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ABSTRACT

The performance of multimodel ensemble forecasting depends on the weights given to the different models

of the ensemble in the postprocessing of the direct model forecasts. This paper compares the following dif-

ferent weighting methods with or without taking into account the single-model performance: equal weighting

of models (EW), simple skill-based weighting (SW), using a simple model performance indicator, and

weighting by Bayesian model averaging (BMA). These methods are tested for both short-range weather and

seasonal temperature forecasts. The prototype seasonal multimodel ensemble is the Development of a Eu-

ropean Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER) system, with

four different models and nine forecasts per model. The short-range multimodel prototype system is the

European Meteorological Services (EUMETNET) Poor-Man’s Ensemble Prediction System (PEPS), with 14

models and one forecast per model. It is shown that despite the different forecast ranges and spatial scales, the

impact of weighting is comparable for both forecast systems and is related to the same ensemble charac-

teristics. In both cases the added value of ensemble forecasting over single-model forecasting increases

considerably with the decreasing correlation of the models’ forecast errors, with a relation depending only on

the number of models. Also, in both cases a larger spread in model performance increases the added value of

combining model forecasts using the performance-based SW or BMA weighting instead of EW. Finally, the

more complex BMA weighting adds value over SW only if the best model performs better than the ensemble

with EW weighting.

1. Introduction

The purpose of an ensemble prediction system (EPS)

is to predict forecast probabilities of weather and cli-

mate events by the integration of an ensemble of nu-

merical predictions (Lorenz 1965; Molteni et al. 1996;

Ehrendorfer 1997; Palmer 2000). The ensemble mem-

bers differ because of slightly different initial states,

different model setups, or the application of different

model systems. In the latter case the ensemble forecast is

performed by a multimodel EPS (Atger 1999; Ebert

2001). The spread of the ensemble forecast provides a

measure of the trustworthiness of the forecast. Addi-

tionally, the average forecast of multiple ensemble

members often performs better than a forecast by any

single member.

If a global EPS consists of multiple forecast members

provided by a single-model, then the EPS predicts

forecast probabilities of weather events by the integration

of an ensemble of numerical weather predictions, which

are initialized with slightly different states. These initial

states are usually assumed to be equally realistic, and

therefore all forecast members get the same weight in

the determination of the forecast probability of an event

(see the discussion in Katz and Ehrendorfer 2006). In the

case of a limited-area EPS this can change. For example,

the Consortium for Small-Scale Modeling (COSMO)

Limited-Area EPS (LEPS; Marsigli et al. 2005) weights

its members differently. These members are driven by a

subset of the members of a global-scale EPS only. The

subset of global-scale members is selected by a cluster

analysis, and these members have different importance

depending on the cluster sizes. This importance is inher-

ited by the members of the limited-area EPS as weights in

either the determination of forecast probabilities or the

averaging of the members to a single deterministic mean

forecast (Ahrens and Walser 2008; Jaun et al. 2008).
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If an EPS consists of a set of forecasts by several dif-

ferent models, then the members are well discriminable

because the various models have, in general, different

forecast performance. It is then useful to apply different

weights to the multimodel EPS members depending on

the performance of the models in the preceding fore-

casts. For example, Krishnamurti et al. (1999) combine

the deterministic forecasts of several models using dif-

ferent weights, which are obtained by means of a mul-

tilinear regression of the forecast anomalies during a

training period. This yields a mean deterministic forecast.

The purpose of their application was seasonal ensem-

ble forecasting with global models. A recent paper by

Marrocu and Chessa (2008) compares different weight-

ing methods of deterministic short-range forecasts by

three limited-area models. For example, they show that

Bayesian model averaging (BMA; Raftery et al. 2005;

Sloughter et al. 2007) can improve the EPS forecasts

of the raw equally weighted ensemble. Performing nu-

merical experiments with toy models, Weigel et al. (2008)

have shown that both equally and unequally weighted

multimodel ensembles can perform better than the best

model within the ensemble of models.

Here, we investigate different multimodel ensemble

weighting methods at two different forecast scales.

These scales are (i) the global seasonal forecast scale,

and (ii) the limited-area short-range forecast scale. For

these two scales, the different sources of forecast errors

are most important. The forecast performance at the

seasonal scale is largely dependent on the description of

the physics in the model system. At the limited-area

short-range scale the performance depends mainly on

the forecast initialization of the limited-area models,

and the quality of the driving global models and their

initialization. It is the major goal of this paper to com-

pare the impact of weighting in the postprocessing of

multimodel ensembles with different forecast scales,

and to understand the similarities and/or differences

between these impacts. For this goal we implemented

three methods of weighting in ensemble forecast post-

processing: equal weighting of models (EW), simple

skill-based weighting (SW), using a simple model per-

formance indicator, and weighting by BMA. These

methods are described in more detail below.

As a prototype of a global seasonal forecast system,

we use the hindcasts from the Development of a Euro-

pean Multimodel Ensemble System for Seasonal to In-

terannual Prediction (DEMETER) project (Palmer et al.

2004). We can use 33 yr of hindcasts with this product;

favoring it over the newer product of the Ensemble

Based Predictions of Climate Changes and their Impacts

(ENSEMBLES) project (information online at http://

www.ensembles-eu.org), which has at present 10 yr of

available seasonal hindcasts. As the short-range product

we use multimodel forecasts that are collected and de-

livered by the Short-range Numerical Weather Predic-

tion (SRNWP)–Poor Man’s EPS (PEPS; see, e.g.,

Heizenreder et al. 2006) project. It collects the opera-

tional forecasts by limited-area models from more than

20 European national meteorological services.

Often, the ensemble of forecasts delivered by an EPS

is interpreted and evaluated probabilistically (Katz and

Ehrendorfer 2006; Ahrens and Walser 2008), or the

members are applied as input for impact models (Jaun

et al. 2008). The ensemble mean deterministic forecast is

easier for interpretation. Here we will focus on the im-

pact of weighting on the performance of the ensemble

mean forecast. This simplifies the discussions and allows

us to use deterministic scores in the evaluation of the

ensemble forecasts. Consequently, this paper does not

investigate the impact of weighting on the probabilistic

calibration of the ensembles.

The paper is organized as follows: Section 2 describes

the ensembles used, the weighting methods, the method

of performance evaluation, and the observational data

applied for training of the weighting methods and for

evaluation. Sections 3 and 4 give a summary of global

and local performance, respectively, of the differently

weighted ensembles. Section 5 discusses the impact of

the different weighting methods in detail. Section 6 gives

the conclusions.

2. Data and methods

This section introduces the two ensemble forecast

systems, the data for forecast postprocessing and eval-

uation, and the methods applied in postprocessing and

evaluation.

a. Ensemble forecast products

The first ensemble forecast product considered is

from the DEMETER project (Palmer et al. 2004),

founded under the European Union Fifth Framework

Environment Programme. It yields a seasonal super-

ensemble (i.e., a multimodel with multiple ensemble

members for each model prediction system) of seven

global coupled ocean–atmosphere models integrated

for different periods (all ending in 2001). The hindcasts

are delivered on a spatial grid with 2.58 of horizontal grid

spacing. Each model is integrated for 6 months and

9 times with different initial conditions (yielding nine

forecasts per model). A complete description of the

project and its main results can be found on the

DEMETER Web site (online at http://www.ecmwf.int/

research/demeter). In this paper, we show only the re-

sults for the 2-m temperature hindcasts for the spring
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seasons (March–May; hindcasts are initialized in the

beginning of February). Forecasts for the other sea-

sons show similar results. To have a long enough pe-

riod (1969–2001) for bias correction of the forecasts

and training of the SW and BMA weighting methods

we had to restrict ourselves to four models from the

following: the Met Office (UKMO; United Kingdom),

the Centre National de Recherches Météorologiques

(CNRM; France), the Max Planck Institute for Meteo-

rology (MPI; Germany), and the European Centre for

Medium-Range Weather Forecasts (ECMWF; United

Kingdom). As discussed in the introduction, the nine

forecasts using the same model cannot be discriminated,

and thus no unequal weighting can be applied. Addi-

tionally, this paper does not consider probabilistic in-

formation potentially delivered by ensemble forecasts.

Therefore, we consider four deterministic forecasts, each

of which are constructed by the averaging of nine single-

model ensemble members. We call this ensemble system

DEMETER-36.

The second forecast product is delivered by the

SRNWP–PEPS (Heizenreder et al. 2006) project. It

collects the operational forecasts from more than 20

European national meteorological services in order to

construct a multimodel ensemble prediction system of

high-resolution short-range regional models [i.e., dif-

ferent implementations of the regional models (see

Heizenreder et al. 2006) of the four regional model

consortia, Aire Limitée Adaptation Dynamique Dével-

oppement International (ALADIN), COSMO, High-

Resolution Limited-Area Model (HIRLAM), and UKMO

organized in the Network of European Meteorological

Services (EUMETNET; see information online at http://

srnwp.met.hu)]. The model setups have grid lengths

between 7 and 22 km and apply different model do-

mains, initialization, and coupling models. All forecasts

are interpolated onto a forecast grid with a horizontal

grid spacing of 7 km. The possible ensemble size of the

PEPS depends on the region of interest. For this study

we have restricted ourselves to the daily maximum

temperature forecasts initialized at 0000 UTC with a

maximum lead time of 30 h from 14 model imple-

mentations, which cover Germany very well, and are

available for this paper in the period from November

2006 to February 2008. We have removed from the

dataset all of the days with one or more missing model,

and we end up with about 300 forecast days. This allows

us to deal with a homogenous ensemble; We call this

ensemble PEPS-14.

The different ensemble sizesandtypes of DEMETER-36

and PEPS-14 complicate the goal of comparing the im-

pact of weighting methods in postprocessing. Therefore,

in the following discussions the focus will be on the

comparison of two derived ensemble products. The

first one, named DEMETER-4, is constructed by ran-

dom selection of one forecast member out of nine per

model for each forecast event. Therefore, a forecast with

DEMETER-4 consists of one realization of each of the

four models. The second derived product, named PEPS-4,

is created by subsampling of PEPS-14 without replace-

ment, yielding forecast ensembles of four models. In the

following we show forecast experiments where 50 ran-

dom subsamples (out of 1001 possible) are selected and

considered in the discussion of weighting effects.

b. Observational reference

For postprocessing and evaluation of the forecasts it is

important to have adequate observational data. In the

case of DEMETER, the seasonal mean 2-m temperature

of the 40-yr ECMWF Re-Analysis (ERA-40; Uppala

et al. 2005) is taken as the reference at the spatial grid of

2.58 3 2.58 of the DEMETER product. In total, evalua-

tion data are available for 144 3 71 grid points and 33 yr,

and thus the total evaluation sample contains about 3 3

105 events.

In the case of PEPS postprocessing and evaluation, we

use daily maximum temperature observations of 357

operational weather stations of the German meteorol-

ogical service. The observational data are compared

with the forecast value in the closest grid cell of PEPS.

Because of missing observations and models, the num-

ber of days available for evaluation is about 300 (which

is slightly dependent on the station). Thus, the number

of events available for the evaluation is about 105.

c. Postprocessing

The postprocessing applied here consists of two steps:

first, a bias correction of the single-model forecasts is

applied; second, the model forecasts are weighted be-

fore deterministic mean ensemble forecasts are consid-

ered in the evaluation. Bias correction and weighting are

based on empirical information generated from com-

parisons of forecasts and observational references in

training periods.

For DEMETER, there are 33 seasonal forecasts of

consecutive spring seasons available, which can be used

in the forecast experiments discussed here. Leave-one-out

cross-validation is applied: the current season is applied

for validation, and the remaining 32 seasons are used as

the training data in postprocessing. Therefore, the vali-

dation sample is 33 postprocessed forecasts per grid

point. For PEPS, the training periods for the current

forecast are composed of the previous 35 forecast days,

which may not be consecutive because of the gaps in the

data. Therefore, about 265 post processed PEPS fore-

casts are available per station.
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1) BIAS CORRECTION

The most important step in postprocessing the direct

model outputs is the correction for model mean bias. For

DEMETER, the bias is estimated per grid point for each

model in the multimodel ensemble. This is the mean

difference of the seasonal forecasts and the ERA-40

data in the training period. The biases are spatially

variable, but per grid point the standard error of the bias

is typically about 3 times smaller than the bias estimate

despite the small sample of seasonal forecasts in the

training periods of DEMETER.

For PEPS, the bias is calculated stationwise for the

current forecast day using the forecast and observational

data from the training dataset based on the 35 previous

days. Here, the bias varies in space and time. However,

using a local bias correction calculated on the last 35

days is easily implemented, and takes into account the

current season and weather situation. There are uncer-

tainties in bias estimation, but they do not limit the

following discussion on the relative impact of different

weighting schemes.

2) WEIGHTING OF MULTIMODEL ENSEMBLES

For the multimodel ensembles PEPS-14, PEPS-4,

DEMETER-36, and DEMETER-4, we tested three

methods of ensemble weighting. The first method is EW.

In this method each model gets the same weight in the

multimodel forecast; the model with index m gets the

weight wm 5 1/M, with M the number of models. This

is the most common method in single-model ensemble

weighting (Katz and Ehrendorfer 2006). Within EW

any knowledge about the performance of the models is

neglected.

As the second method, a simple skill-based weighting

method that considers model performance is applied

grid point–wise for DEMETER and stationwise for

PEPS. This SW method uses the inverses of the mean-

square errors of the model forecasts in the training pe-

riod as weighting factors (after normalization by the sum

of the weights). This method neglects any interdepen-

dence of the performances of the models in the ensemble.

Application of the mean absolute error as an alternative

simple performance measure has been tried and does not

change the following discussion and conclusions.

The third method applied is BMA. BMA has been

applied in probabilistic weather forecasts by Raftery

et al. (2005), Sloughter et al. (2007), Wilson et al. (2007),

and Marrocu and Chessa (2008). To the full extent of

the knowledge of the authors, the BMA method is ap-

plied here for the first time to seasonal temperature

forecasts. BMA is a statistical way of postprocessing

forecast ensembles to create predictive probability density

functions for weather-related quantities. The predictive

probability density function is estimated as a weighted

average of individual density functions centered on the

individual bias-corrected forecasts. Here, it is assumed

that the temperature forecasts are well approximated by

normal distributions. It is further assumed that the error

variances of all models are approximately equal. Then,

the weights and the common variance can be deter-

mined by a maximum likelihood procedure [using the

expectation-maximization algorithm as in Raftery et al.

(2005)] that is applied over each forecast’s training pe-

riod. The BMA is applied per grid point for DEMETER

and per station for PEPS. Here, only the BMA weights

are necessary for calculation of the deterministic mean

ensemble forecast. The BMA method weights better

models relatively more than is done by SW. However, it

additionally respects intermodel relationships. If two

models show relatively high forecast error correlation,

then one model is downweighted to reduce redundant

information in the ensemble. This yields a larger risk of

overfitting the training data than that for SW [discussed

in Hamill (2007) as a response on an application of BMA

in Wilson et al. (2007)].

d. Evaluation scores

In this paper, to keep things as simple as possible, only

the means of weighted ensemble forecasts are evaluated

and discussed. Therefore, no probabilistic evaluation

with scores, like the Brier score, is performed. We have

chosen instead the well-known and easily interpretable

mean-square error (MSE) score

MSE 5
1

IT
�

I

i
�
T

t
a

i
(y

it
� o

it
)2, (1)

with oit the value of the observational reference, and yit

the forecast at time t and location i. The factor ai con-

siders the gridcell area at location i: in the case of PEPS

ai 5 1 for all locations, and in the case of DEMETER

ai 5 cos(latitudei).

Here, T is the number of forecast experiments eval-

uated for each station or grid point; that is, T is about 260

for PEPS depending slightly on station data availability,

and T is 33 for DEMETER. In case of total evaluations

over all forecast events in space and time, I is 357 (the

total number of stations) for PEPS and 10 244 (the total

number of grid points over the globe) for DEMETER.

Therefore, the number of evaluated forecast events I 3 T,

and thus the evaluation uncertainty, is comparable for

the total DEMETER and PEPS evaluations. For local

evaluations I 5 1 for PEPS, yielding about 260 local

evaluations. In order to enhance the comparability of the

local evaluation, the forecast events of the DEMETER
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product are pooled in small regions of 3 3 3 pixels (7.58 3

7.58), yielding I 5 9. The impact of the different tem-

poral and spatial dependence of the events on the

comparison of the PEPS and DEMETER results is

small and therefore neglected.

Below we want to compare the performance of EPSs

with different space and time scales, and at different

locations. The relative performance of forecasts by the

evaluated forecast system (Fcst1) in comparison with

forecasts by the reference forecast system (Fcst2) is

measured by a normalized skill score (Wilks 2006).

Here, we use the skill score (SS) defined by

SS(Fcst1, Fcst2) 5 1� MSE(Fcst1)

MSE(Fcst2)
, (2)

The skill score value is zero if the performance of Fcst1

equals the performance of Fcst2. The skill score is unity

if Fcst1 is perfect in terms of MSE.

Often a forecast system is compared against a simple

reference forecast (REF). In the case of DEMETER, a

good, simple REF is the climatological value (i.e., the

mean seasonal temperature in the training period). In

the case of PEPS, the REF chosen here is the persistence

forecast (i.e., the observed temperature value on the day

before the forecast day).

A main goal of this paper is to compare different

weighting methods in forecasting. This is done by cal-

culating the skill scores of, for example, BMA relatively

to EW, which we denote as SS(BMA, EW). Addition-

ally, it is useful to compare a multimodel ensemble

forecast system with the MSE of the best model forecast

system (BEST) in the evaluation period, or with the

average MSE of the single-model forecasts (AVER).

BEST can be interpreted as the extreme weighting ex-

ample, where all of the weight is put on the model, which

is the best on average in the evaluation period. Skill

score values with AVER apply the MSE of the single-

model forecasts in the evaluation of SS, and thus give an

average skill of the models neglecting the forecast skill

that is added by the ensemble approach.

3. Total performance of the ensemble forecasts

In this section we discuss the total performances of the

PEPS and DEMETER forecast systems in different

postprocessing configurations. We show the square root

of the MSE score (RMSE) averaged over all of the

events in space and time. Therefore, the spatial sum

in the score calculation is globally over all of the grid

points in the case of the DEMETER systems, and over

all 357 German weather station locations in the case

of PEPS.

Table 1 gives the RMSE for PEPS in different config-

urations. As expected, the multimodel ensemble PEPS-14,

with 14 models, performs better than the average of

randomly selected ensembles of four models in PEPS-4.

Both ensembles perform independently of the weighting

method, which is obviously better than the average

single-model forecast AVER. It is more interesting to

note that BMA weighting performs best, but the added

value over SW weighting is only small on average [the

skill of BMA over SW given by SS(BMA, SW) is be-

tween 20.05 and 0.05 for PEPS-4 and 0.05 for PEPS-14].

Using EW, and thus neglecting model performance in

weighting, gives the worst performance in either en-

semble forecasting case. For PEPS the model forecasts

are very good in comparison to the chosen simple refer-

ence by persistence forecasting REF: SS(AVER, REF) 5

0.47.

For DEMETER-4, the RMSE scores given in Table 2

show behavior that is similar to that of PEPS. The SW

and BMA weightings are comparable, but equal weight-

ing is worse [SS(BMA, EW) 5 0.06]. The AVER is worst

of all, and this time it is even worse than the reference

forecast REF (i.e., the climatological forecast, which has

a RMSE of 0.75 K). This shows that it is on average worst

to use a single forecast of a single-model only. Also, the

DEMETER-4 forecast with EW is worse than the cli-

matology. The results are different for DEMETER-36.

DEMETER-36 uses four models, as does DEMETER-4,

but has nine forecast members per model. With nine

forecast members per model the equal weighting is already

almost as efficient as applying weighting that considers

the model performance [SS(BMA, EW) 5 0.02 only].

Obviously, the better performance of DEMETER-36

with EW in comparison to DEMETER-4 with EW is

TABLE 1. Performance of PEPS-14 and the average performance

of 50 random samples using PEPS-4. Different postprocessing

methods are applied (EW, SW, and BMA) and these are compared

to non-ensemble methods (AVER and BEST). The performance is

given by the RMSE (K) of the forecasts in the evaluation period.

The performance of the persistence forecast REF is 3.49 K.

Bootstrapping gives 90% uncertainty estimations below 60.02 K in

all cases.

Method EW SW BMA AVER BEST

PEPS-14 1.51 1.46 1.40 1.86 1.45

PEPS-4 1.58 1.54 1.53 1.85 1.61

TABLE 2. Same as Table 1, but for DEMETER-36 and

DEMETER-4. The performance of the climatological forecast

REF is 0.75 K. Bootstrapping gives 90% uncertainty estimations

below 60.01 K in all cases.

Method EW SW BMA AVER BEST

DEMETER-36 0.71 0.70 0.70 0.81 0.70

DEMETER-4 0.76 0.71 0.71 1.01 0.76
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because of the multiple forecast members per model.

When DEMETER-36 is applied with performance

weighting it only slightly adds value to the forecasts.

However, it is important to note that DEMETER-4,

with four SW- or BMA-weighted forecasts, is as good as

DEMETER-36, which has 36 forecasts in the applied

deterministic evaluation.

4. Local performance of the ensemble forecasts

The performances of the forecast systems are spatially

heterogeneous. Figure 1 compares the performance of

the DEMETER-36 ensemble forecast with the climatol-

ogical reference forecast. This is accomplished by means

of a paired Wilcoxon test for differences between the

forecasts and ERA-40 at the 10% significance level. It

shows that there are distinct regions with DEMETER-36

forecasts that are better than the climatological refer-

ence forecast. However, there are also regions within

DEMETER forecasts that are significantly worse than

climatology (e.g., in parts of the El Niño region, in the

Arctic, and in northern Africa). DEMETER-36 with

EW is significantly better than climatology in 29% and

worse in 4% of the grid points.

Figure 1 also shows that using BMA instead of EW in

postprocessing can improve the forecasts, with 32% of

the grid points being significantly better than climatol-

ogy, and 2% being significantly worse than climatology.

These improvements over EW are mainly in the Arctic

(delimited with latitudes greater than 708N) and in the

traditional Niño-3 and Niño-4 regions [delimited with

latitudes between 58S and 58N and longitudes between

1608E and 908W (Trenberth 1997)]. This is consistent

with the results from Doblas-Reyes et al. (2005). The

mean skill scores of the different weighting methods

over climatology for the Arctic region are, respectively,

20.07, 0.06, and 0.06 for the EW, SW, and BMA

methods. For the Niño-3 and -4 regions they are 0.35,

0.62, and 0.66, respectively. The results in these two re-

gions will be further discussed and compared to the re-

sults in the other regions later in the text. It is important

to note that the relatively small skill score values in the

Arctic are not necessarily a consequence of either model

or weighting difficulties in the Arctic region, but mainly

result because of smaller potential predictability of the

climate system in the Arctic than in the tropics at the

seasonal scale (Kumar et al. 2007). Nevertheless, the SW

and BMA weighting is able to slightly increase the skill

score values.

This shows the dependence of the different methods’

efficiency on the region of interest. For PEPS, fore-

casts also a high interstation variability in skill scores,

which can be observed with the SS(EW, REF) vary-

ing from 20.51 to 0.93. In this paper we will use this

wide range of efficiency for both the DEMETER and

PEPS ensembles to gain insight into which parame-

ters affect the performance of the different weighting

methods.

FIG. 1. Skill of the DEMETER-36 forecast system using (left) EW and (right) BMA. Marked regions indicate where DEMETER

forecasts are significantly better than climatology (white), DEMETER forecasts are significantly worse (black), and there is no significant

difference in performance at the 10% significance level (gray).
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5. Discussion of the different ensemble weighting
methods

a. Equal weighting

First of all, for both PEPS and DEMETER, the mul-

timodel ensemble performance depends on the average

performance of the individual models. Figure 2 shows

skill score values of SS(EW, REF) versus SS(AVER,

REF) for all PEPS stations, and averaged values for

regions with I 5 3 3 3 grid points for DEMETER. This

figure indicates a strong linear correlation between the

performance of the multimodel ensemble forecasts with

equal weighting and the average performance of the

models. The linear correlation between SS(EW, REF)

and SS(AVER, REF) is 0.98 and 0.89 for PEPS-4 and

DEMETER-4, respectively. It is noteworthy that the

averaged ensemble forecasts always perform better than

the averaged performance of the single-model forecasts

FIG. 2. Scattergrams showing SS(EW, REF) vs SS(AVER, REF): (top) (left) PEPS-4 and (right) DEMETER-4; (bottom) (left) PEPS-14

and (right) DEMETER-36. In the DEMETER scattergrams the pairs of values in the Arctic region are marked with ‘‘x’’ and in the El

Niño region with ‘‘D.’’ These regions are defined in the text in section 4. The diagonal (the line where the skill of an equal weighting

combination is equal to the average single-model skill) is drawn.
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given with AVER (as expected, because averaging min-

imizes the MSE for normal random variables). However,

the added value of multimodel ensembles over the in-

dividual models is quite variable. Figure 2 shows that for

DEMETER the added value is greater in the Arctic and

El Niño regions (defined in section 4) than in many other

regions, and it is especially pronounced if the model

performance is poor on average.

Why is the positive impact of model combination so

variable? The added value of ensemble forecasting is

related to the independence of the different models. On

average, an ensemble mean forecast is better than a

single-model forecast if the errors of the forecasts in the

ensemble compensate each other to some extent. This is

illustrated in Fig. 3. In these scattergrams, the gain

through ensemble forecasting is shown over a corre-

lation parameter R. This parameter R quantifies the

temporal correlation of the forecast errors of the models

by averaging the pairwise correlation coefficients of the

forecast errors. In case of PEPS-4, DEMETER-4, and

FIG. 3. SS(EW, AVER) of the ensemble forecasts with equal weighting normalized with AVER vs the mean-error correlation of the

single-model forecasts R: (top left) PEPS-4 and (top right) DEMETER-4; (bottom left) PEPS-14 and (bottom right) DEMETER-36. The

ideal regression line (N 2 1)/N(1 2 R) with N the number of models assuming model-independent error variances and covariances is

drawn. The symbols are the same as in Fig. 2.
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DEMETER-36, the number of error pairs is six, and in

the case of PEPS-14 the number of pairs is 91. If the er-

ror variances and covariances are assumed to be model

independent, it is possible to show that SS(EW, AVER) 5

(N 2 1)/N(1 2 R) with N the number of models. Figure 3

shows very clearly that the added value of the ensemble

increases when the models are less correlated. Despite the

difference in scales of the seasonal and short-range fore-

casts, this increase is extremely similar for the PEPS-4 and

DEMETER-4 ensembles. We can see that for grid points

in the El Niño and Arctic regions the correlation of the

forecast errors is very small, so that the extra skill added

by the ensemble is particularly high.

For DEMETER-36, each of the four model forecasts

already has an average of nine members, and because of

the smoothing effect of averaging the correlation of the

forecast errors tends to be larger. This explains why the

added value of the multimodel ensemble is smaller than

that for DEMETER-4 (Table 2). It is also interesting to

note that for DEMETER-36 the grid points in the Arctic

and El Niño regions show a tendency to have a larger

dependence on error correlation. This is related to the

observation that in these regions the spread in model

skill is larger than elsewhere, as discussed in more detail

in the next paragraph (see Fig. 4).

As expected, the skill score versus the error corre-

lation dependence is steeper for PEPS-14 (based on

N 5 14 models) than for the three ensemble products

based on four models. This is because more models

with the same mean error correlation yield more in-

dependent information in the ensemble and this adds

value to the ensemble forecast. Thus, the multimodel

ensembles are able to compensate for errors (in ini-

tialization of the forecasts and model physics) as long

as there are enough debiased forecasts with indepen-

dent errors.

b. Simple skill-based weighting

Figure 4 shows that the ensemble forecasts with SW

perform better than those with EW on average. This is

quantified by the skill score SS(SW, EW) with values

above zero most of the time. In Fig. 4 the skill scores are

shown only for PEPS-4 and DEMETER-4, but the same

is true for PEPS-14 and DEMETER-36. This is affirmed

by the percentages of grid points/stations with SW better

than EW, given in Table 3. The figure also depicts the

positive dependence of this skill score on the relative

spread of the skill of the models in the ensembles. This

relative spread is calculated as the difference between

FIG. 4. SS(SW, EW) of the ensemble forecasts with simple skill-based weighting relative to the forecasts with equal weighting vs the

relative spread of model skills (SKILL SPREAD); (left) PEPS-4 and (right) DEMETER-4. The symbols are the same as in Fig. 2.

TABLE 3. Percentages of grid points/stations with better fore-

casts on average using one of the performance-based weighting

methods (SW, BMA, or BEST) than using EW.

Method SW BMA BEST

PEPS-4 89 62 33

PEPS-14 98 86 57

DEMETER-4 95 88 49

DEMETER-36 66 59 56
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the MSE of the worst model minus the MSE of the best

model divided by the averaged MSE of all models, with

the MSEs evaluated for all of the forecast events. The

scattergrams in Fig. 4 show that SW is able to put more

weight on the better models when the relative spread is

larger, and this improves the forecasts. It is interesting to

note that the dependence of the added value of SW over

EW on spread in model skill is similar for the short-

range PEPS forecasts and the long-range DEMETER

forecasts, except that the relative spread can reach much

greater values for DEMETER.

Obviously, the spread in model skill is relatively large

in the El Niño and Arctic regions, and in consequence

the performance weighting is especially effective in

these regions. In fact, in the Arctic region one model is

much worse than the two others. In the El Niño region

there is both a best and a worst model in terms of per-

formance in the training periods. Elsewhere, the spread in

model skill is small, and is even smaller for DEMETER-36

than for DEMETER-4. This explains why SW makes

a smaller improvement over EW in case of the super-

ensemble DEMETER-36 (see Tables 2 and 3).

FIG. 5. Scattergrams of the (top) SS(SW, W) and (bottom) SS(BMA, EW) vs SS(BEST, EW): (top left) PEPS-4 and (top right) DEMETER-4;

(bottom left) PEPS-14 and (bottom right) DEMETER-36. The first diagonal is drawn. The symbols are the same as in Fig. 2.
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c. Bayesian model averaging

In Section 3 we have shown that BMA performs only

slightly better than SW in the total averages. Table 3

shows that BMA is more effective than EW in fewer grid

points/stations than SW is (perhaps because of the risk

of misweighting with BMA). This is confirmed by Fig. 5,

with more grid points/stations showing values of

SS(BMA, EW) , 0 than SS(SW, EW) , 0. Like SW, the

BMA method weights the ensemble members according

to model skill, but less directly. Here, we investigate un-

der what conditions the more complex BMA weighting

can give better results than SW.

Figure 5 shows that BMA is the more effective

weighting method if there is a locally best model. This

can be seen very clearly for PEPS-4, where the locally

best model is often better than the ensemble with SW

(upper left panel). BMA is almost always able to im-

prove on the locally best model (lower left panel).

This is quantified in Table 4. For the grid points/

stations where the forecast with BEST is already better

than that with EW, the forecast with BMA is the best

one in about 60% of the cases. Thus, BMA is better than

BEST and SW in 60% of the cases with relatively good

singe model forecasts. Obviously, BMA is more capa-

ble of using the good information in consistently good

single-model forecasts than SW. This is because the

average standard deviation of the weighting coefficients

of BMA is about 3 times larger than that of SW (not

shown). However, as Table 4 shows, there is one ex-

ception: DEMETER-36. If the best model ensemble in

the superensemble is better than the ensemble with EW,

then in 72% of the cases BEST stays better than the

ensemble with either BMA or SW. This is the positive

impact of the single-model ensembles, which makes it

difficult to add value through skill-based model weighting.

Note that the locally best model is not necessarily the

best model in all regions.

6. Conclusions

This paper has investigated the impact of weighting on

multimodel ensemble forecasts of temperature with

different spatial scales and forecast ranges. It has been

shown that the impact is independent of the forecast

scales. This is the case despite the different main sources

of forecast errors for the seasonal-range forecasts by

DEMETER (mainly errors in model description and

boundary conditions), and the short-range forecasts by

PEPS (mainly forecast initialization uncertainties).

For both forecast systems, DEMETER and PEPS, the

ensemble forecasts are better than the average single-

model forecasts [as extensively discussed for DEMETER

in Hagedorn et al. (2005)]. Weighting of the ensemble

members with model performance (determined in a

training period) improves the forecasts (shown for short-

range forecasts also by Marrocu and Chessa 2008). For

performance-based weighting a simple skill-based weight-

ing (SW) based on the bias-corrected model’s MSE and

Bayesian model averaging (BMA) has been applied.

In most of the cases the simple skill-based weighting

method is as effective as, or even more effective than,

the BMA. Considering the computational cost of the

BMA method and its risk for overfitting (as discussed in

Hamill 2007), SW seems to be sufficient in most cases.

The BMA is worth its additional computational effort

only if there are consistently good models in the en-

semble, because BMA effectively puts more weight on

them. However, this conclusion might be valid only for

the deterministic evaluation performed here and the

temperature forecasting evaluated here. Additionally,

we have not considered possible multigridpoint or mul-

tistation extensions of the weighting methods.

Nevertheless, the study indicates: (i) that the ensem-

ble forecasts improve at the short-range as well as at the

seasonal-range scale with an increasing number of models

in the ensemble with as low a forecast error correlation as

possible, and (ii) that some simple skill-based weighting

with model performance in a training period improves

the forecasts efficiently and independent of the forecast

scale. Application of a simple performance-based weight-

ing method on the four models’ DEMETER product

with one forecast member per model performs as well as

the full four models’ DEMETER product with nine

forecasts per model without performance weighting in

the given forecast and evaluation setup. The efficiency

of the different weighting methods at different forecast

scales in a probabilistic forecasting setup has to be in-

vestigated in further studies.
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TABLE 4. Percentages of grid points/stations where the method

SW, BMA, or BEST performs best, taking into account only grid

points/stations with SS(BEST, EW) . 0.

Method SW BMA BEST

PEPS-4 11 60 29

PEPS-14 5 65 30

DEMETER-4 20 59 21

DEMETER-36 14 14 72
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