
Boris HaaseUniversity of Applied Science Fresenius · Medical School
Boris Haase
Developing DFT forms of Taylor series to solve (partial) differential equations
About
2
Publications
414
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
0
Citations
Citations since 2017
Introduction
Currently developing DFT forms of Taylor series for (numerically) solving (partial) differential equations
Skills and Expertise
Education
October 1985 - September 2020
Publications
Publications (2)
This paper deepens the understanding of quantifying mathematical infinity. Open and closed sets turn out to be not tenable. The correct usage of bijections makes results obsolete based on the concept of cardinality. Elements of infinite sets are counted in a novel way. The Fueter-Pólya conjecture must be corrected. The fundamental theorem of set th...
Der Beitrag vertieft das Verständnis die mathematische Unendlichkeit zu quantifizieren. Offene und abgeschlossene Mengen erweisen sich als nicht haltbar. Die korrekte Verwendung der Bijektion macht einige Ergebnisse obsolet, die auf dem Mächtigkeitsbegriff beruhen. Elemente unendlicher Mengen werden neu gezählt. Die Fueter-Pólya-Vermutung ist zu ko...
Projects
Project (1)