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We investigate the ground state of the irrationally frustrated Josephson junction array with con-
trolling anisotropy parameter λ that is the ratio of the longitudinal Josephson coupling to the
transverse one. We find that the ground state has one dimensional periodicity whose reciprocal
lattice vector depends on λ and is incommensurate with the substrate lattice. Approaching the
isotropic point, λ=1 the so called hull function of the ground state exhibits analyticity breaking
similar to the Aubry transition in the Frenkel-Kontorova model. We find a scaling law for the
harmonic spectrum of the hull functions, which suggests the existence of a characteristic length
scale diverging at the isotropic point. This critical behavior is directly connected to the jamming
transition previously observed in the current-voltage characteristics by a numerical simulation. On
top of the ground state there is a gapless, continuous band of metastable states, which exhibit the
same critical behavior as the ground state.

I. INTRODUCTION

Frustration is regarded as a key concept in the under-
standing of a number of complex cooperative phenomena
in condensed matter systems including the glass transi-
tion [1, 2]. In general frustration leads to flattening of
the energy landscape and suppresses the onset of conven-
tional long-range orders, thereby opening possibilities of
exotic phases. In order to understand the roles of frustra-
tion, it is desirable to vary the strength of frustration in
a systematic way. The frustrated Josephson junction ar-
ray (JJA) under an external magnetic field [3] provides an
ideally simple setting for this purpose since the strength
of the frustration in the JJA can be tuned at will as dis-
cussed below. The origin of frustration of this system is
the impossibility to minimize the Josephson junction cou-
pling energy of longitudinal and transverse bonds at the
same time when a magnetic field is applied. This mech-
anism seems to have a certain generality. The frustrated
JJA is closely related to the notion of frustrated crys-
tals in curved space [1, 2]. Such frustrated crystals may
be realized, to some extent, by actually bending crystals
[4, 5]. This amounts to injecting a given number density
of dislocations into the crystals. Here the key parameter
of the frustration is the number density of the externally
induced dislocations. In the frustrated JJA, the disloca-
tions correspond to the vortices induced by an external
magnetic field. Quite remarkably, one can easily control
the number density of vortices per plaquette f by just
changing the strength of the applied external magnetic
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field.
By choosing an irrational f instead of a rational f [6]

we can maximize the strength of frustration in the sense
that we can suppress the formation of a dislocation (vor-
tex) lattice commensurate with respect to the underlying
JJA. This system is called an irrationally frustrated JJA
(IFJJA) and has attracted researchers for a long time. It
has been observed numerically that the system remains
in a vortex liquid state down to low temperatures [7–9]
and exhibits glassy signatures [10, 11].
Recently it has been found that a relevant and very

interesting perturbation on the IFJJA is the anisotropy

of the Josephson coupling [12–14], which breaks the bal-
ance of longitudinal and transverse bonds and thus weak-
ens the frustration. Anisotropic JJAs can be fabricated
in laboratories by the lithography technique [15]. The
IFJJA on the square lattice with different strengths of
the Josephson couplings Jx and Jy in the x and y di-
rections, manifests itself as unusual vortex matter that
slides freely in the direction of stronger coupling even
at zero temperature, similarly to incommensurate charge
density waves, but jammed into the direction of weaker
coupling [12]. It was argued that the mechanism of
the sliding-jamming transition is similar to that of the
Frenkel-Kontorova (FK) model [16].
In the present paper, we study how the ground states

(GSs) of the IFJJA change with the anisotropy λ =
Jy/Jx. To this end we develop an efficient numerical
method valid even up to the isotropic point λ = 1, which
substantially extends the previous analysis based on a
1/λ expansion [13], whose validity is limited to the strong
anisotropy limit λ ≫ 1. The GSs are characterized by an
incommensurate wave vector q(λ) and its higher harmon-
ics that continuously vary with λ. With strong enough
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anisotropy λ ≫ 1, the vortices are aligned as stripes par-
allel to the weaker coupling axis [13]. By tuning the
anisotropy smaller, the stripes become more tilted with
respect to the weaker coupling (see Fig. 1). We demon-
strate that the so called hull function [16], which re-
flects the hidden periodic pattern that is incommensu-
rate with the substrate lattice, becomes nonanalytic at
the isotropic point λ = 1. Physically this means that
the sliding becomes prohibited in both the x and y direc-
tions at the isotropic point, leading to a jamming tran-
sition, which is analogous to the so-called Aubry tran-
sition, which is well known in the FK model [16]. This
analyticity-breaking transition is thus a static manifesta-
tion of the observed jamming transition.
To study the IFJJA with anisotropic Josephson cou-

plings, we consider a classical model described by the
following Hamiltonian with the Josephson coupling be-
tween nearest neighbors along the x and y axes:

H(λ, {φi}) = −
∑

i

[

cosφx
i + λ cosφy

i

]

(1)

with the gauge-invariant phase differences across the
junctions,

φi = (φx
i , φ

y
i ) ≡ (θi+x̂ − θi −Ax

i , θi+ŷ − θi − Ay
i ) (2)

Here θi (i = 1, 2, . . . , N) is the phase of superconducting
order parameter on the i-th island located at the lattice
point ri = (xi, yi) of a square lattice of size N = L × L
with 0 ≤ xi < L, 0 ≤ yi < L, ri+x̂ = (xi + 1, yi) and
ri+ŷ = (xi, yi+1). The parameter λ denotes the strength
of the coupling anisotropy. Due to the symmetry for
permutation of axes x and y, it is sufficient to investigate
only λ ≥ 1. The presence of the external magnetic field
is described by the vector potential Ai = (Ax

i , A
y
i ). It is

related to the filling factor f , which is the average number
of flux quanta per square plaquette, by taking its lattice
rotation rotAi = 2πf with rotXi ≡ Xx

i +Xy

i+x̂ −Xx
i+ŷ −

Xy
i .
Specifically we employ a commonly used irrational

number (3−
√
5)/2 ≈ 0.382 for f [10]. We believe, how-

ever, that the properties we discuss below do not de-
pend on the specific choice of the irrational number. To
impose a periodic boundary condition, f must be ap-
proximated by a rational number. It is known that a
good approximation is obtained by using the Fibonacci
series {Fn : Fn+2 = Fn+1 + Fn} as f = Fn−2/Fn.
We use two series Fn = · · · , 8, 13, 21, 34, · · · and F ′

n =
· · · , 18, 29, 47, 76, · · · corresponding to different initial
conditions (F0 = 1, F1 = 2) and (F ′

0 = 1, F ′
1 = 3). We

use system sizes L = Fn to ensure truly irrational filling
in the thermodynamic limit L → ∞.

II. VARIATION ANALYSIS

We now study the GS of the system by extending the
previous analysis that was limited to the computation

FIG. 1. Vortex configurations of the metastable states (can-
didates for the GSs) with various FRLV q = (qx, f) in the
anisotropic IFJJA with λ ≥ 1. White squares indicate the
plaquettes containing vortices. The panels from left to right
correspond, respectively, to qxL =13,14,15,16, and 17 with
L = 34. As the anisotropy λ increases, the GS changes from
the left to right. Note that there is no recursive unit except
the L × 1 strip and no simple relation between the tilt of
apparent vortex stripes and the FRLV.

of a few terms in the 1/λ expansion [13]. First we per-
formed numerical searches of the GSs at various strengths
of the anisotropy λ on small systems using a simulated
annealing method (not shown here). We found that the
vortex configurations in the GSs exhibit stripe patterns
whose tilt angle with respect to the axis of the weaker
coupling varies with λ (see Fig. 1). This comes from
the fact that φi has one-dimensional periodicity, which
is generally incommensurate with the underlying JJA,
and a fundamental reciprocal lattice vector (FRLV) q(λ)
varies with λ. We utilize this fact in the following anal-
ysis. In the large anisotropy limit it was found to be
qGS(∞) = (1/2, f) (shown in the right most panel in
Fig. 1) [13].
Let us now explain our strategy, which is slightly re-

formulated but equivalent to the scheme presented in
Ref. [13] except for some partial use of numerical pro-
cedures. First, recalling Eq. (2), we find that the phase
differences must satisfy the following equation at each
plaquette:

rotφi = −rotAi = −2πf. (3)

To meet this condition, it is convenient to decompose φ

into a uniform-rotation part and a rotation-free part as

φi = φ∗
i +

nmax−1
∑

n=1

ϕne
2nπiq·ri . (4)

where

rotφ∗
i = −2πf rot

[

ϕne
2nπiq·ri

]

= 0. (5)

The upper bound of the harmonics nmax is given by the
smallest n with which both nqx and nqy are integers. It
almost always equals L in the present model and becomes
infinite in the irrational limit. The first of Eqs. (5) can be
solved by φ∗

i = (−2πfyi+Cq, 0), where Cq is a constant
introduced to satisfy the periodic boundary condition for
θi. The second of Eqs. (5) can be solved by ϕn = (ϕx

n, ϕ
y
n)

with ϕy
n/ϕ

x
n = (1 − e2nπiq

y

)/(1 − e2nπiq
x

), which can be
used to eliminate the degrees of freedom {ϕy

n} in favor of
{ϕx

n} (or vice versa).
We assume that the FRLV can be parametrized as

q = (qx, f) by a parameter qx, which is suggested by
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the 1/λ expansion analysis [13]. This perturbative anal-
ysis suggests that a unique stable solution, which satisfies
the current conservation (force balance) condition, can be
constructed explicitly for a given qx that is left as a con-
trol parameter. The analytic computation is, however,
quite cumbersome and difficult to continue to higher or-
ders. To overcome the difficulty, we numerically search
the configuration with minimal energy,

Em(λ,q) = min
{ϕn}

H(λ,q, {ϕn}), (6)

for a given FRLV. We performed this analysis in the
range f ≤ qx ≤ 1/2.
For numerical energy minimization, we employ the

steepest-descent method for the degrees of freedom {ϕx
n}.

Actually, we numerically integrate the equations of mo-
tion; dϕx

n/dt = −∂H/∂ϕx
n for 1 ≤ n < nmax, with an

initial condition ϕx
n = 0 for all n. We determine that

the system relaxes to the minimum-energy state when
|dH/dt| becomes less than 10−6. As an example we show
in Fig. 1 the vortex configurations corresponding to the
candidate FRLVs for L = 34.
The final step is to determine qGS(λ): q which gives

the minimal energy for given anisotropy λ as

EGS(λ) = min
q

Em(λ,q) = Em (λ,qGS(λ)) . (7)

Although there is no rigorous proof that the states ob-
tained by this method are the true ground states, we find
that they coincide with the ones obtained by the simu-
lated annealing methods. We thus believe that they are
the true ground states.

III. RESULTS

A. successive structure transition

Figure 2(a) shows the minimal energy Em(λ,q) as a
function of qx for λ=1.0, 1.5, and 2.0. From this we
determine qGS and EGS for a given anisotropy λ. The
energy behaves quadratically in the vicinity of each mini-
mum as Em(λ,q)−EGS(λ) = L2c(λ)[q−qGS(λ)]

2, where
c(λ) is a constant of O(L0). Thus there is a continu-
ous band of metastable states with slightly different FR-
LVs around the GS. (We confirmed that the obtained
metastable states are stable even if we lift the constraint;
the Fourier components equal zero except for the har-
monics nq.)
Figure 2(b) shows the λ dependence of the x compo-

nent of the qGS(λ) = (qxGS, f) with α = x, y. It can be
seen that qxGS monotonically increases with λ and changes
in a stepwise manner at several points, where level cross-
ings occur between metastable states with neighboring
FRLVs. As L becomes larger, the number of steps in-
creases and qxGS tends to be a continuous function of λ.
It can be seen that the horizontal stripe state q = (1/2, f)
[13] is no longer the GS for λ ≤ 1.8. The vortex stripes
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FIG. 2. (Color online) (a) Minimal energy vs qx for various
values of λ. Constant values are added in the cases of λ = 1.0
and 1.5 (by 0.155 and 0.050, respectively) for a convenient
view. (b) Anisotropy dependence of the FRLV of the GS,
qGS.

in the GS become more tilted with respect to the weaker
coupling axis when approaching the isotropic point λ = 1
(see Fig. 1).

The GS of the isotropic system (λ = 1) is of particular
interest. For small sizes L ≤ 18, the GS is the previ-
ously found staircase state [17–19] with qxGS = qy

GS
= f .

However, this is not the case for L ≥ 34. A new min-
imum appears at qx ≈ 0.416 and there is a local min-
imum at qx ≈ 0.388, both of which are larger than
f = 0.381966 · · · . We obtain qxGS=14/34, 23/55, 37/89,
60/144, and 97/233, where the numerators constitute a
Fibonacci series (with F ′′

0 = 1 and F ′′
1 = 4) and the

denominators correspond to L. Therefore, qxGS seems to

equal 0.4164078 · · · [> (3−
√
5)/2] in the limit of L → ∞.

A notable feature is that the symmetry for the permuta-
tion of x and y axes spontaneously breaks in contrast to
the symmetric staircase state mentioned above.
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FIG. 3. (Color online) Hull function of (a) φx and (b) φy for
six different values of λ. Each graph has L(=144) points. The
arrows indicate the direction of decreasing λ.

B. breaking of analyticity in hull functions

Next we investigate more closely the properties of the
GSs parametrized by the FRLVs q, which are generally
incommensurate with respect to the underlying JJA. A
useful measure of such an incommensurate object is the
so called hull function [14, 16, 20] φ̃(z) = (φ̃x(z), φ̃y(z)),
with which the phase field is written as

φi = φ̃(q · ri). (8)

In Fig. 3 the hull functions φ̃x(z) and φ̃y(z) are plotted

with respect to 0 < z < 1. It is noteworthy that φ̃x is
distributed, covering all phase from −π to π, while φ̃y

is bounded around zero to have a gap around φ̃x = ±π.
When the hull function is smooth and gapless, there is a
sliding soft mode [13]; the infinitesimal increment of φx

is compensated for by the shift in the argument of the
hull function q · ri, which costs no energy barrier. Since
this leads to dissipative vortex flow driven by current
induction, the GSs have superconductivity only along the
stronger-coupling direction.
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FIG. 4. (Color online) Derivative of the hull function of φy.
(a) Anisotropy λ dependence for L = 144. (b) Size L depen-
dence at the symmetric point λ = 1.

A remarkable feature is that the hull function in both
the x and y directions becomes distorted by decreasing
the anisotropy λ. While the hull functions are smooth
with larger anisotropies [13], steplike structures appear
when approaching the symmetric point λ = 1. The
hull function at λ = 1 appears to be nonanalytic: It
is discontinuous at several points. Figures 4(a) and
4(b) show the discrete derivative of the hull functions

dφ̃α(z)/dz ≡ [φ̃α(z + 2π/L)− φ̃α(z)]/(2π/L). It can be
seen that sharp peaks emerge when approaching λ = 1.
This is reminiscent of the critical behavior of the Aubry
transition in the Frenkel-Kontorova model [14, 16, 20].
Figure 4(b) shows the size dependence of the derivative
at λ = 1. As the size L increases, not only do the peaks
become sharper, but also the number of peaks increases
reflecting higher harmonics. We speculate that the hull
function becomes discontinuous everywhere in the ther-
modynamic limit.
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C. Scaling behavior and diverging characteristic

length

Let us examine further the singular behavior around
the symmetric point λ = 1. Figure 5(a) shows the ampli-
tude of the nth harmonic nq [note that q is set equal to
qGS(λ = 1) independently of λ]. At λ = 1, |ϕy

n| seems
to decay as a power function of n with exponent close to
−1 although there are many dips and peaks. In contrast,
higher harmonics exponentially decrease above a certain
characteristic scale n∗(λ) for λ > 1. This cutoff indicates
the smoothing of the hull functions. We found a scaling
behavior

|ϕx,y
n (λ)|

|ϕx,y
n (1)| = F x,y

±

(

n

n∗(λ)

)

with n∗(λ) ∝ |λ− 1|−ν (9)

not only for λ > 1, but also for λ < 1, as shown in
Fig. 5(b). The exponent ν is roughly estimated as ν ≃
2.4. We confirmed that the same scaling works well for
the FK model with ν = 0.9874 [21, 22]. This scaling
means that a diverging number of higher harmonics come
into play when approaching the symmetric point λ = 1.
We note that this observed singularity is present not only
for qGS(1), but also for other q’s around qGS(1), i.e., for
the continuous band of metastable states.
Initially, it would appear as if the characteristic length

in Eq. (9) were 1/n∗|q| and it went to zero, which is con-
trary to ordinary critical behavior. However, we specu-
late, inversely, that there is a diverging length scale for
the following reasons. On lattice systems, the compo-
nent of the wave vector, nq, should be treated in the first
Brillouin zone (−1/2, 1/2) as qFBZ

n ≡ nq − ⌊nq + 1/2⌋,
where ⌊· · · ⌋ is the floor function. For irrational q, {qFBZ

n }
behaves like a series of random numbers made by the lin-
ear congruential generator in a long span of n. Thus the
maximum of 1/qFBZ

n for n ≤ n∗ is roughly proportional to
n∗. If qx and qy are independent irrational numbers, the
maximum of the vector length is proportional to

√
n∗.

In addition, the number of harmonics in the finite-size
system is bounded by L when q is approximated by an
irreducible fraction p/L (note that qFBZ

n+L = qFBZ
n ). This

also indicates that n is a measure of the length.
The breakdown of the analyticity of the hull function

means that the sliding soft mode disappears; jamming
occurs even in the direction where the hull function is
gapless. Indeed, of the transport properties of the present
system it has been found that the current-voltage charac-
teristics exhibit a scaling feature around the symmetric
point λ = 1 [12]. Thus Eq. (9) is regarded as a static
signature of the jamming transition.

IV. CONCLUSION

To summarize, we studied GSs and low lying
metastable states of the IFJJA with anisotropic Joseph-
son couplings. We found the GS changes continuously
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FIG. 5. (Color online) Spectrum of the harmonics of the hull
functions (a) before and (b) after scaling. We set ν = 2.4. In
the scaling, we do not use the data for n > L/4, which show
a strong finite-size effect.

with the variation of the anisotropy λ of the Joseph-
son coupling between the horizontal vortex stripes in the
strong anisotropy limit and nearly (but not exactly) di-
agonal vortex stripes at the isotropic point λ = 1.
It is interesting to note again that the present system

admits a continuous band of metastable states around
the GS, which is presumably the source of the glassiness
in the present system. The analyticity breaking of the
hull function approaching the isotropic point λ → 1 im-
plies jamming of the sliding vortices. In addition, the
scaling behavior of the harmonic spectrum suggests the
existence of diverging static length scale. It would be
very interesting to study the properties of the present
system at finite temperatures from static and dynamic
view-points.
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