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Abstract 
 
This study models the joint production of desirable and undesirable output production 
(that is, CO2 emissions) of airlines. The Malmquist-Luenberger productivity index is 
employed to measure productivity growth when undesirable output production is 
incorporated into the production model. The results show that pollution abatement 
activities of airlines lowers productivity growth which suggests that traditional 
approach of measuring productivity growth which ignores CO2 emissions overstate 
“true” productivity growth. The reliability of the results is also tested and verified 
using confidence intervals based on bootstrapping. 
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1.0 Introduction 

The past decade has seen major steps taken by airlines to reduce carbon 

emissions by making fuel consumption more efficient. These attempts, largely driven 

by commercial interests, include collaboration between aircraft and engine 

manufacturers to develop and adopt innovative technologies and high performing 

products in order to make airlines more efficient, cost-effective and environmentally 

friendly. While aircraft have become more environmentally friendly, the question is 

have the efforts that have been spent on such improvements actually raised the 

efficiency and performance of airlines over time?  

Airline efficiency studies in the past have employed widely accepted methods 

such as Data Envelopment Analysis (DEA) or Stochastic Frontier Analysis (SFA). 

Such studies include Adler and Golany (2001), Alam et al. (2001), Banker and 

Johnston (1994), Barbot et al. (2008), Barros and Peypoch (2009), Bhadra (2009), 

Semenick and Sickles (1998), Coelli et al. (1999), Distexhe and Perelman (1994), 

Färe et al. (2007), Gillen and Lall (1997), Good et al. (1993), Good et al. (1995), 

Greer (2006, 2008), Inglada et al. (2006), Ouellette et al. (2010), Scheraga (2004), 

Sickles et al. (2002) and Tofallis (1997). However, these studies do not take into 

account undesirable outputs such as carbon dioxide (CO2) and nitrogen oxide (NOx) 

emissions that are inherent to airline operations. The production of desirable outputs, 

such as tonne kilometres performed, almost inevitably result in the generation of 

pollution (that is, an undesirable output). The fact that desirable and undesirable 

outputs are jointly produced implies that it is costly to reduce the undesirable outputs 

that are generated since reducing the undesirable outputs would require re-allocation 

of existing resources. This is not only costly, but it is likely to reduce the production 

of desirable outputs given a fixed level of inputs. Furthermore, traditional measures of 
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productivity have thus far ignored the output of pollution abatement activities because 

typically no market prices are available for these undesirable outputs, except for cases 

when permits or taxes are used to restrict emissions (Färe et al. 2001). As such, 

productivity indices that ignore reductions in undesirable outputs provide an 

incomplete and incorrect picture of a firm’s true productivity growth. Therefore, in 

this paper we use airline data to model the joint production of desirable and 

undesirable output production and to calculate productivity growth.  

To measure the ‘pollution internalised’ performance of airlines, this study 

adopts the Malmquist-Luenberger (ML) productivity index developed by Chung et al. 

(1997). The ML productivity index is a nonparametric linear programming that 

estimates the directional distance function and allows for the inclusion of undesirable 

outputs (pollution) without requiring information on shadow prices. Chung et al. 

(1997) who examined the case of Swedish paper and pulp mills credits a firm for 

simultaneously reducing production of the undesirable output and increasing 

production of the desirable output. This is an indication to firms as to whether their 

productivity has improved over time after internalising pollution. Since their study, 

the ML approach has gained popularity and has been employed in several studies at 

both macro and micro levels across different industries. At the macro level, Jeon and 

Sickles (2004) investigated productivity changes when CO2 emissions were taken into 

account in selected OECD and Asian countries. Zofio and Prieto (2001) applied 

similar efficiency measures on OECD countries. Oh and Heshmati  (2010) employed 

a sequential ML approach on 26 OECD countries for the period 1970-2003 while 

incorporating CO2 as the undesirable output. At the micro level, Weber and 

Domazlicky (2001) and Färe et al. (2001) applied similar efficiency measures 

considering pollution for US state manufacturing. Yu et al. (2008) studied four 
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airports of Taiwan for the period 1995 to 1999 with aircraft noise as the undesirable 

output. Zhang et al. (2011) evaluated China's TFP growth using a sample size of 

thirty provincial regions and incorporating a weighted environmental factor as the 

undesirable output for the period 1989 to 2008. In a similar fashion, Zhao (2012) 

compared TFP growth with CO2 emissions as an undesirable output across 28 districts 

of China between 1995 and 2007. However, as far as the authors are aware of, no 

studies have attempted a TFP growth on the airline industry that incorporates 

undesirable outputs into the model. 

In the current study, we construct production possibilities frontiers for thirty-

five airlines for each year for the period, 2004-2011. Each airline is then compared to 

its best-practice frontier. Shifts in the frontier reflect technical change and movements 

toward the best-practice frontier reflect that an airline is catching-up to the frontier 

(that is, increased efficiency change). The product of technical and efficiency change 

components yield the ML productivity change. This paper, therefore, for the first time 

considers pollution (i.e., CO2) in measuring airline efficiency. We believe that this is a 

more accurate measure of airline efficiency and productivity growth and that the 

findings have important implications for airlines, if and when CO2 emissions are 

targeted by governments around the world. 

The objectives of the paper are two-fold.  First, to compare and contrast the 

results of productivity growth when undesirable output is ignored (under Malmquist 

index) and when undesirable output is incorporated into the production model (under 

ML index). The second objective is to compare the productivity growth of airlines 

over the study period, 2004-2011, during which more airlines began focusing on 

reducing carbon emissions either through the use of new technologies and/or adoption 

of new operational and management procedures that may reduce CO2 emissions.  
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The structure of the paper is as follows. Section 2 describes the ML 

productivity index employed in this paper, while Section 3 contains a description of 

the data specifications. The results are discussed in Section 4 and Section 5 provides 

some conclusions and suggestions for further research. 

 

2.0 Methodology: Malmquist–Luenberger Productivity Index 

The paper employs the output-oriented ML productivity index which is based 

on directional distance functions. The directional output distance function with 

respect to two time-periods is defined as: 

 

D!!!! x!, y!, b!: g = sup β(y!, b!)+ βg ∈ P!!!(x!)    (1) 

  

where "g" is the direction vector in which outputs are scaled. In the case of airline 

services, g = (y, -b), the production of desirable outputs, y (i.e., passenger and/or 

cargo carried) is increased, while undesirable output -b (i.e., CO2) is decreased.1  

Furthermore, β is the maximum feasible expansion of desirable outputs and 

contraction of the undesirable outputs when the expansion and contraction are 

identical proportions for a given level of inputs. Since the theoretical framework 

behind the ML index is lengthy and for the sake of brevity, we direct readers to the 

following studies such as Chung et al. (1997), Färe et al. (2001), Kumar (2006) and 

Färe et al. (2007). 

Directional distance function expressed in (1) measures observations at time t 

based on the technology at time t+1. Hence the ML index of productivity between 

period t and t+1 is: 

                                                
1 Detailed comparison of Shepherd's output distance function and Chung, Färe, Grosskopf directional 
distance function can be found in Chung et al. (1997). 
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(2) 

 

Like the Malmquist index, the ML index can also be decomposed into changes 

in efficiency change (MLEFFCH) and technical change (MLTECH).  This can be 

written as follows: 

MLEFFCH!!!! = 1+D!
!
x!, y!, b!; y!,−b! 1+D!

!!!
x!!!, y!!!, b!!!; y!!!,−b!!!

(3) 
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×
1 +D!
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x!!!, y!!!, b!!!; y!!!, -‐b!!!
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!
x!!!, y!!!, b!!!; y!!!, -‐b!!!

!
!

  

 (4) 

The ML productivity index and the Malmquist productivity index indicate 

productivity improvements if their values are greater than one and decreases in 

productivity if the values are less than one. 

 Equation (3) measures the change in output efficiency between two periods. If 

𝑀𝐿𝐸𝐹𝐹𝐶𝐻!!!!  exceeds 1.00, it indicates that an airline is closer to the frontier in 

period t + 1 than it was in period t. If the value is less than one, then the airline is 

“falling behind” the frontier. Equation (4) measures technical change which illustrates 

shifts in the production possibilities frontier. If this shift is in the direction of more 

desirable outputs with fewer undesirables, then the value of 𝑀𝐿𝑇𝐸𝐶𝐻!!!!  exceeds 

1.00. If the value is less than one, then technical regression has occurred.  In order to 

calculate the ML index and its decompositions, four distance functions which are 

specified as LP problems must be solved. Let us assume that if at a given time 
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t=1,….T, there are k=1,…K airlines of inputs and outputs, the model can be expressed 

as: 

𝑃 𝑥 = 𝑦, 𝑏 :   𝑧!

!

!!!

𝑦!"! ≥ 𝑦!!   ,𝑚 = 1,…𝑀.  

 (5) 

𝑧!

!

!!!

𝑏!"! = 𝑏!! , 𝑗 = 1,… 𝐽. 

𝑧!

!

!!!

𝑥!"! ≤ 𝑥!!   ,𝑛 = 1,…𝑁. 

z! ≥ 0 , k = 1,…K. 

which exhibits constant returns to scale so that: 

P(λx) = λP(x) , λ >0  (6) 

and strong disposability of inputs: 

x' ≥ x ⇒   P x'   ⊇   P(x) (7) 

The inequalities for inputs and desirable outputs in (5) reflect the assumption that they 

are freely disposable. The undesirable outputs are assumed to be costly to dispose of 

and, therefore, are modelled as equalities. The non-negativity constraints on the 

intensity variables, zk, allow the model to exhibit constant returns to scale.2 

The directional distance functions for the ML productivity index can be calculated as 

solutions to the linear programming (LP) problem as follows:  

D!
!
x!,!', y!,!', b!,!'; y!,!', -‐b!,!' = maxβ   (8) 

                                                
2 This is a necessary condition for the resulting productivity indices to be a true total factor productivity 
index (Färe and Grosskopf, 1996). The rationale for constant returns to scale is because it is consistent 
with the vast majority of airline literature such as White (1979), Cornwell et al. (1990), Good et al. 
(1995), Alam and Sickles (2000), and Sickles et al. (2002). As empirically demonstrated in Caves et al. 
(1984), large and small carriers in U.S. could compete with one another over extended periods of time. 
They found that airline production technology can be characterized as having constant returns to scale. 
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𝑠. 𝑡. 𝑧!

!

!!!

𝑦!"! ≥ (1+ 𝛽)𝑦!!!!   ,𝑚 = 1,…𝑀. 

𝑧!

!

!!!

𝑏!"! = (1− 𝛽)𝑏!!!!   , 𝑗 = 1,… 𝐽. 

𝑧!

!

!!!

𝑥!"! ≤ 𝑥!!!!   𝑛 = 1,…𝑁. 

z! ≥ 0 , k = 1,…K. 

A 2-year window reference technology is employed in the study. This 

resembles Equation (8) except that the time superscripts on the right-hand side of the 

constraints differ from the time superscripts on the left-hand side of the constraints. 

Under a 2-year window reference technology, the frontier for 2005 would be 

constructed using 2004 and 2005 data. 

 

3.0 Data 

The data are mainly drawn from RDC Aviation and World Air Transport 

Statistics (WATS) of the International Air Transport Association (IATA). The former 

provides data on fuel burn and CO2 emissions which were purchased from RDC 

Aviation Limited (via http://www.rdcaviation.com/) whereas the latter provides 

operational statistics for over three hundred airlines. Our study is however restricted 

to a small sample size of thirty-five airlines because of limited funds to purchase the 

CO2 data and because CO2 data is only available from RDC Aviation whereas WATS 

does not provide any CO2 data. The methodology to derive CO2 estimates are based 

on fuel consumption using software Route Pro which has been in use since 1999.  

Detailed description of the methodology is available in RDC Aviation 2011, RDC 

Emissions Calculator: Methodology Document (v.1.4) and described in Appendix A 
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in this paper. Data between WATS and RDC Aviation Limited are also verified to 

ensure consistency in coverage level. 

The directional distance functions employed in the study require quantities of 

inputs and quantities of outputs (that is, desirables and undesirables). Data 

specification of inputs and outputs follow a production approach to modelling airline 

behaviour, that is, aircraft is flown over a distance which consumes fuel to transport 

passengers and freight over a certain distance. The production of desirable outputs, 

however inevitably generates pollution (that is, an undesirable output).  

Identifying inputs and outputs to satisfy the production of airline performance 

is however problematic. In terms of outputs, most studies have used revenue 

passenger kilometres (RPK) or tonne kilometres performed. These include Assaf and 

Josiassen (2012), Baltagi et al. (1995), Barbot et al. (2008), Barla and Perelman 

(1989), Bhadra (2009), Coelli et al. (1999), Cornwall, et al. (1990), Greer (2008), 

Oum et al. (2005), Oum and Yu (1995), Schmidt and Sickles (1984), and Vasigh and 

Fleming (2005). In turn, most of these studies have used physical inputs such as 

labour or number of employees, materials, aircraft capacity, fuel and number of 

aircraft. Some studies have also considered financial indicators in both outputs and 

inputs. Outputs were measured in terms of earnings before interest and taxes (EBIT) 

or revenues, while inputs were in terms of operation costs. These include Barros and 

Peypoch (2009) and Assaf and Josiassen (2011). These studies have their merits when 

measuring performance in terms of cost efficiency analysis or financial performance 

comparisons.  

From the literature and framework of our study, we identify four inputs: (i) 

fuel burn (ii) hours flown (iii) number of employees and (iv) average aircraft 

capacity,. Fuel burn is the total amount of fuel consumed for all flights. Hours flown 
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is the total number of hours of flight time. We include total assets to represent capital. 

This input ideally measures the quality of equipment used which suggests that higher 

value indicates quality equipment that directly or indirectly have some impact on CO2 

emissions. In terms of number of employees, we only considered labour that directly 

or indirectly contribute towards our defined outputs. Hence, only pilots, co-pilots and 

other cockpit personnel, cabin crew, maintenance and overhaul, and airport handling 

personnel are considered in our labour input. Labour in the form of ticketing, sales 

and promotions were not included in our labour estimates. Average aircraft capacity is 

the number of seats per aircraft measured by taking the ratio of available seat 

kilometres divided by kilometres flown. This input is a proxy to measuring the 

average size of aircraft used in each airline. We do not use number of aircrafts here 

since aircraft sizes vary across airlines thus making it incomparable.  

We define two outputs: tonne kilometres performed and CO2.3 As defined by 

International Civil Aviation Organization (ICAO), tonne kilometres performed is the 

sum of the product obtained by multiplying the number of total tonnes of revenue load 

(passengers, freight and mail) carried on each flight stage by the stage distance.  

 

4.0 Results 

Descriptive statistics for the data are presented in Table 1. The data shows that 

the mean inputs in general increased over time whereas for outputs, there was a slight 

drop in 2009 before rising again. The maximum values for CO2 show a reduction 

since 2006. This suggests that reductions in CO2 levels may be due to airlines utilising 

                                                
3 According to the U.S. Department of Transportation, Center for Climate Change and Environmental 
Forecasting, CO2 constitutes roughly 70 percent of aircraft engine emissions. While other pollutants 
such as NOx are produced, we only use CO2 as this is the main pollutant emitted by airlines (Mendes 
and Santos, 2008). 
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improved technology in reducing fuel-burn. Such implications need to be supported 

by further analysis with the use of the ML productivity index.  

[Insert Table 1] 

In this section, the results of efficiency performance based on ML and 

Malmquist productivity index are presented.  As mentioned earlier where the index is 

greater (less) than 1.00 denotes improvement (deterioration) in the relevant 

performance.  

Table 2 presents the decomposition results of the ML productivity index into 

its efficiency change and technical change components on an average annual basis for 

each airline when CO2 emissions are included as an undesirable output. These are 

calculated using Equations (3) and (4), respectively. The average annual growth rates 

are based on geometric means which is the square root of the product of the 2-year 

window index.  

[Insert Table 2] 

The ML productivity index reveals subtle variations in results, ranging from a 

low of -2.428 percent annual productivity decline for Germanwings to a high of 4.132 

percent annual growth for Air Asia. On average, productivity growth rose by 1.02 

percent per year largely from improvements in efficiency change (0.70 percent per 

year) with some gains noted in technical change of 0.32 percent. Under Malmquist 

productivity index, productivity growth was 1.38 percent. From the sample of thirty-

five airlines, twenty-seven airlines showed productivity growth when we incorporate 

CO2 emissions into the production model while thirty airlines showed productivity 

growth when CO2 is ignored. The results suggest that under ML index, airlines are 

posting lower productivity growth relative to Malmquist index. In other words, the 

relatively lower productivity growth is attributed to the ML model which incorporates 
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CO2 emissions which further suggest that resources are being allocated to the 

improvement of technology or/and operations in reducing CO2 emissions rather than 

increasing the output of desirable output (i.e. tonne kilometres performed). This result 

has implications for airlines with a “true” lower productivity growth in the light of 

recent proposals by the EU and International Civil Aviation Organization (ICAO) for 

airlines to pay for CO2 emissions. The proposals to pay for CO2 emissions, therefore, 

are likely to add more pressure on airlines whose productivity is already low. Whilst 

the reductions in CO2 emissions are socially desirable, such a move also potentially 

increases the chances of airlines failing financially.   - 

The mean estimates of MLEFFCH and MLTECH also provide information 

about the performance of airline operations. Assuming airlines are aware of measures 

that can reduce carbon emissions, airlines tend to adopt best-practice management 

measures rather than investing in new technologies for cost-cutting reasons. This is 

evident from the positive estimates of MLEFFCH whereby twenty-seven airlines 

posted positive MLEFFCH. Of these twenty-seven airlines, seventeen had negative 

MLTECH, which suggests that most of these airlines have yet to adopt new 

technologies which increases the desirable output with lower CO2 levels. 

Table 3 reports the annual change of ML, technical and efficiency changes for 

ML index and Malmquist index. Under ML index, the annual change in productivity 

growth ranged from a low of -0.74 percent in 2008 to a high of 2.34 percent in 2009. 

The change in efficiency ranged from an increase of 3.55 percent in 2009 to -1.46 

percent in 2007, while technical change ranged from -1.34 percent in 2005 to 1.55 

percent in 2007. Under Malmquist index, the annual change in productivity growth 

ranged from an increase of 4.43 percent in 2009 to -0.29 percent decrease in 2008. 

The change in efficiency ranged from 6.33 percent in 2005 to -2.08 percent in 2007, 
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while technical change posted growth ranging from 2.78 percent in 2010 to -2.02 

percent in 2005.  

[Insert Table 3] 

So what are the implications that can be drawn from the above results? It is 

evident from the last fifteen years in the aviation industry that great strides have been 

undertaken by relevant stakeholders to improve aircraft efficiency in terms of 

airframe design, weight reduction, reformulation of fuel and development of fuel-

efficient engines, just to name a few. Overall, fuel efficiency, measured as the ratio of 

total distance flown over total fuel burn, showed an increase in distance flown per 

kilometre from 2004 to 2011 which suggests that airlines are now more fuel efficient. 

Although adoption of fuel-efficient state-of-the-art aircraft is costly and takes 

considerable time to replace old fleet, governments can contribute by providing 

subsidies as incentives for their national carriers to gradually adopt new technologies. 

While policies take time to come into effect, airlines can also reduce CO2 emissions 

through best-practice management and operations. Where appropriate and feasible, 

airlines may operate a combination of short-haul and long-haul flights. This is 

because, short-haul operations tend to be less efficient than long-haul flights since the 

former engages in more flights over shorter-distance per day compared to long-haul 

which has fewer number of flights per day. This suggests that short-haul has more 

take-off which consumes more fuel each time which is also observed in Wan and 

Zhang (2006). Scheelhaase et al. (2009) also noted that long-haul direct flights are 

more fuel-efficient than short-haul connecting flights, largely because long-haul 

flights are able to compensate for its heavier load since it is able to achieve cruising 

speed at high altitudes which makes it more fuel efficient whereas short-haul flights 

are not always able to due to its shorter distance travelled.  
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Since the study has a relatively small sample size, we test the reliability of the 

results using a bootstrap approach outlined in Simar and Wilson (1999). As 

productivity change is based on the ML index, we follow the bootstrapping approach 

of Hampf (2013). A 95 percent confidence interval is estimated in order to determine 

whether changes in productivity growth, efficiency or technical are statistically 

significant. Bootstrapping replicates the dataset to generate an appropriate large 

number of pseudo samples which in this study is B=2000. As such, bias-corrected 

estimates for MLTFP, MLEFFCH and MLTECH at the 0.05 level are calculated and 

presented in Table 4. The results show that bias-corrected MLTFP estimates for 

eighteen airlines are statistically significant suggesting that there was TFP change. For 

MLEFFCH, seventeen airlines were statistically significant and for MLTECH, 

thirteen airlines were statistically significant. In most cases, the airlines with 

statistically significant MLTFP also exhibit significance in both MLEFFCH and 

MLTECH. It is also observed that there were a number of infeasible solutions thus 

ending up with NA. To avoid infeasible solutions and improve the bootstrap results, 

further studies should consider increasing the sample size and second-stage regression 

analysis but this is beyond the scope of the current study. 

 

[Insert Table 4] 

 

5.0 Conclusions 

The study focused on measuring productivity growth of airlines taking into 

account, both desirable and undesirable outputs into consideration. Using a dataset for 

the period, 2004-2011, the ML productivity index was employed to derive TFP, 

efficiency and technical change for thirty-five airlines. The average annual increase in 
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ML productivity growth was 1.02 percent which was largely attributed to efficiency 

change. When we ignore the undesirable output (CO2 emissions), productivity growth 

increased to 2.32 percent suggesting that pollution abatement activities in airlines 

does reduce productivity growth.  

It should be noted that one of the main limitations of the current study is the 

small sample size. This is due to current data limitations. As such, we test the 

reliability of results by employing a bootstrap approach and the results showed that 

approximately 50 percent of airlines were statistically significant. A larger sample 

size and longer-time series could provide a better picture of productivity growth to 

demonstrate the impact of best-practice management and the adoption of new 

technologies on technical change. An important policy implication stemming from the 

results is that, if and when CO2 emissions are targeted by governments, such action is 

likely to lower productivity growth of some airlines while some others would remain 

less affected. Furthermore, those airlines with higher CO2 emissions are likely to 

suffer due to higher penalties (costs) imposed by the respective authorities.  

Nonetheless, this is a first step towards examining the level of productivity 

growth and efficiency change of airlines while taking into account both desirable and 

undesirable outputs using the ML index which measures ‘true’ productivity growth. 

Future studies would aim at increasing the sample size, including sufficient number of 

low-cost carriers over a longer time-period for comparative analysis between types of 

carriers, as well as conduct a second stage regression analysis to quantify the sources 

of inefficiency and productivity growth. In addition, the expansion of the data outputs 

may include other undesirable outputs such as noise pollution and airline delays. 
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Appendix A 

RDC Aviation calculates CO2 emission in several stages:  (i) Capacity and 

Load Factor Variance; (ii) Freight Contribution; (iii) Aircraft Age Multiplier ; (iv) 

Sector Fuel Calculation; and finally (v) Calculating the CO2 Emissions.  

 

(i) Capacity and Load Factor Variance:  

 The capacity of the requested airline/aircraft combination is compared with the 

capacity of the baseline aircraft, and any capacity differences are converted into 

weight, and thence into fuel consumption. The Operating Weight Empty (OWE) of an 

airline/aircraft combination is calculated as follows 

𝑂𝑊𝐸! = 𝑂𝑊𝐸! − 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦!×𝑠𝑒𝑎𝑡  𝑤𝑒𝑖𝑔ℎ𝑡 + 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦!×𝑠𝑒𝑎𝑡  𝑤𝑒𝑖𝑔ℎ𝑡  

where b is baseline aircraft figure and a is the requested airline/aircraft combination.  

For Load Factor Variance, the passenger weight is calculated for the baseline scenario 

at max pax (Pax weightb = Capacityb × Pax weight) and for the airline/aircraft 

combination at the given average load factor (Pax weighta = Capacitya × Pax weight 

× Load factora), using the individual passenger weights in the aircraft database. The 

weight differential between the baseline aircraft and the requested airline/aircraft 

combination due to the capacity and load factor variance is: 

𝑊𝑒𝑖𝑔ℎ𝑡  𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 = 𝑂𝑊𝐸! + 𝑃𝑎𝑥  𝑤𝑒𝑖𝑔ℎ𝑡! − 𝑂𝑊𝐸! + 𝑃𝑎𝑥  𝑤𝑒𝑖𝑔ℎ𝑡!  

The weight differential is then turned into an increase or decrease of the average 

hourly block fuel.  

𝐻𝑜𝑢𝑟𝑙𝑦  𝑏𝑙𝑜𝑐𝑘  𝑓𝑢𝑒𝑙! = 𝐻𝑜𝑢𝑟𝑙𝑦  𝑏𝑙𝑜𝑐𝑘  𝑓𝑢𝑒𝑙! + 𝑓𝑢𝑒𝑙  𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙  (A1) 
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where fuel differential = (Weight differential in tonnes ×  30)kg.  Average hourly 

block fuel is drawn from RDC Aviation’s own database. This customises the hourly 

block fuel to account for the capacity and load factor variation of the requested 

airline/aircraft combination. The calculations assume a figure of +30kg of block fuel 

per hour for each additional 1000kg of weight (or the equivalent reduction per 1000kg 

‘lost’). This figure was sourced from figures given by Airbus, Boeing, Bombardier 

and British Airways at the 2006 ICAO workshop on Operational Measures for Fuel 

and Emissions Reductions. 

 

(ii) Freight Contribution 

 The payload available for freight for each requested airline/aircraft 

combination is calculated using the weights and seat capacities specified in the 

aircraft and airline databases. The calculation of the freight payload is  

Maximum Freight Payloada = MZFW – (OWEa + Pax Weighta), 

where MZFW: Maximum Zero Fuel Weight of an aircraft, which corresponds to the 

maximum weight of an aircraft including the payload but minus any fuel. As the 

density of the freight payload affects what the aircraft can in reality carry, the 

adjustment for this assumes that the maximum volumetric payload of the aircraft is 85 

percent of the maximum structural payload. Hence, Maximum Volumetric Payloada = 

Maximum Freight Payloada ×  0.85 which is then converted into weight (Freight 

Weighta = Max. Volumetric Payloada ×  Average Weight Load Factora) and then 

turned into an increase in the average hourly block fuel as previously, with the 

assumption of +30kg of block fuel per hour for each 1000kg of freight:  

𝐻𝑜𝑢𝑟𝑙𝑦  𝑏𝑙𝑜𝑐𝑘  𝑓𝑢𝑒𝑙  𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒! = 𝐹𝑟𝑒𝑖𝑔ℎ𝑡  𝑤𝑒𝑖𝑔ℎ𝑡!  𝑖𝑛  𝑡𝑜𝑛𝑛𝑒𝑠  ×  30   𝑘𝑔 (A2) 
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where f refers to freight. Adding together the hourly block fuel (A1) and (A2) gives us 

the hourly block fuel consumption for the requested airline/aircraft combination 

accounting for the passenger and freight payload changes relative to the baseline 

aircraft. This is expressed as: 

𝐻𝑜𝑢𝑟𝑙𝑦  𝑏𝑙𝑜𝑐𝑘  𝑓𝑢𝑒𝑙!" = 𝐻𝑜𝑢𝑟𝑙𝑦  𝑏𝑙𝑜𝑐𝑘  𝑓𝑢𝑒𝑙! + 𝐻𝑜𝑢𝑟𝑙𝑦  𝑏𝑙𝑜𝑐𝑘  𝑓𝑢𝑒𝑙  𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒! (A3) 

 

(iii) Aircraft Age Multiplier 

 As aircraft age and engine performance deteriorates over time, the age of 

aircraft for airline a (Agea) is incorporated into A3. In the absence of any concrete 

numbers, the emissions calculator uses a fuel consumption deterioration factor of 0.3 

percent per year. Average fleet ages are available in the airline database. The age 

multiplier thus changes equation A3 into A4: 

𝐻𝑜𝑢𝑟𝑙𝑦  𝑏𝑙𝑜𝑐𝑘  𝑓𝑢𝑒𝑙!"# = 𝐻𝑜𝑢𝑟𝑙𝑦  𝑏𝑙𝑜𝑐𝑘  𝑓𝑢𝑒𝑙!"× 1 + 𝐴𝑔𝑒!×0.003   (A4) 

whereby subscript g incorporates the age multiplier of (1 + (Agea ×  0.003)). 

 

(iv) Sector Fuel Calculation 

 The ‘emissions calculator’ first calculates the sector distance, then converts it 

into a block time (hours) which incorporates the aircraft cruise speed from the aircraft 

database. Block time is determined by taking a sector distance and arriving as closely 

as possible to the block time shown in the OAG (formerly Official Airline Guide) 

airline timetables for that origin/destination sector. With a knowledge of the sector 

block time, the variation of hourly fuel burn with distance/time can be calculated 

using the y = mx + c formula (i.e. distance/time factor = m  × Block time + c) with m 

and c drawn from the Aircraft database. The sector fuel formula is then: 

𝑆𝑒𝑐𝑡𝑜𝑟  𝑓𝑢𝑒𝑙 = 𝐵𝑙𝑜𝑐𝑘  𝑡𝑖𝑚𝑒  ×  𝐻𝑜𝑢𝑟𝑙𝑦  𝑏𝑙𝑜𝑐𝑘  𝑓𝑢𝑒𝑙!"#×   1 + 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑇𝑖𝑚𝑒  𝑓𝑎𝑐𝑡𝑜𝑟  
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(A5) 

(v) Calculating the CO2 Emissions 

Finally, CO2 emission for a sector is calculated by taking a factor of 3.157 and 

multiplied to A5 expressed as: 

 𝐶𝑂! = 𝑆𝑒𝑐𝑡𝑜𝑟  𝑓𝑢𝑒𝑙  ×  3.157    (A6) 

The factor of 3.157 is a constant used to convert fuel to CO2. For every 1 tonne of fuel 

that is burned, 3.157 tonnes of CO2 is produced. 
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Table 1: Descriptive Statistics (2004-2011), (in thousands) 
Year Variable Mean Standard 

deviation 
Minimum Maximum 

      
2004 X1- Hours flown 783.04 1,074.94 11.73 4,164.47 
 X2- Fuel burn 2,342.22 2,670.70 24.71 10,171.63 
 X3- Average aircraft capacity 293.09 98.74 150.50 594.04 
 X4- Number of employees 22.45 26.03 0.25 92.74 
 Y1- Tonne kms performed 6,311,447.78 7,575,518.92 68,628.94 27,731,236.26 
 Y2- CO2 (tonnes) 7,394.39 8,431.41 78.00 32,111.85 
      
2005 X1- Hours flown 816.34 1,077.82 24.55 4,207.49 
 X2- Fuel burn 2,427.17 2,681.13 51.70 10,216.51 

 X3- Average aircraft 
capacity 307.18 105.90 148.57 703.95 

 X4- Number of employees 22.24 24.93 0.38 90.03 
 Y1- Tonne kms performed 6,631,227.90 7,596,786.67 168,016.97 28,981,451.61 
 Y2- CO2 (tonnes) 7,662.59 8,464.34 163.21 32,253.52 
      
2006 X1- Hours flown 835.47 1,047.00 29.91 4,145.80 
 X2- Fuel burn 2,480.61 2,627.52 84.21 10,053.89 

 X3- Average aircraft 
capacity 311.72 92.03 140.63 521.86 

 X4- Number of employees 22.37 24.52 0.55 93.54 
 Y1- Tonne kms performed 7,002,451.61 7,744,720.83 189,280.17 30,405,658.08 
 Y2- CO2 (tonnes) 7,831.28 8,295.09 265.85 31,740.15 
      
2007 X1- Hours flown 868.94 1,047.05 37.94 4,046.56 
 X2- Fuel burn 2,570.86 2,620.72 113.44 9,879.29 

 X3- Average aircraft 
capacity 305.53 84.14 144.23 585.30 

 X4- Number of employees 23.23 24.90 0.75 100.78 
 Y1- Tonne kms performed 7,381,871.45 7,950,957.42 327,276.08 31,169,078.24 
 Y2- CO2 (tonnes) 8,116.22 8,273.61 358.14 31,188.91 
      
2008 X1- Hours flown 877.42 990.85 41.17 3,826.13 
 X2- Fuel burn 2,614.90 2,540.24 108.28 9,406.14 

 X3- Average aircraft 
capacity 299.79 77.27 146.28 511.72 

 X4- Number of employees 24.27 26.65 0.80 108.12 
 Y1- Tonne kms performed 7,450,728.74 7,704,989.31 318,998.22 29,517,613.52 
 Y2- CO2 (tonnes) 8,255.23 8,019.52 341.85 29,695.20 
      
2009 X1- Hours flown 847.13 911.59 44.82 3,479.68 
 X2- Fuel burn 2,521.15 2,375.56 92.56 8,654.89 

 X3- Average aircraft 
capacity 283.93 75.34 142.11 455.43 

 X4- Number of employees 23.85 26.18 0.80 112.32 
 Y1- Tonne kms performed 7,303,887.44 7,469,960.05 222,891.05 28,654,314.68 
 Y2- CO2 (tonnes) 8,007.29 7,460.60 292.22 27,323.50 
      
2010 X1- Hours flown 926.31 1,095.67 61.51 5,107.20 
 X2- Fuel burn 2,689.49 2,697.73 111.61 11,443.56 

 X3- Average aircraft 
capacity 285.67 83.06 158.12 491.13 

 X4- Number of employees 24.75 27.99 1.08 117.07 
 Y1- Tonne kms performed 7,934,530.43 8,483,564.64 324,009.05 37,459,975.63 
 Y2- CO2 (tonnes) 8,548.08 8,474.09 352.34 36,127.32 
      
2011 X1- Hours flown 960.64 1,104.84 90.98 5,176.74 
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 X2- Fuel burn 2,831.87 2,783.65 173.36 11,744.05 

 X3- Average aircraft 
capacity 290.51 79.58 151.71 498.76 

 X4- Number of employees 24.71 27.48 0.80 119.08 
 Y1- Tonne kms performed 8,363,201.82 8,679,952.19 466,679.07 38,147,091.62 
 Y2- CO2 (tonnes) 9,000.78 8,742.97 547.31 37,075.96 
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Table 2: Decomposition of Average Annual Changes, 2004-2008 (Two-year window) 

 Accounting for the undesirable 
output: CO2 

 Ignoring the undesirable output:  
CO2 

Airline ML MLEFFCH MLTECH  M MEFFCH MTECH 
Aer Lingus 0.9973 0.9974 0.9998  0.9967 0.9933 1.0035 
Air Arabia (LCC) 1.0416 1.0055 1.0359  1.0800 1.0080 1.0714 
Air Asia (LCC) 1.0431 1.0123 1.0304  1.0671 1.0599 1.0067 
Air Canada 1.0071 1.0080 0.9991  1.0129 1.0113 1.0016 
Air France 1.0121 1.0163 0.9958  1.0238 1.0348 0.9894 
AirTran Airways (LCC) 1.0112 1.0132 0.9980  1.0304 1.0226 1.0077 
American Airlines 0.9960 0.9997 0.9963  1.0014 0.9995 1.0020 
ANA 0.9979 1.0008 0.9970  0.9944 1.0046 0.9898 
British Airways 1.0010 0.9989 1.0021  1.0057 0.9946 1.0111 
Delta Airlines 1.0082 1.0000 1.0082  1.0109 1.0043 1.0066 
easyjet (LCC) 1.0123 0.9941 1.0183  1.0218 0.9885 1.0337 
Emirates 1.0299 1.0153 1.0144  1.0558 1.0245 1.0305 
Frontier Airlines (LCC) 0.9988 1.0020 0.9969  1.0174 1.0233 0.9942 
Garuda Indonesia 1.0228 1.0256 0.9973  1.0511 1.0573 0.9942 
Germanwings (LCC) 0.9763 0.9653 1.0114  0.9524 0.9329 1.0209 
GOL (LCC) 1.0273 1.0287 0.9987  1.0799 1.0924 0.9885 
Japan Airlines 1.0049 1.0092 0.9957  1.0098 1.0162 0.9938 
KLM 1.0079 1.0119 0.9960  1.0156 1.0211 0.9945 
Lufthansa 1.0048 1.0091 0.9958  1.0187 1.0216 0.9971 
Malaysia Airlines 1.0036 1.0086 0.9950  1.0060 1.0143 0.9918 
Norwegian (LCC) 1.0237 1.0034 1.0202  1.0770 1.0143 1.0619 
Philippine Airlines 1.0120 1.0163 0.9957  1.0209 1.0272 0.9939 
Qantas 0.9959 1.0021 0.9938  0.9937 1.0047 0.9890 
Ryanair (LCC) 1.0238 1.0243 0.9995  1.0538 1.0493 1.0043 
SAS 1.0019 1.0036 0.9983  1.0053 1.0086 0.9967 
Singapore Airlines 1.0075 1.0000 1.0075  1.0077 1.0000 1.0077 
Skymark Airlines (LCC) 1.0267 1.0201 1.0064  1.0196 1.0311 0.9889 
Southwest Airlines 
(LCC) 1.0117 1.0101 1.0016  1.0273 1.0106 1.0165 

Swiss International 
Airlines 1.0036 0.9926 1.0111  1.0092 0.9842 1.0254 

TAM 1.0426 1.0428 0.9998  1.0922 1.0967 0.9960 
Thai Airways 0.9878 0.9869 1.0009  0.9785 0.9748 1.0039 
Transavia.com (LCC) 1.0125 1.0125 1.0000  1.0284 1.0333 0.9952 
United Airlines 1.0012 1.0000 1.0012  1.0013 1.0000 1.0013 
Virgin Australia (LCC) 0.9936 0.9974 0.9962  1.0300 1.0155 1.0142 
WestJet (LCC) 1.0108 1.0129 0.9980  1.0302 1.0223 1.0077 
Mean 1.0102 1.0070 1.0032  1.0232 1.0166 1.0064 
Notes: ML: Malmquist-Luenberger Index; M: Malmquist Index 
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Table 3: Annual comparisons of M and ML Productivity Index (Two-year window) 
 

  Accounting for the undesirable 
output: CO2 

 Ignoring the undesirable output: 
CO2 

  ML MLEFFCH MLTECH  M MLEFFCH MLTECH 
2005  1.0204 1.0343 0.9866  1.0418 1.0633 0.9798 
2006  1.0197 1.0052 1.0145  1.0424 1.0176 1.0244 
2007  1.0007 0.9854 1.0155  1.0036 0.9792 1.0249 
2008  0.9926 0.9933 0.9993  0.9971 0.9989 0.9982 
2009  1.0234 1.0355 0.9883  1.0443 1.0605 0.9848 
2010  1.0045 0.9894 1.0153  1.0110 0.9837 1.0278 

Notes: ML: Malmquist-Luenberger Index; M: Malmquist Index. 
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Table 4: Bias-corrected estimates of MLTFP, MLEFFCH, MLTECH and Confidence intervals 
 MLTFP LB UB MLEFFCH LB UB MLTECH LB UB 
Aer Lingus NA NA NA 1.0000 0.8340 1.2021 NA NA NA 
Air Arabia (LCC) 1.1116* 1.0358 1.1586 1.1716* 1.0472 1.2684 0.9598 0.8769 1.0154 
Air Asia (LCC) 1.0140* 1.0024 1.0187 1.0794* 1.0352 1.1238 0.9439* 0.8981 0.9768 
Air Canada 1.0050 0.9606 1.0351 1.0844 0.9874 1.1701 0.9269 0.8423 1.0086 
Air France 0.9847 0.9718 1.0038 1.0186 0.9468 1.1158 0.9523 0.8703 1.0294 
AirTran Airways (LCC) 1.0298* 1.0195 1.0377 1.0842* 1.0576 1.1189 0.9550* 0.9193 0.9725 
American Airlines NA NA NA 1.0000 0.7788 1.1788 NA NA NA 
ANA 1.0349* 1.0282 1.0376 1.0834* 1.0451 1.1306 0.9567* 0.9110 0.9878 
British Airways NA NA NA 1.0000 0.8566 1.2172 NA NA NA 
Delta Airlines NA NA NA 1.0286 0.9147 1.1807 NA NA NA 
easyjet (LCC) NA NA NA 1.0263 0.9033 1.1315 NA NA NA 
Emirates 0.9813 0.9628 1.0001 0.9891 0.8930 1.1028 0.9922 0.8710 1.0784 
Frontier Airlines (LCC) 1.0202* 1.0111 1.0266 1.0959* 1.0527 1.1384 0.9306* 0.8921 0.9668 
Garuda Indonesia 1.0189* 1.0104 1.0239 1.0804* 1.0487 1.1227 0.9381* 0.9031 0.9690 
Germanwings (LCC) NA NA NA 1.0319 0.8936 1.1732 NA NA NA 
GOL (LCC) 1.0145* 1.0071 1.0201 1.0632* 1.0305 1.0939 0.9559* 0.9242 0.9824 
Japan Airlines 1.0579* 1.0284 1.0700 1.0673 0.9935 1.1428 0.9912 0.9149 1.0446 
KLM 1.0461* 1.0118 1.0726 1.1206* 1.0236 1.1873 0.9587 0.8741 1.0123 
Lufthansa NA NA NA 0.9521 0.8704 1.0465 NA NA NA 
Malaysia Airlines 1.0219* 1.0047 1.0317 1.0866* 1.0266 1.1629 0.9302* 0.8676 0.9929 
Norwegian (LCC) 1.1107* 1.0741 1.1317 1.1305* 1.0721 1.1904 0.9825 0.9270 1.0214 
Philippine Airlines NA NA NA 0.9174* 0.8489 0.9912 NA NA NA 
Qantas 1.0157 0.9700 1.0514 1.0514 0.9236 1.1791 0.9561 0.8588 1.0510 
Ryanair (LCC) 1.0626* 1.0357 1.0780 1.1442* 1.0888 1.2006 0.9382* 0.8837 0.9668 
SAS 1.0172* 1.0071 1.0213 1.0680* 1.0311 1.1127 0.9554* 0.9102 0.9836 
Singapore Airlines NA NA NA 1.0000 0.7279 1.2287 NA NA NA 
Skymark Airlines (LCC) 1.0951* 1.0587 1.1237 1.1497* 1.0793 1.1847 0.9731* 0.9271 0.9994 
Southwest Airlines (LCC) 1.0948* 1.0525 1.1222 1.1609* 1.0831 1.2174 0.9477 0.8913 1.0016 
Swiss International 
Airlines 1.0117 0.9996 1.0224 1.0313 0.9603 1.1217 0.9854 0.8873 1.0418 
TAM 1.0081 1.0005 1.0091 1.0593 1.0334 1.0939 0.9517 0.9187 0.9724 
Thai Airways NA NA NA 0.9655 0.7898 1.1045 NA NA NA 
Transavia.com (LCC) 0.9482 0.9264 0.9851 1.0126 0.9415 1.0935 0.9353 0.8630 1.0022 
United Airlines NA NA NA 1.0000 0.8377 1.1859 NA NA NA 
Virgin Australia (LCC) 0.9960 0.9866 1.0110 1.0454 0.9951 1.1279 0.9527 0.8748 0.9999 
WestJet (LCC) 1.1036 1.0710 1.1243 1.1916 1.1349 1.2302 0.9324 0.8947 0.9671 
Note: LB: lower bound, UB: upper bound; Asterisks (*) denote significant differences from unity at 0.05. 
 

 

 

 


