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Abstract

The applications of rheology to the main processes encountered during breadmaking (mixing, sheeting, fermentation and baking) are

reviewed. The most commonly used rheological test methods and their relationships to product functionality are reviewed.

It is shown that the most commonly used method for rheological testing of doughs, shear oscillation dynamic rheology, is generally used

under deformation conditions inappropriate for breadmaking and shows little relationship with end-use performance. The frequency range

used in conventional shear oscillation tests is limited to the plateau region, which is insensitive to changes in the HMW glutenin polymers

thought to be responsible for variations in baking quality. The appropriate deformation conditions can be accessed either by long-time creep

or relaxation measurements, or by large deformation extensional measurements at low strain rates and elevated temperatures.

Molecular size and structure of the gluten polymers that make up the major structural components of wheat are related to their rheological

properties via modern polymer rheology concepts. Interactions between polymer chain entanglements and branching are seen to be the key

mechanisms determining the rheology of HMW polymers. Recent work confirms the observation that dynamic shear plateau modulus is

essentially independent of variations in MW of glutens amongst wheat varieties of varying baking performance and also that it is not the size

of the soluble glutenin polymers, but the secondary structural and rheological properties of the insoluble polymer fraction that are mainly

responsible for variations in baking performance. Extensional strain hardening has been shown to be a sensitive indicator of entanglements

and long-chain branching in HMW polymers, and is well related to baking performance of bread doughs. The Considere failure criterion for

instability in extension of polymers defines a region below which bubble walls become unstable, and predicts that when strain hardening falls

below a value of around 1, bubble walls are no longer stable and coalesce rapidly, resulting in loss of gas retention and lower volume and

texture. Strain hardening in doughs has been shown to reach this value at increasingly higher temperatures for better breadmaking varieties

and is directly related to bubble stability and baking performance.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction—what is rheology?

Rheology is the study of the flow and deformation of

materials. Generally, to measure rheological behaviour, a

controlled, well-defined deformation or strain is applied to a

material over a given time and the resulting force response

is measured (or vice versa) to give an indication of material

parameters such as stiffness, modulus, viscosity, hardness,

strength or toughness of the material. The general aims of

rheological measurements are:

† to obtain a quantitative description of the materials’

mechanical properties

† to obtain information related to the molecular structure

and composition of the material

† to characterise and simulate the material’s performance

during processing and for quality control

Rheological principles and theory can be used as an aid

in process control and design, and as a tool in the simulation

and prediction of the material’s response to the complex

flows and deformation conditions often found in practical

processing situations which can be inaccessible to normal

rheological measurement.
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For example, it is difficult to access dough during mixing,

sheeting, proving and baking without interrupting the

process or disturbing the structure of the material. We

therefore have to predict the range of conditions the dough

experiences during a given process and then extrapolate

from rheological measurements made under simple, well-

defined laboratory conditions, e.g. via mathematical model-

ling using analytical or computational methods (Scott and

Richardson, 1997). For example, mixing and sheeting of

doughs has been simulated (Love et al., 2002; Binding et al.,

2003; Morgenstern et al., 2002) and bubble growth during

proof of bread doughs (Shah et al., 1999) and expanded

cereal extrudes has been modelled through the simulation

and growth of bubbles (Fan et al., 1994).

Rheology can be related to product functionality: many

rheological tests have been used to attempt to predict final

product quality such as mixing behaviour, sheeting and

baking performance. This is based on the structural

engineering analysis of materials, where small-scale

laboratory measurements of mechanical properties have

successfully been extrapolated to the behaviour of large

engineered structures such as bridges, buildings, pressure

vessels etc. resulting in the idea that controlled tests on well-

defined small samples of food in the laboratory can be

related to the larger, more complex multi-component

situations found in practical processing conditions.

2. Rheological testing

Rheological tests attempt to measure the forces required

to produce given controlled deformations, such as squashing

(compression), bending or pulling apart (tension), and to

present them in such a way as to be independent of sample

size, geometry, and mode of testing. They measure a well-

defined property, such as stress, strain, stiffness or viscosity.

A small test piece of the material is usually deformed in a

controlled way, normally on a motor driven machine, and

the force is measured as well as the distance moved or

displacement of the object. The force is then usually plotted

against the displacement to give a force-displacement curve.

Normally for stiff materials we would divide the force and

displacement by the original sample dimensions to obtain

stress (force/original cross section area) and Cauchy, or

Engineering strain (displacement /original dimension, e.g.

dL=Lo; where dL ¼ extension, Lo ¼ original length),

because the changes in sample dimensions are small and

uniform with displacement; this allows us to remove the

sample size as a variable. Many food materials are not stiff

and undergo large deformations in practice, where the

geometry often changes in a non-uniform and unpredictable

manner giving large and non-uniform stresses and strains

along the sample. For example, dough thins out non-

uniformly when stretched, in common with many polymers,

giving rise to large stresses and strains not correctly

calculated by the conventional method of dividing by

original sample dimensions. In this case, it is necessary to

normalise by actual change in dimensions during defor-

mation to obtain true stress (force/instantaneous area) or

Hencky strain (displacement/instantaneous length ðLÞ; e.g.

dL=L ¼ lnðL=LoÞÞ; in which case sample dimensions should

be measured locally and independently by using contact

extensometers or non-contact techniques such as laser,

video or photographic techniques. For materials which flow

under normal measurement time scales, stress is normally

divided by strain rate (strain/time of strain application) to

give viscosity.

Rheological properties should be independent of size,

shape and how they are measured; in other words, they are

universal, rather like the speed of light or density of water,

which do not depend on how much light or water is being

measured or how it is being measured. It would be

comforting to know that the stiffness of bread or viscosity

of dough measured in one laboratory will be the same

measured in any laboratory in the world, even if they are

measured using different tests, sample sizes or shapes. An

objective of rheology is to determine properties reproduci-

bly in a manner that allows comparison between different

samples, test sizes and shapes, and test methods.

3. Rheological test methods

There are many test methods used to measure rheological

properties. It is not possible to describe all the available

testing geometries here, and the reader is referred to general

reviews of rheology (Whorlow, 1992; Ferry, 1980; Barnes

et al., 1989), rheological testing of foods (Sherman, 1970;

Carter, 1990; Rao and Steffe, 1992; Dobraszczyk and

Vincent, 1999; van Vliet, 1999) and cereal products

(Bloksma and Bushuk, 1988; Faridi and Faubion, 1990;

Muller, 1975; Faridi and Faubion, 1986). It is common to

categorise rheological techniques according to the type of

strain imposed: e.g. compression, extension, shear, torsion

etc. and also the relative magnitude of the imposed

deformation, e.g. small or large deformation. The main

techniques used for measuring cereal properties have

traditionally been divided into descriptive empirical tech-

niques and fundamental measurements (Bloksma and

Bushuk, 1988).

4. Descriptive rheological measurements

Within the cereals industry there has been a long history

of using descriptive empirical measurements of rheological

properties, with an impressive array of ingenious devices

such as the Penetrometer, Texturometer, Consistometer,

Amylograph, Farinograph, Mixograph, Extensigraph,

Alveograph, various flow viscometers and fermentation

recording devices, reviewed by Muller (1975) and Shuey

(1975), (Table 1). Empirical tests are easy to perform and
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are often used in practical factory situations, providing data

which is useful in evaluating performance during processing

and for quality control. The instruments are often robust and

capable of withstanding demanding factory environments,

and do not require highly skilled or technically trained

personnel. They have provided a great deal of information

on the quality and performance of cereal products such as

consistency, hardness, texture, viscosity etc. However, these

instruments do not fulfil the requirements of a fundamental

rheological test, since:

† the sample geometry is variable and not well defined

† the stress and strain states are uncontrolled, complex and

non-uniform

† it is therefore impossible to define any rheological

parameters such as stress, strain, strain rate, modulus or

viscosity.

Therefore, these tests are purely descriptive and

dependent on the type of instrument, size and geometry

of the test sample and the specific conditions under

which the test was performed. For example, empirical

tests have been used to characterise the behaviour of

bread doughs during processing. Many of these are used

as ‘single point’ tests, where a single parameter is often

arbitrarily selected from a whole range of data acquired

during the test as, for example, in selecting the peak

torque from a mixing trace and then using this to

correlate with performance, which neglects a large part

of the recorded data (Dobraszczyk and Schofield, 2002;

Wikström and Bohlin, 1996), and is appropriate only to

the set of conditions under which that test was performed

and is generally not applicable to any other deformation

conditions. Since dough experiences a wide range of

conditions of stress states and strain rates during

processing and baking, and the rheological properties of

dough are dependent both on time and strain, there is

often a discrepancy between such single point type tests

and actual performance in the plant, where conditions of

strain and strain rate may be poorly defined and very

different to those in the laboratory test. Whilst this may

give the illusion of a ‘scientific’ test by being performed

on a machine (frequently with a computer attached), and

may give satisfactory correlations with a textural or

processing parameter, it is impossible to compare results

between different testing machines, e.g. between Farino-

graph, Mixograph or Extensigraph, or to extrapolate the

results to other deformation conditions, such as during

baking.

Most food materials are viscoelastic and therefore their

properties depend on how quickly the test is performed (the

strain rate or frequency). This is important in many aspects

of dough processing: if the dough is deformed quickly, such

as in mixing or sheeting, then the rheological properties of

the dough will be very different if measured at the typically

slower rates of deformation found in conventional testing

machines. Alternatively, during processing dough will

experience strains very different in magnitude and nature

than those generally available in a rheological test. Many

food processes operate under large deformation extensional

flow, whilst most rheological tests on foods are performed in

small deformation shear oscillation. Measurements under

large deformations often show very different rheological

response to those in small deformation, especially if the

material contains high molecular weight (HMW) polymers.

Tests under only one particular set of conditions of rate,

temperature and strain will almost certainly not be

applicable to another set of deformation conditions. What

is necessary is to define the set of deformation conditions

which the food sees in practice and perform tests under

similar conditions.

5. Fundamental rheological tests

Problems encountered with such fundamental tests are:

complex instrumentation which is expensive, time consum-

ing, difficult to maintain in an industrial environment and

Table 1

Rheological methods used for cereal products

Method Products Property measured

Empirical methods

Mixers: farinograph,

mixograph, reomixer

Dough Mixing time/torque

apparent viscosity

Extensigraph Dough Extensibility

Taxt2/Kieffer Rig Dough, gluten Extensibility

Alveograph Dough, gluten Biaxial extensibility

Amylograph, RVA Pastes,

suspensions

Apparent viscosity,

gelatinisation temp

Consistometer Sauces, fillings Apparent viscosity

Flow cup Fluids, sauces,

batters

Apparent viscosity

Falling ball Fluids Apparent viscosity

Flow viscometers Fluids, pastes Apparent viscosity

Fermentometers Dough Height, Volume

Penetrometers Semi-solid foods,

gels

Firmness, hardness

Texturometer, TPA Solid foods Texture, firmness

Fundamental methods

Dynamic oscillation,

concentric cylinders,

parallel plates

Fluids, pastes,

batters, doughs

Dynamic shear moduli,

dynamic viscosity

Tube viscometers:

capillary, pressure,

extrusion, pipe flow

Fluids, sauces,

pastes, dough

Viscosity, viscosity,

in-line viscosity

Transient flow:

concentric cylinders,

parallel plates

Semi-solid

(visco-elastic)

materials

Creep, relaxation,

moduli and time

Extension: uniaxial,

biaxial, dough inflation

system, lubricated

compression

Solid foods,

doughs

Extensional viscosity,

strain hardening
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require high levels of technical skill, often inappropriate

deformation conditions, difficulty in interpretation of

results, and slip and edge effects during testing.

The most common types of fundamental rheological tests

used in cereal testing are: (i) small deformation dynamic

shear oscillation; (ii) small and large deformation shear

creep and stress relaxation; (iii) large deformation exten-

sional measurements; and (iv) flow viscometry (Table 1).

6. Dynamic oscillation measurements

Adapted from techniques developed for measuring

viscoelastic properties of polymer melts and concentrated

solutions (Ferry, 1980; Barnes et al., 1989), this is one of the

most popular and widely used fundamental rheological

techniques for measuring cereal doughs and batters. These

tests measure rheological properties (such as elastic and

viscous moduli) by the application of sinusoidally oscillat-

ing stress or strain with time and measuring the resulting

response. They have the advantage of a well developed

theoretical background, readily available instrumentation,

and simultaneous measurement of elastic and viscous

moduli, while the non-destructive nature of the test enables

multiple measurements to be performed as temperature,

strain or frequency are varied.

Disadvantages of the dynamic oscillation method are that

the deformation conditions are often inappropriate to

practical processing situations, because they are carried

out at rates and conditions very different from those

experienced by the dough during processing or baking

expansion. For example, rates of expansion during proof

and oven rise in bread doughs have been calculated between

5 £ 1023 and 5 £ 1024 s21, compared with measuring rates

in rheological tests several orders of magnitude greater

(Bloksma, 1990).

Conventional oscillatory shear rheological tests usually

operate in the linear region at small strains in the order of up

to 1%, whilst strain in gas cell expansion during proof is

known to be in the region of several hundred percent

(Amemiya and Menjivar, 1992). Furthermore, most

dynamic rheological tests are carried out in shear, whilst

most large-strain deformations in dough (i.e. extrusion,

sheeting, proof and baking) are extensional in nature. It is

not widely recognised within the cereals science community

that measurements in large deformation shear show a

completely different response to extensional measurements.

Polymer melt fluid dynamics show that very different

rheology occurs under shear deformation than under

extension due to the different physical effects large

deformations can have on networks of HMW polymers

(Ferry, 1980; Padmanabhan, 1995). From extensional

studies on long-chain high molecular weight polymer

melts it is known that entirely different rheological proper-

ties are obtained in shear than in tension, especially if the

polymer chains are branched. For example, the elongational

viscosity of low-density (branched-chain) polyethylene

melts increases with both strain and strain rate (strain

hardening), whilst the shear viscosity decreases with strain

and strain rate (shear-thinning), giving widely different

values in final viscosities between elongation and shear

(Fig. 1a). For dough, shear and elongational viscosities at

low strains are similar, with extensional viscosity slightly

higher than shear viscosity but at higher strains they diverge

and the elongational viscosity rises steeply to give a value 2

orders of magnitude higher at failure (Fig. 1b).

This increased strain hardening is attributed to entanglement

of long-chain molecules during extensional flow, whereas in

simple shear they remain coiled and can slip past each other,

giving rise to observed shear thinning at higher strains

(Cogswell, 1981).

Therefore, many of the rheological tests for doughs

reported in the literature are inappropriate in predicting end-

use quality because they do not measure the system under

the appropriate deformation conditions and they are not

sensitive to the molecular structures responsible for baking

quality. Small deformation dynamic shear rheological tests

are frequently performed and applied almost indiscrimi-

Fig. 1. (a) Shear and extensional viscosity of LDPE (low density

polyethylene) at 125 8C at constant strain rate (0.05 s21). From MacLeish

and Larson (1998). (b) Large deformation shear and biaxial extensional

viscosities vs. Cauchy strain for dough at constant strain rate (0.1 s21).

YJCRS 550—29/7/2003—20:17—SPRIYA—76915— MODEL 5

B.J. Dobraszczyk, M.P. Morgenstern / Journal of Cereal Science xx (0000) xxx–xxx4

ARTICLE IN PRESS

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448



UNCORRECTED P
ROOF

nately in predicting end-use quality regardless of whether

they are valid or not.

7. Creep and relaxation measurements

In stress relaxation measurements, deformation is held

constant and the force response is measured, whilst in creep

the stress is held constant and the deformation is measured.

Schofield and Scott Blair (1937) first measured the creep

response of dough and obtained values for elastic moduli

and viscosity which are still relevant. Bloksma and Bushuk

(1988) surveyed the experimental results from the literature

for stress relaxation measurements for a number of doughs.

None of the curves showed the exponential decay typical of

a single relaxation time, which would indicate a single

molecular mechanism responsible for relaxation, but

correspond to a decay typical of a broad spectrum of

relaxation times. This shows a broad distribution of

molecular mechanisms is responsible for the relaxation

process within dough, which can be related to the wide

molecular weight distribution of gluten.

Many authors have shown that a slower relaxation time is

associated with good baking quality (Bloksma, 1990;

Launay, 1990; Wang and Sun, 2002), with relaxation time

relatively independent of water, mixing time or temperature.

Stress relaxation measurements on dough and gluten in

shear showed that the relaxation behaviour of dough could

be described by two relaxation processes (Bohlin and

Carlson, 1980): a rapid relaxation over 0.1–10 s and a

slower process occurring over 10–10,000 s. The rapid

relaxation process has been associated with small polymer

molecules which relax rapidly, and the longer relaxation

time has been linked to the HMW polymers found within

gluten. Measurements of large-deformation creep and shear

stress relaxation properties were found to be useful in

discriminating between different wheat varieties of varying

quality, and were found to be closely associated with baking

volume (Safari-Ardi and Phan-Thien, 1998; Wikström and

Eliasson, 1998) and strength of durum wheat varieties

(Edwards et al., 1999, 2001). At small strain amplitudes

(0.1%), doughs with different baking quality showed no

differences in relaxation behaviour, but at a range of large

strains (up to 29%) their creep and relaxation behaviour was

closely correlated with the baking behaviour of dough

(Safari-Ardi and Phan-Thien, 1998).

Doughs exhibited a characteristic bimodal distribution of

relaxation times, with the second peak clearly discriminat-

ing between cultivars with varying strength and quality,

which reflects the differences in the MW distribution of

glutenin polymers (Rao et al., 2001; Li et al., 2003). The

second relaxation peak is related to the entanglement

properties of high molecular weight insoluble glutenin

polymers, and has been shown to be directly related to the

insoluble fraction of the high MW glutenins (Li et al., 2003).

Relaxation properties of doughs relate well to MWD and

particularly to entanglements of HMW glutenin polymers

and may be used as a rapid method of discriminating

variations in MWD between varieties which vary in baking

quality.

8. Extensional techniques

There are many types of extensional flow measurements,

including: simple uniaxial tension, fibre wind-up or spinning,

converging flow, capillary extrusion, opposed jets, lubricated

compression and bubble inflation (Whorlow, 1992;

Macosko, 1994). There are several methods which have

been used to measure the rheological properties of dough in

extension: simple uniaxial extension, where dough is

stretched in one direction; and biaxial extension, where the

dough is stretched in two opposing directions, which can be

achieved either by compression between lubricated surfaces

or by bubble inflation (Dobraszczyk and Vincent, 1999;

Huang and Kokini, 1993; Bagley and Christianson, 1986).

Many food materials undergo large deformations in

practice during processing and eating, and many of these

have a large extensional component. For example, exten-

sional flows are important in mixing and sheeting of pastry

and dough, converging and diverging flow such as in

extrusion and pumping, spreading of soft solids such as

butter, cheeses and pastes, and expansion of bubbles in

foams such as bread dough, cakes and heat extruded snacks.

Unfortunately, most tests in flow are carried out in shear

under small deformations, mainly because most conven-

tional viscometers operate in shear, because the equipment

is readily available and the technique well established.

However, measurements carried out in shear and using

small deformations do not provide information about

material behaviour under large extension. Therefore there

is an obvious need to perform measurements under

conditions relevant to those experienced by the material in

actual practice.

9. Uniaxial extension

One of the oldest and most widely used test methods to

measure materials properties is the uniaxial tensile test. A

strip of material is clamped at both ends and pulled apart at a

fixed rate in a suitable testing machine, and the force

measured at the same time as the displacement of the object.

The force is generally plotted against the displacement

(extension) to give a force–extension curve. Tensile tests

may produce an approximately uniform extension of a

sample provided necking does not occur. Normally the force

and extension are divided by the original sample dimensions

to obtain stress and strain, and allows removal of the sample

geometry as a variable, but for doughs undergoing

large extensional deformation the actual change in dimen-

sions must be measured or calculated. The slope of
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the stress–strain curve then gives the elastic modulus or

stiffness. Many test methods attempt to measure the uniaxial

extensional properties of doughs, such as the Simon

Research Extensometer, Brabender Extensigraph, Stable

Micro Systems Kieffer dough and gluten extensibility rig,

but none of these gives rheological data in fundamental

units of stress and strain, because the sample geometry is not

defined or measured, dimensions change extensively and

non-uniformly during testing, and it is therefore impossible

to define any rheological parameters such as stress, strain,

strain rate, modulus or viscosity.

Studies on the fundamental uniaxial extensional rheolo-

gical properties of doughs have been carried out by many

workers (Schofield and Scott Blair, 1932; Tschoegl et al.,

1970; Tschoegl et al., 1970; Rasper, 1975; Uthayakumaran

et al., 2000). Some of the earliest attempts to characterise

the fundamental rheological properties of dough were in a

series of uniaxial extensional measurements by Schofield

and Scott Blair (1932) who stretched a cylinder of dough

floated on a mercury bath and measured the elongation and

force. Plastic and elastic components of deformation were

resolved and viscosity and elastic modulus were calculated.

They showed that the rheological behaviour of dough is

non-linear with strain and strain rate, i.e. elastic modulus

and viscosity vary with both rate and strain. Tschoegl et al.,

1970a,b) measured the large extension properties of doughs

by extending a ring of dough suspended in a liquid of

density equivalent to that of the dough between two hooks at

constant deformation rates until rupture. The stress-strain

curves showed considerable strain hardening, and strain and

stress at rupture was considerably less for poor quality flours

than good quality flours.

10. Biaxial extension

In biaxial extension a sample is stretched at equal rates in

two perpendicular directions in one plane, as in an

expanding spherical balloon. The most widely used methods

for measuring biaxial extension properties of food materials

are inflation techniques and compression between flat plates

using lubricated surfaces, which produce purely extensional

flow provided no friction occurs (Dobraszczyk and Vincent,

1999; Chatraei et al., 1981).

Inflation was first used as an empirical technique to

measure wheat gluten and bread dough extensibility in

1920s (Hankoczy, 1920; Chopin, 1921). This method was

later developed to assess rheological parameters (Launay

et al., 1977) and further developed to measure the fracture

and biaxial extensional rheological properties of wheat

doughs and glutens, and to assess the quality of wheat flour

doughs and glutens (Dobraszczyk and Roberts, 1994;

Dobraszczyk, 1997). The major advantage of this test is

that the deformation closely resembles practical conditions

experienced by the cell walls around the expanding gas cells

within the dough during proof and oven rise, i.e. large

deformation biaxial extension. Extensional rheological

properties can be measured at large strains up to failure

and low strain rates, and the gripping problems normally

associated with uniaxial tests can be minimised. Extensional

rheological properties of wheat doughs have been measured

using lubricated compression and bubble inflation (Huang

and Kokini, 1993; Bagley and Christianson, 1986; Uthaya-

kumaran et al., 2000; Chatraei et al., 1981; Hankoczy, 1920;

Chopin, 1921; Launay et al., 1977; Dobraszczyk and

Roberts, 1994; Dobraszczyk, 1997; van Vliet et al., 1992;

Wikström and Bohlin, 1999a,b). Differences in extensional

strain hardening between varieties of different baking

quality were found to relate to baking quality, with good

breadmaking varieties showing greater strain hardening and

extensional viscosity (Dobraszczyk and Roberts, 1994;

Dobraszczyk, 1997; van Vliet et al., 1992; Wikström and

Bohlin, 1999a,b).

11. Applications of rheology to cereal products

11.1. Mixing

Mixing is a critical operation in food processing where,

apart from the obvious function of mixing ingredients, the

structure of the food is often formed. For example, in

the production of batters, pastes and doughs, the nature of

the mixing action develops the viscoelastic properties of

gluten and also incorporates air, which has a major effect on

their rheology and texture. There is an intimate relationship

between mixing, aeration and rheology: the design and

operation of the mixer will develop texture, aeration and

rheology to different extents (Campbell and Shah, 1999),

and conversely the rheology of the food will affect the time

and energy input required to achieve optimal development.

This is seen in the great variety of mixers used in the food

industry and the fact that certain mixers are required to

produce a desired texture or rheology in a food (Campbell,

1995).

Studies on the rheology of mixing have focused on a

number of areas: (i) the effects of mixer design and

operation on the development of rheology and texture; (ii)

empirical measurement of rheology during mixing from

mixer torque or power consumption; (iii) effect of rheology

on mixing patterns and performance; and (iv) simulation

and prediction of mixing flow deformation patterns as

functions of mixer geometry and rheology.

Most of the studies on doughs have been on the

relationships between mixing, rheology and baking per-

formance, because of the rheological changes that occur in

the gluten viscoelastic network during mixing and their

importance for product quality. Despite the obvious

importance of mixing in the development of rheology and

texture in doughs, there is very little information in the

literature on these changes during the different stages in the

mixing process. Most work has either concentrated on
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empirical measurement of mixer motor torque, voltage or

power consumption during mixing as a qualitative indi-

cation of changing rheology, or measurement of rheological

changes at some time after mixing. Problems associated

with these approaches are: failure to take into account motor

and drive losses, frictional and surface effects between the

dough and the mixer, varying signal damping and data

acquisition rates, effects of aeration on rheology, and

rheological relaxation effects. Since dough is a viscoelastic

material which shows rapid relaxation after deformation,

which varies between different flours, such measurements

are not ideal and run the risk of giving misleading

information. Nevertheless, much useful information has

been obtained about the effect of mixing on gluten structure

(Weegels et al., 1996; Skerrit et al., 1999), rheology and

baking performance. Extensive work on dough mixing has

shown that mixing speed and energy (work input) must be

above a certain value to develop the gluten network and to

produce satisfactory breadmaking (Kilborn and Tipples,

1972), and an optimum in work input or mixing time has

been related to optimum breadmaking performance

(Skeggs, 1985), which varies depending on mixer type,

flour composition and ingredients (Mani et al., 1992). For

example, mixing doughs by elongational flow in sheeting to

achieve optimum development required only 10–15% of

the energy normally used in conventional high speed shear

mixers (Kilborn and Tipples, 1974), suggesting that much

higher rates of work input can be achieved due to the

enhanced strain hardening of doughs under extension.

Numerous studies have shown that rheological measure-

ments after mixing parallel changes in mixer torque and

power consumption (Mani et al., 1992; Zheng et al., 2000;

Anderssen et al., 1998), especially if rheological measure-

ments are made under large, non-linear deformation

conditions closer to those experienced in the mixer (Mani

et al., 1992; Hwang and Gunasekaran, 2001). Recent studies

have suggested that qualitative elongational rheological

information during mixing can be derived directly from the

torque/power consumption of a dough mixer (Gras et al.,

2000).

Another approach is the experimental measurement,

simulation and modelling of deformation patterns within a

mixer using high speed imaging techniques and 3D

numerical computational fluid dynamics (CFD). Here the

objective is to predict the effect of changing mixer geometry

and rheological properties on deformation during mixing to

produce mixers better designed to achieve optimum dough

processing. Close correspondence between actual and

predicted flow patterns indicates the validity of such

models, and can be used to obtain indirect information on

rheological behaviour during mixing. Model 3D simulation

and experimental studies have been carried out for complex

rotating flows associated with dough mixing (Binding et al.,

2003). Laser Doppler Anemometry was used to obtain the

actual flow profiles and velocities during mixing and

compared with the numerical modeling simulation to

validate the predicted flow. The problem with such

approaches is that many models contain highly simplistic

rheological relationships (such as a Newtonian power law

shear flow for dough (Levine and Drew, 1990)) which do

not take into account the viscoelastic shear and extensional

properties of doughs at large deformations, and render such

models inaccurate.

11.2. Sheeting

Sheeting of dough with rolls is a common operation in

the manufacturing of products from cereals. There is a range

of different products and raw materials that are sheeted. The

purpose of sheeting is different for each product. Bread

dough is sheeted in a moulder to shape a dough and to

control the bubble size distribution. Repeated sheeting can

be used to develop the gluten network in bread dough.

Biscuit dough is sheeted both to form the dough and to

develop the gluten. Corn masa is sheeted to produce a

coherent dough sheet and pastry dough is sheeted and folded

to produce a layered structure. There are several different

sheeter arrangements, ranging from a single rolling pin to

multi-rollers. Generally, the shape of the dough changes

during sheeting and the rheological properties of the dough

determine the stresses and strains during sheeting. Care

must be taken to use rheological properties relevant to the

particular application, taking the magnitude of the strain and

the rate of strain into account.

Few studies have been done to find the relationship

between fundamental rheological properties and sheeting.

Most studies are empirical in nature and relate flour

properties to end product quality. Bread dough has been

studied most extensively. When bread dough is sheeted

repeatedly the gluten forms a network, which increases the

elasticity in the dough. This gluten network is an essential

structure for bread making. Its development is usually

measured by the amount of energy that is used to form the

dough. Kilborn and Tipples (1974) measured the energy

requirement and found that sheeting uses 10–15% of the

energy required for dough mixing. It is obvious that the

energy requirement is not an inherent flour or dough

property as it depends on the mixer or sheeter it has been

produced on. To measure rheological properties during

sheeting the force or torque on the rolls can be measured.

The force and torque depend on the flour strength: a stronger

flour produces higher forces. But the roll diameter and roll

gap also affect the force and torque (Kilborn and Preston,

1982; Raghavan et al., 1996). Rheological properties can be

measured immediately after sheeting. Extensigraph resist-

ance and extensional viscosity increase with repeated

sheeting and then decrease again (Moss, 1980; Morgenstern

et al., 1999). The maximum viscosity coincides with highest

bread volume, showing that the repeated sheeting affects the

dough in a similar way to mixing.

Puff pastry is made by enveloping a sheet of butter or fat

in dough, sheeting it, folding it to increase the numbers of
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layers and sheeting it again to reduce the thickness. This

process is repeated a number of times to obtain a layered

structure with thin fat/dough layers. The rheological

properties of the pastry dough are quite different from a

bread dough. The dough is less elastic and ruptures at

smaller deformations. Dough with high extensibility and

resistance (measured by Extensigraph) produces best lift

(rise) during baking (Hay, 1993). When pastry dough is

sheeted the stresses relax over a period of up to 1 h. This

stress relaxation is related to shrinkage of baked puff pastry

and therefore a resting time is usually observed between

sheeting and baking (Newberry et al., 1996).

There is no standardised test for measuring rheological

properties of a dough sheet. Many studies use the

Extensigraph. However, the Extensigraph was developed

for bread dough and the standard test uses rested (relaxed)

dough with a water level related to bread dough. Clearly,

applications with different water levels will have very

different rheological properties than measured with the

Extensigraph test. An adapted extensional test was proposed

by Morgenstern et al. (1996) to measure extensional

viscosity on a dough sheet. Measurements on bread dough

demonstrated power law behaviour and strain hardening for

large deformations.

For a fundamental understanding of the sheeting

operation Levine (1985) used a mathematical model,

borrowed from polymer calendaring, to predict sheet

thickness, roll separation force and energy consumption of

sheeting. Dough rheology was described with a power law

relationship between stress and strain rate. This model has

been extended to include finite width sheets, to include air

bubbles, to describe flaking, and to include the effect of

ingredient levels (Levine and Levine, 1997; Raghavan et al.,

1995; Levine, 1998; Levine et al., 2002; Morgenstern et al.,

2002). The power law, however, does not incorporate

viscoelasticity, and predictions of sheeting behaviour have

been only satisfactory in a qualitative sense. A recent study

has incorporated elasticity in the models (Morgenstern et al.,

2002; Love, 2002).

11.3. Fermentation and baking

Fermentation is an important step in the breadmaking

process, where the expansion of air bubbles previously

incorporated during mixing provides the characteristic

aerated structure of bread, which is central to its appeal

(Dobraszczyk et al., 2000). Although fermentation is clearly

important in breadmaking, most rheological tests are

performed on doughs without yeast and at room tempera-

ture. Few studies have been made on the changing

rheological properties during fermentation and baking.

Direct rheological measurements have been made on

yeasted bread doughs (Kilborn and Preston, 1981), cake

batters (Massey, 2002; Sahi, 1999), sour doughs (Wehrle

and Arendt, 1998), and cracker sponge and dough (Oliver

and Brock, 1997). Such measurements suffer from

the problem of the evolving gas volume and metabolites

from fermentation confounding the rheological data. The

decrease in density as a result of increasing gas volume

would be expected to have the effect of decreasing modulus

and viscosity, but the compressibility of air may counteract

this effect, especially at higher gas volumes and low

densities where the moduli of the solid and gas phases

converge, such as in cake batters, where shear modulus is

directly related to the air content (Massey, 2002). Fermenta-

tion metabolites such as lactic and acetic acid, may also

exert rheological effects through changes in pH (Wehrle

et al., 1997).

Other approaches have been to measure the increase in

height or volume of the fermenting product using devices

such as the rheofermentometer or risograph, but these

provide no direct information about the rheology of the

material, since they do not measure force or deformation per

change in unit dimensions. Changes in aeration have been

predicted from modelling the increase in dough height

(Shah et al., 1999), or by directly measuring internal gas

pressure during fermentation (Matsumoto et al., 1975).

Another approach has been to prevent fermentation by

inactivating the yeast by freezing and thawing (Newberry

et al., 2002), or by mixing under oxygen to rapidly saturate

the yeast activity (Chamberlain and Collins, 1979).

Rheological studies on doughs related to baking have

normally been performed in small deformation shear

oscillation at room temperature. Such dynamic rheological

measurements on doughs have been investigated in many

studies (Hibberd and Wallace, 1966; Hibberd and Parker,

1975a,b; Abdelrahman and Spies, 1986; Smith et al., 1970;

Dreese et al., 1988). Viscous ðG00Þ and elastic ðG0Þ moduli for

dough are measured over a range of frequencies. Elastic

properties predominate over viscous properties, and the

moduli are slightly frequency dependent, which is typical of

a cross-linked polymer network (Rao and Steffe, 1992).

No convincing relationship has been established between

dynamic rheological properties and baking performance

(Khatkar et al., 1995; Kokelaar et al., 1996; Hayman et al.,

1998; Autio et al., 2001). Abdelrahman and Spies (1986)

compared two flours of different baking quality and

measured lower values of elastic (storage) modulus ðG0Þ

for the higher baking quality flour. Similarly, many reports

have found lower values of G0 corresponded with better

baking quality (Faridi and Faubion, 1986; Weipert, 1988;

Weipert, 1992; Schober et al., 2002). Others, however, have

found that a higher value of G0 for glutens and doughs

relates to better baking performance (Amemiya and

Menjivar, 1992; Mani et al., 1992; Attenburrow et al.,

1990; Janssen et al., 1996), see Table 2. Small deformation

dynamic rheological measurements have provided useful

information about the properties of isolated glutens and their

sub-fractions in relation to baking quality, but similar

measurements on whole dough systems have not shown any

significant differences (Khatkar et al., 1995). It is thought

that these conflicting results are obtained because most of
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these tests are carried out at rates and deformation

conditions very different from those experienced by the

dough during baking expansion, and also because dynamic

rheological parameters in the plateau region are generally

insensitive to differences in molecular weight (MW) of

polymers. However, these parameters are highly sensitive to

changes in polymer concentration and diluents such as

water, which are almost never kept constant in these

experiments on doughs. Most dynamic rheological tests on

doughs and glutens have been carried out over a relatively

narrow frequency range in the plateau zone, which is known

to be insensitive to changes in molecular weight (Ferry,

1980; Macosko, 1994). If, as is generally accepted, large

MW glutenin polymers are responsible for the variations in

breadmaking performance between different wheat var-

ieties, then it is to be expected that measurements of the

plateau modulus will not be good indicators of baking

performance and are therefore not appropriate to baking.

During proof and baking the growth of gas bubbles

determines the expansion of the dough and therefore the

ultimate volume and texture of the baked product (He and

Hoseney, 1991). The limit of expansion of these bubbles is

related directly to their stability, due to coalescence and the

eventual loss of gas when the bubbles fail. The rheological

properties of the bubble walls will therefore be important in

maintaining stability against premature failure during

baking, and also in relation to gas cell stabilization and

gas retention during proof, and thus to the final structure and

volume of the baked product (Dobraszczyk et al., 2000).

The relevant rheological conditions around an expanding

gas cell during proof and baking are biaxial extension, large

strain and low strain rate. Any rheological tests which seek

to relate to baking performance should therefore be

performed under conditions similar to those of baking

expansion, such as large strain biaxial extension and low

strain rates. Methods such as bubble inflation and lubricated

compression potentially offer the most appropriate method

for measuring rheological properties of doughs. The major

advantage of these tests is that the deformation closely

resembles practical conditions experienced by the cell walls

around the expanding gas cells within the dough during

proof and oven rise, i.e. large deformation biaxial extension,

and can be carried out at the low strain rates and elevated

temperatures relevant to baking (Dobraszczyk et al., 2003).

Extensional rheology is sensitive to polymer chain

branching and entanglement interactions between high

MW polymers at large deformations (MacLeish and Larson,

1998; Wagner et al., 2000; Münstedt et al., 1998), the theory

is simple and relatively well developed, and it generally

provides good correlations with the relevant large defor-

mation processing quality parameters (Table 2). Biaxial

extensional rheological properties can be measured at large

strains up to failure, and the gripping problems normally

associated with uniaxial tests can be minimised. Disadvan-

tages are that there is no single well-defined and accepted

method for extensional measurement, with many different

Table 2

Correlations between rheological properties and baking performance

Rheological parameter Baking parameter Correlation References

(i) Small deformation shear oscillation

G0 1 Hz (dough) Volume 0.15 ðn ¼ 48Þ Autio et al. (2001)

G0SLOPE 0.72

G0 10 Hz (wet gluten) Volume 20.85 ðn ¼ 27Þ Schober et al., 2002

Form ratio (W/H) 0.65

G0 1 Hz (gluten) Volume N.S ðn ¼ 20Þ Tronsmo et al. (2003)

TAN DELTA Form ratio (H/W) 0.69

(H/W) 20.71

G0 1 Hz Loaf height 20.64 ðn ¼ 8Þ Uthayakumaran et al. (2000)

TAN DELTA N.S.

G0 Volume N.S. ðn ¼ 4Þ Safari-Ardi and Phan-Thien (1998)

(ii) Large deformation

Biaxial extensional Volume 0.89 ðn ¼ 20Þ Tronsmo et al. (2002)

Strain hardening Form ratio 0.80

Max. Uuniaxial, extensional viscosity Loaf height 0.81 Uthayakumaran et al. (2002)

Biaxial strain hardening Volume 0.92–0.97 ðn ¼ 6Þ Dobraszczyk and Roberts (1994), Dobraszczyk (1997), and Dobraszczyk

et al., 2003

Biaxial strain, hardening Volume Good Wikström and Bohlin (1999a,b)

Biaxial strain hardening Volume Good Kokelaar et al. (1996)

Relaxation Volume Good Wikström and Eliasson (1998)

Creep 0.94 ðn ¼ 23Þ Wang and Sun (2002)

Relaxation Quality Good Safari-Ardi and Phan-Thien (1998)

Shear relaxation, shear viscosity Quality Good Amemiya and Menjivar (1992)

YJCRS 550—29/7/2003—20:17—SPRIYA—76915— MODEL 5

B.J. Dobraszczyk, M.P. Morgenstern / Journal of Cereal Science xx (0000) xxx–xxx 9

ARTICLE IN PRESS

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008



UNCORRECTED P
ROOF

methods being used depending on the type and viscosity of

the material being studied; the tests often use large amounts

of material and the tests are destructive. The measurement

of extensional flow is often difficult, because the defor-

mation is large and non-uniform and it is therefore

impossible to calculate strain directly from the machine

displacement, requiring the direct measurement or calcu-

lation of changes in sample dimensions, often at high

speeds. In biaxial extension, for example, inaccuracies in

the calculation of rheological properties can be introduced

due to deviations of the bubble shape from assumed ideal

sphericity (Charalambides et al., 2002a,b).

The failure of gas cell walls in doughs has been shown to

be directly related to the elongational strain hardening

properties of the dough measured under large deformation

biaxial extension (Dobraszczyk and Roberts, 1994;

Dobraszczyk, 1997; Dobraszczyk et al., 2003). Strain

hardening is shown as an increase in the slope of the true

stress-strain curve with increasing extension, giving rise to

the typical J-shaped stress–strain curve observed for highly

extensible materials (Fig. 2) and has been shown to be

necessary for stability in any operations which require large

extensions, such as cold-drawing of polymer fibres, inflation

of polymer films and blow moulding of plastic bottles, and

the expansion of gas cells within expanding bread doughs

(Dobraszczyk and Roberts, 1994; Kokelaar et al., 1996).

Strain hardening in doughs is thought to arise mainly from

entanglement coupling of the larger glutenin molecules

which gives rise to the high viscosities observed at large

strains (Singh and MacRitchie, 2001). Under extensional

flow, entangled polymers exhibit strain hardening which is

enhanced for polymers with a broad MW distribution,

particularly a bimodal distribution (Watanabe, 1999) and

branching (Wagner et al., 2000; Münstedt et al., 1998). It is

therefore expected that the broad bimodal MW distribution

and branched structure of gluten will result in enhanced

strain hardening and a bimodal distribution of relaxation

times (Bohlin and Carlson, 1980; Li et al., 2003).

Gas cell wall failure in expanding dough bubbles can be

predicted using the Considere criterion for instability in

extension for polymers (Dobraszczyk and Roberts, 1994;

Wikström and Bohlin, 1999). This criterion states that the

stability in extension of a viscoelastic material is guaranteed

provided the strain is less than that at which a maximum

occurs in the force–extension plot and defines a critical

strain beyond which failure is inevitable on further

extension. Uniform extension of a viscoelastic membrane

during inflation is guaranteed provided the strain does not

reach this maximum. Beyond this critical value of strain the

criterion states that the material cannot be extended

homogeneously and instead undergoes a dynamic failure

event (MacKinley and Hassager, 1999). During large

extension of materials, plastic strain is uniform throughout

the sample up to the point of maximum force. Beyond this

point, force begins to decrease and it is at this point that

localised and non-uniform plastic deformation begins to

occur. The cross-sectional area begins to change in a non-

uniform way, and a neck or localised constriction forms,

which can either stabilise or propagate in an unstable

manner to failure. If the cross section at any point is slightly

less than elsewhere or there are any irregularities in the

sample when the force is increasing in plastic flow, the stress

will increase locally. Whilst the force is increasing the

deformation will be stable, i.e. any local constrictions are

self-arresting. In contrast, under a decreasing force the

deformation is no longer stable, leading to the formation and

cumulative increase of necking and eventual failure. Hence

the force maximum defines a point of instability in tension,

beyond which fracture is inevitable. The occurrence of

strain hardening (sometimes called work hardening) in a

material stabilises any regions of incipient localised

thinning that could lead to unstable necking and eventual

fracture during high extensions, and can allow much larger

extensions before rupture than would otherwise be possible.

Recent work has shown that bread doughs exhibit

strain hardening in large deformations such as bubble

expansion, and that these extensional rheological proper-

ties are important in baking performance (Dobraszczyk

and Roberts, 1994; Dobraszczyk, 1997; van Vliet et al.,

1992; Wikström and Bohlin, 1999a; Janssen et al., 1996;

Dobraszczyk et al., 2003). Strain hardening allows the

expanding gas cell walls to resist failure by locally

increasing resistance to extension as the bubble walls

become thinner, and appears to provide the bubbles with

greater stability against early coalescence and better gas

retention. It is expected therefore that doughs with good

strain hardening characteristics should result in a finer

crumb texture (e.g. smaller gas cells, thinner cell walls

and an even distribution of bubble sizes) and larger

baked volume than doughs with poor strain hardening

properties. It has been shown that good bread-making

doughs have good strain hardening properties and inflate

to larger single bubble volume before rupture, whilst

poor bread-making doughs inflate to lower volumes and

Fig. 2. Typical J-shaped stress-Hencky strain curve in biaxial extension for

a dough bubble inflated at 50 8C and constant strain rate (0.1 s21). Bubble

inflation using SMS Dough Inflation System, maximum stress and Hencky

strain calculated for bubble wall polar region.
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have much lower strain hardening (Dobraszczyk and

Roberts, 1994; Dobraszczyk, 1997). Loaf volume for a

number of commercial white flour doughs has been

related directly to the failure strain and strain hardening

properties of single dough bubbles measured at elevated

temperatures in biaxial extension (Dobraszczyk et al.,

2003). Strain hardening and failure strain of cell walls

were both seen to decrease with temperature, with cell

walls in good breadmaking doughs remaining stable and

retaining their strain hardening properties to higher

temperatures (60 8C), whilst the cell walls of poor

breadmaking doughs became unstable at lower tempera-

tures (45–50 8C) and had lower strain hardening (Fig. 3).

Strain hardening measured at 50 8C gave good corre-

lations with baking volume, with the best correlations

achieved between those rheological measurements and

baking tests which used similar mixing conditions. As

predicted by the Considere failure criterion, a strain

hardening value of around 1 defines a region below

which gas cell walls become unstable, and discriminates

well between the baking quality of a range of

commercial flour blends of varying quality (Fig. 4). It

is suggested that changes in strain hardening and bubble

stability in this temperature region are important in

relation to bubble coalescence. When strain hardening

falls below a value of 1, bubble walls are no longer

stable and coalesce rapidly, resulting in loss of gas

retention and lower volume and texture. Bubble walls

with good strain hardening properties remain stable for

longer during baking, allowing the bubbles to resist

coalescence and retain gas for much longer. Strain

hardening in poorer breadmaking varieties starts to

decrease at much lower temperatures, giving earlier

bubble coalescence and release of gas, resulting in lower

loaf volumes and poorer texture (Dobraszczyk et al.,

2003).

12. Rheological and polymer molecular structure–

function relationships in breadmaking

Gluten is the major protein in wheat flour doughs,

responsible for their unique viscoelastic behaviour. It is now

widely accepted that gluten proteins are responsible for

variations in baking quality, and in particular it is the

insoluble fraction of the HMW glutenin polymer, which is

best related to differences in dough strength and baking

quality amongst different wheat varieties (MacRitchie and

Lafiandra, 1997; Weegels et al., 1996). However, the exact

molecular mechanisms responsible for this variation still

remain unclear, largely because information about the

molecular size and structure of this fraction is inaccessible

by conventional polymer size characterization techniques

such as GPC and SE-HPLC due to its insolubility. Therefore

other techniques sensitive to changes in polymer MWD and

structure are necessary.

One such technique is rheology, which is increasingly

being used as a sensitive indicator of changes in the

structure of HMW polymers. It has long been recognized

that the key mechanisms determining the rheology of HMW

polymer melts and concentrated solutions arise from

physical structural interactions between polymer molecules

(Doi and Edwards, 1986), and that much of the rheological

behaviour of these polymers is independent of their

chemistry. Recent work has shown that the elongational

rheology of HMW polymer melts and concentrated

solutions is a sensitive indicator of changes in secondary

molecular structure such as small increases in the size of the

highest end of the MW distribution, or the presence of long

chain branching (LCB) (Wagner et al., 2000; Münstedt et al.,

1998). The most significant property is elongational strain

hardening (the non-linear rapid increase in viscosity with

increasing strain) which is highly sensitive to the degree of

entanglement and LCB of the polymer. For example, LCB

has been shown to explain the radically different behaviour

of branched and linear polymers. Polymer melts which show

Fig. 3. Mean bubble cell wall strain hardening values ðn ¼ 6Þ for a number

of wheat varieties inflated at constant strain rate (0.1 s21) at various

temperatures on the SMS Dough Inflation System. The dashed line at strain

hardening index ¼ 1.0 defines the region below which expanding bubble

walls become unstable. B ¼ Pillsbury, O ¼ Soissons, X ¼ Rialto 1999,

V ¼ Hereward, W ¼ Rialto 1998, A ¼ Charger, K ¼ band (From

Dobraszczyk et al. (2003)).

Fig. 4. Discrimination of CBP baking performance for a range of

commercial flour blends of varying baking quality using mean bubble

cell wall strain hardening properties obtained at 50 8C and constant strain

rate (0.1 s21). (From Dobraszczyk et al. (2003)).
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no LCB, such as High Density Polyethylene (HDPE) show

no extensional strain hardening, whilst branched polymers

such as LDPE (Low Density Polyethylene), exhibit

pronounced strain hardening (Kurzbeck et al., 1999). The

presence of chain branches is important in giving rise to

strain hardening, which is a necessary property for stability

of polymers undergoing large deformation. Since HMW

subunits of gluten have been shown to have a branched

structure (Humphris et al., 2000) with branches occurring

every 40–50 nm, it is expected that this structure will result

in strain hardening in doughs, and will contribute strongly to

its resistance to extension and bubble wall stability under

large deformation.

Modern polymer physical models relate the molecular

size and structure of polymers to their rheological properties

and end-use performance. The pom-pom model, recently

proposed by MacLeish and Larson (1998) describes the

rheological behaviour of HMW branched polymer melts.

This class of polymers is envisaged as a relatively flexible

HMW backbone to which are attached a number of branches

(pom-poms) radiating out from either end of the backbone.

This model accurately predicts, for the first time, the well-

known phenomenon of strain hardening under uniaxial and

planar extensional flow and strain softening (shear thinning)

in shear seen in branched HMW polymer melts (Fig. 1a) and

in gluten (Fig. 1b). The branches entangle with the

surrounding polymers and stretching of the flexible back-

bone between entanglements produces strain hardening.

Predictions of this model have shown that the number of

branches and the distance between entanglements have the

most effect on strain hardening (Fig. 9).

Beyond a critical molecular weight (MWc), character-

istic for each polymer, zero-shear viscosity ðh0Þ starts to

increase rapidly with increasing MW, following a

relationship h0 ¼ MW3:4 for linear polymer melts,

independent of polymer chemistry. Above this critical

MW, the polymers start to entangle, giving rise to the

observed rapid increase in viscosity with MW (Fig. 5).

Branching has the effect of increasing viscosity and

strain hardening still further, although the rapid increase

in viscosity is shifted to higher MW with increasing

branching, giving an effective decrease in viscosity at a

constant MW. Entanglements also give rise to the steep

increase in stiffness and viscosity with strain known as

strain hardening. Entanglements can be viewed as

physical constraints between segments of the polymer

chain, rather like knots, where the polymer chains are

stuck and are not free to move past each other (Fig. 6).

As can be seen in Fig. 5, a relatively small variation in

the highest end of the MWD or branching can give rise

to a large increase in viscosity and strain hardening, and

is likely to have a large effect on baking performance.

Molecular entanglements of HMW polymers under large

deformation are related to changes in their relaxation

spectrum and extensional strain hardening, which reflect

the expected qualitative differences in the underlying

MWD of glutenin polymers.

Dynamic shear properties such as G0 and relaxation

time are sensitive to MW and entanglements. Lefebvre

et al. (2000) have shown that the height of the plateau

modulus increased with the proportion of the highest

MW fractions extracted from heated gluten. Dynamic

oscillation measurements are usually made over a

relatively narrow window of frequencies, which are not

relevant to the strain rates observed during fermentation

and baking, and which do not reflect the intermolecular

interactions of the HMW glutenin polymers known to be

responsible for baking performance. The frequency range

of most conventional oscillatory shear rheological tests

on doughs is limited to a part of the plateau range, at

which the HMW polymers are entangled and are

Fig. 5. Effect of MW and branching on zero-shear viscosity for polymer

melts. Beyond a critical molecular weight for entanglements ðMcÞ zero-

shear viscosity ðh0Þ increases rapidly for linear polymer (W) as MW3.4.

(A) ¼ 3 armed branched polymer (linear with one long side chain),

(K) ¼ 4-armed branched polymer. Source: rheological properties of

multichain polybutadienes, Kraus and Gruver (1965) Journal of Polymer

Science, John Wiley & Sons.

Fig. 6. Model of entanglement network in a high MW polymer during

stretching.
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insensitive to changes in the MWD (Graessley, 1974,

1982). Therefore, it is necessary to extend these

measurements into the low frequency range or the

terminal zone, which is known to reflect the disentangle-

ment of the HMW polymers. Because of the extreme

polydispersity in MW of the gluten, it is thought

necessary to separate out fractions of varying solubility

and MW from the gluten (gliadins, soluble glutenins and

insoluble glutenins) and then to seek to use additive laws

in a recombination of their properties (Tsiami et al.,

1997). Fig. 7 shows the effect of increasing MW on the

dynamic shear modulus for a narrow MW linear

polystyrene polymer melt. As the MW increases, a

plateau in modulus begins to appear, which increases in

width as the MW increases further. The plateau

represents the effect of entanglements, which at a certain

polymer size effectively lock the polymer structure into a

temporary 3D network with a fixed modulus, the height

of which is independent of MW. At some frequency the

polymer network begins to disentangle, and the modulus

starts to decrease rapidly into the terminal zone, where

the polymer chains are free to move about and act as a

viscous liquid. The larger the polymer, the longer it stays

entangled, and therefore the wider the frequency range

over which the plateau remains. Thus it is the width of

the plateau, or the point at which it descends into the

terminal zone, which is defined by the MW of the

polymer. Unfortunately, most rheological measurements

on dough and gluten have been performed in the plateau

region, which is the region most insensitive to differences

in MW. For example, Fig. 8a shows the relationship

between the wt% fraction of the various polymer MW

size fractions calculated from the total MWD of gluten

up to values .108 (measured by flow-field flow

fractionation and light scattering (Stathopoulos, 2003)), plateau storage modulus (G0 at 1 Hz) of gluten and

baking quality (Fig. 8b) from a number of wheat

varieties of varying baking performance. These show

that neither plateau modulus nor baking volume is related

to MW up to a size of about 5 £ 108. This confirms the

observation that plateau modulus is essentially indepen-

dent of MW and also that it is not the size of the soluble

glutenin polymers, but the insoluble polymer fraction that

is mainly responsible for baking performance. This does

not support the commonly held view that the MW of the

glutenin polymers is related to their small deformation

shear rheology and to baking quality, but that that is

more likely to be the secondary molecular structure of

the insoluble glutenin that is responsible for baking

performance. Recent evidence suggests that these inso-

luble HMW polymers are entangled with a corresponding

long relaxation time (Fig. 9) (Li et al., 2003), they are

branched, and form extensive intermolecular secondary

structures held together by covalent and hydrogen

bonding (Belton, 1999; Popineau et al., 1994; Feeney

et al., 2003).

Fig. 7. Effect of increasing MW on dynamic shear modulus for a series

narrow MW linear polystyrene polymer melts. (From: Onogi, Masuda, and

Kitagawa (1970) Macromolecules 3: 109–116.)

Fig. 8. (a) Relationship between molecular weight fractions and plateau

storage modulus ðG0Þ measured at 1 Hz. Molecular weight expressed as

wt% of fractions greater than certain molecular sizes calculated from the

total molecular weight distributions for glutens obtained from five UK

wheat varieties and one US commercial flour: 1 ¼ Hereward 2 ¼ Pillsbury

3 ¼ Riband 4 ¼ Soissons 5 ¼ Charger 6 ¼ Rialto. MW data obtained by

light scattering from Stathopoulos (2003)). (b) Relationship between

molecular weight fractions from (a) and CBP baking volume for a number

of UK wheat varieties and one US commercial flour: 1 ¼ Hereward

2 ¼ Pillsbury 3 ¼ Riband 4 ¼ Soissons 5 ¼ Charger 6 ¼ Rialto.
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It would appear that for HMW polymers such as gluten,

large deformation extensional rheological properties are

more sensitive to changes in MWD, polymer entanglements

and branching than small deformation dynamic shear

properties, based on sound polymer physics principles and

experimental data. Insoluble HMW glutenins have been

shown to be best related to variations in baking quality, and

to the presence of long relaxation times, indicating

entanglements of the HMW polymers. Strain hardening,

which has been shown to be a sensitive indicator of

entanglements and long-chain branching in HMW poly-

mers, is seen in large extensional deformation of doughs and

glutens, and is well related to bubble wall stability, long

relaxation times and to variations in baking performance

amongst different wheat varieties.
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Faubion and Faridi (1985).
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