVID 2011 semantic indexing and instance search tasks. For the semantic indexing task, our approach uses a six-stages processing pipelines for computing scores for the likelihood of a video shot to contain a...
Conference Paper
A novel mid-level video indexing method based on detection and tracking human faces is presented. Instead of detecting the faces on every frame, our method first detects the faces and then tracks them. Compared to our previous general-purpose tracking method, our approach is improved by: i) a Multi-Object model extension to track several objects in...
Conference Paper
Full-text available
This paper focuses on a specific type of unedited video content, called rushes, which are used for movie editing and usually present a high-level of redundancy. Our goal is to automatically extract a summarized preview, where redundant material is diminished without discarding any important event. To achieve this, rushes content has been first anal...
Article
Full-text available
The IRIM group is a consortium of French teams working on Multimedia Indexing and Retrieval. This paper describes our participation to the TRECVID 2009 High Level Features detection task. We evaluated a large number of different descriptors (on TRECVID 2008 data) and tried different fusion strategies, in particular hierarchical fusion and genetic f...
Conference Paper
Full-text available
In this paper, the method used for Rushes Summarization task by the COST 292 consortium is reported. The approach proposed this year differs significantly from the one proposed in the previous years because of the introduction of new processing steps, like repetition detection in scenes. The method starts with junk frames removal and follows with c...
Article
Full-text available
In this paper, we present the first participation of a consortium of French laboratories, IRIM, to the TRECVID 2008 BBC Rushes Summarization task. Our approach resorts to video skimming. We propose two methods to reduce redundancy, as rushes include several takes of scenes. We also take into account low and mid-level semantic features in an ad-hoc...
Article
Full-text available
We present the RetroSpat system for the semi-automatic diffusion of acousmatic music. This system is intended to be a spatializer with perceptive feedback. More precisely, RetroSpat can guess the positions of physical sound sources (e.g. loudspeakers) from binaural inputs, and can then output multichannel signals to the loudspeakers while controlli...
Technical Report
Full-text available
In this paper, we give an overview of the four tasks submitted to TRECVID 2007 by COST292. In shot boundary (SB) detection task, four SB detectors have been developed and the results are merged using two merging algorithms. The framework developed for the high-level feature extraction task comprises four systems. The first system transforms a set o...
Article
Full-text available
Indexing deals with the automatic extraction of information with the objective of automatically describing and organizing the content. Thinking of a video stream, different types of information can be considered semantically important. Since we can assume that the most relevant one is linked to the presence of moving foreground objects, their numbe...
Conference Paper
Full-text available
Abstract In this paper, we give an overview of the four tasks submitted to TRECVID 2008 by COST292. The high-level feature extraction framework comprises four systems. The first system transforms a set of low-level descriptors into the semantic space using Latent Semantic Analysis and utilises neural networks for feature detection. The second syste...
Conference Paper
In the vast domain of digital multimedia libraries, the efficient and universal access to the stored data becomes possible due to content description and indexing metadata. Their automatic production is a challenging task addressing classical problems of objects extraction and description. In this framework, ever growing quantity of content is alre...
Conference Paper
Full-text available
In this paper, we give an overview of the four tasks submitted to TRECVID 2007 by COST292. In shot boundary (SB) detection task, four SB detectors have been developed and the results are merged using two merging algorithms. The framework developed for the high-level feature extraction task comprises four systems. The first system transforms a set o...

Network

Cited By