Bodhisatwa Banerjee

Bodhisatwa Banerjee
  • Narsee Monjee Institute of Management Studies

About

66
Publications
7,457
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,226
Citations
Current institution
Narsee Monjee Institute of Management Studies

Publications

Publications (66)
Article
Continuous gravitational waves (CWs) emission from neutron stars carries information about their internal structure and equation of state, and it can provide tests of general relativity. We present a search for CWs from a set of 45 known pulsars in the first part of the fourth LIGO–Virgo–KAGRA observing run, known as O4a. We conducted a targeted se...
Article
Full-text available
Context. Next-generation gravitational wave (GW) observatories, such as the Einstein Telescope (ET) and Cosmic Explorer, will observe binary neutron star (BNS) mergers across cosmic history, providing precise parameter estimates for the closest ones. Innovative wide-field observatories, such as the Vera Rubin Observatory, will quickly cover large p...
Article
We present results from a search for X-ray/gamma-ray counterparts of gravitational-wave (GW) candidates from the third observing run (O3) of the LIGO–Virgo–KAGRA network using the Swift Burst Alert Telescope (Swift-BAT). The search includes 636 GW candidates received with low latency, 86 of which have been confirmed by the offline analysis and incl...
Preprint
Full-text available
Continuous gravitational waves (CWs) emission from neutron stars carries information about their internal structure and equation of state, and it can provide tests of General Relativity. We present a search for CWs from a set of 45 known pulsars in the first part of the fourth LIGO--Virgo--KAGRA observing run, known as O4a. We conducted a targeted...
Article
Full-text available
The magnetar SGR 1935+2154 is the only known Galactic source of fast radio bursts (FRBs). FRBs from SGR 1935+2154 were first detected by the Canadian Hydrogen Intensity Mapping Experiment (CHIME)/FRB and the Survey for Transient Astronomical Radio Emission 2 in 2020 April, after the conclusion of the LIGO, Virgo, and KAGRA Collaborations’ O3 observ...
Preprint
Full-text available
Next-generation gravitational wave (GW) observatories, such as the Einstein Telescope (ET) and Cosmic Explorer, will observe binary neutron star (BNS) mergers across cosmic history, providing precise parameter estimates for the closest ones. Innovative wide-field observatories, like the Vera Rubin Observatory, will quickly cover large portions of t...
Preprint
Full-text available
Third generation and future upgrades of current gravitational-wave detectors will present exquisite sensitivities which will allow to detect a plethora of gravitational wave signals. Hence, a new problem to be solved arises: the detection and parameter estimation of overlapped signals. The problem of separating and identifying two signals that over...
Preprint
Full-text available
We present results from a search for X-ray/gamma-ray counterparts of gravitational-wave (GW) candidates from the third observing run (O3) of the LIGO-Virgo-KAGRA (LVK) network using the Swift Burst Alert Telescope (Swift-BAT). The search includes 636 GW candidates received in low latency, 86 of which have been confirmed by the offline analysis and...
Article
Relativistic jets from accreting supermassive black holes at cosmological distances can be powerful emitters of γ -rays. However, the precise mechanisms and locations responsible for the dissipation of energy within these jets, leading to observable γ -ray radiation, remain elusive. We detect evidence for an intrinsic absorption feature in the γ -r...
Preprint
Full-text available
Relativistic jets from accreting supermassive black holes at cosmological distances can be powerful emitters of $\gamma$-rays. However, the precise mechanisms and locations responsible for the dissipation of energy within these jets, leading to observable $\gamma$-ray radiation, remain elusive. We detect evidence for an intrinsic absorption feature...
Article
Full-text available
We present Fermi Gamma-ray Burst Monitor (Fermi-GBM) and Swift Burst Alert Telescope (Swift-BAT) searches for gamma-ray/X-ray counterparts to gravitational-wave (GW) candidate events identified during the third observing run of the Advanced LIGO and Advanced Virgo detectors. Using Fermi-GBM onboard triggers and subthreshold gamma-ray burst (GRB) ca...
Article
Full-text available
We show that — in the framework of general relativity (GR) — if black holes (BHs) are singularity-free objects, they couple to the large-scale cosmological dynamics. We find that the leading contribution to the resulting growth of the BH mass ( M BH ) as a function of the scale factor a stems from the curvature term, yielding M BH ∝ a k , with k =...
Article
Full-text available
The current generation of very-high-energy gamma-ray (VHE; E > 30 GeV) detectors (MAGIC and H.E.S.S.) have recently demonstrated the ability to detect the afterglow emission of gamma-ray bursts (GRBs). However, the GRB prompt emission, typically observed in the 10 keV–10 MeV band, is still undetected at higher energies. Here, we investigate the per...
Article
Full-text available
Detector characterization and data quality studies—collectively referred to as DetChar activities in this article—are paramount to the scientific exploitation of the joint dataset collected by the LIGO-Virgo-KAGRA global network of ground-based gravitational-wave (GW) detectors. They take place during each phase of the operation of the instruments...
Article
Full-text available
The Advanced Virgo detector has contributed with its data to the rapid growth of the number of detected GW signals in the past few years, alongside the two Advanced LIGO instruments. First during the last month of the Observation Run 2 (O2) in August 2017 (with, most notably, the compact binary mergers GW170814 and GW170817), and then during the fu...
Preprint
Full-text available
Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availabil...
Article
Full-text available
The Einstein Telescope (ET), the European project for a third-generation gravitational-wave detector, has a reference configuration based on a triangular shape consisting of three nested detectors with 10 km arms, where each detector has a 'xylophone' configuration made of an interferometer tuned toward high frequencies, and an interferometer tuned...
Preprint
Full-text available
The skeleton forms from multipotent human mesenchymal stem cells (hMSCs) competent to commit to specific lineages. Long noncoding RNAs (lncRNAs) have been identified as key epigenetic regulators of tissue development. However, regulation of osteogenesis by lncRNAs as mediators of commitment to the bone phenotype is largely unexplored. We focused on...
Article
Full-text available
In this Letter, we present the design and performance of the frequency-dependent squeezed vacuum source that will be used for the broadband quantum noise reduction of the Advanced Virgo Plus gravitational-wave detector in the upcoming observation run. The frequency-dependent squeezed field is generated by a phase rotation of a frequency-independent...
Preprint
Full-text available
We show that -- in the framework of general relativity (GR) -- if black holes (BHs) are singularity-free objects, they couple to the large-scale cosmological dynamics. We find that the leading contribution to the resulting growth of the BH mass ($M_{\rm BH}$) as a function of the scale factor $a$ stems from the curvature term, yielding $M_{\rm BH}...
Article
Full-text available
Long gamma-ray bursts are produced by energy dissipation within ultra-relativistic jets launched by newborn black holes after the collapse of a peculiar class of massive stars. Right after the luminous and highly variable gamma-ray emission, a multi-wavelength afterglow is released by external dissipation of the jet energy in the medium that surrou...
Preprint
Full-text available
Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run...
Preprint
Full-text available
The Einstein Telescope (ET), the European project for a third-generation gravitational-wave detector, has a reference configuration based on a triangular shape consisting of three nested detectors with 10 km arms, where in each arm there is a `xylophone' configuration made of an interferometer tuned toward high frequencies, and an interferometer tu...
Preprint
Full-text available
The highly variable and energetic pulsed emission of a long gamma-ray burst (GRB) is thought to originate from local, rapid dissipation of kinetic or magnetic energy within an ultra-relativistic jet launched by a newborn compact object, formed during the collapse of a massive star. The spectra of GRB pulses are best modelled by power-law segments,...
Article
The evolution of the spectral energy distribution during flares constrains models of particle acceleration in blazar jets. The archetypical blazar BL Lacertae provided a unique opportunity to study spectral variations during an extended strong flaring episode from 2020 to 2021. During its brightest γ-ray state, the observed flux (0.1–300 GeV) reach...
Preprint
Full-text available
The evolution of the spectral energy distribution during flares constrains models of particle acceleration in blazar jets. The archetypical blazar BL Lac provided a unique opportunity to study spectral variations during an extended strong flaring episode from 2020-2021. During its brightest $\gamma$-ray state, the observed flux (0.1-300 GeV) reache...
Preprint
Full-text available
The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in April of 2019 and lasting six months, O3b starting in November of 2019 and lasting five mo...
Article
Full-text available
The gravitational wave detector Advanced Virgo+ is currently in the commissioning phase in view of the fourth Observing Run (O4). The major upgrades with respect to the Advanced Virgo configuration are the implementation of an additional recycling cavity, the Signal Recycling cavity (SRC), at the output of the interferometer to broaden the sensitiv...
Article
Full-text available
While completing the commissioning phase to prepare the Virgo interferometer for the next joint Observation Run (O4), the Virgo collaboration is also finalizing the design of the next upgrades to the detector to be employed in the following Observation Run (O5). The major upgrade will concern decreasing the thermal noise limit, which will imply usi...
Preprint
The current generation of very-high-energy $gamma-$ray (VHE; E above 30 GeV) detectors (MAGIC and H.E.S.S.) have recently demonstrated the ability to detect the afterglow emission of GRBs. However, the GRB prompt emission, typically observed in the 10 keV-10 MeV band, has so far remained undetected at higher energies. Here, we investigate the persp...
Article
Full-text available
We present the results of a model-based search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1 using LIGO detector data from the third observing run of Advanced LIGO and Advanced Virgo. This is a semicoherent search that uses details of the signal model to coherently combine data separated by less than a specified coh...
Article
Full-text available
The emission region of γ -ray bursts (GRBs) is poorly constrained. The uncertainty on the size of the dissipation site spans over 4 orders of magnitude (10 ¹² –10 ¹⁷ cm) depending on the unknown energy composition of the GRB jets. The joint multiband analysis from soft X-rays to high energies (up to ∼1 GeV) of one of the most energetic and distant...
Article
Full-text available
An energetic γ-ray burst (GRB), GRB 211211A, was observed on 11 December 20211,2. Despite its long duration, typically associated with bursts produced by the collapse of massive stars, the observation of an optical-infrared kilonova points to a compact binary merger origin³. Here we report observations of a significant (more than five sigma) transi...
Preprint
Full-text available
We describe a search for gravitational waves from compact binaries with at least one component with mass 0.2 $M_\odot$ -- $1.0 M_\odot$ and mass ratio $q \geq 0.1$ in Advanced LIGO and Advanced Virgo data collected between 1 November 2019, 15:00 UTC and 27 March 2020, 17:00 UTC. No signals were detected. The most significant candidate has a false a...
Article
Full-text available
Sources of geophysical noise (such as wind, sea waves and earthquakes) or of anthropogenic noise impact ground-based gravitational-wave interferometric detectors, causing transient sensitivity worsening and gaps in data taking. During the one year-long third observing run (O3: from April 01, 2019 to March 27, 2020), the Virgo Collaboration collecte...
Article
Full-text available
We present results of an all-sky search for continuous gravitational waves which can be produced by spinning neutron stars with an asymmetry around their rotation axis, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. Four different analysis methods are used to search in a gravitational-wave frequency band...
Article
An important step in the planning of future gravitational-wave (GW) detectors and of the networks they will form is the estimation of their detection and parameter-estimation capabilities, which is the basis of science-case studies. Several future GW detectors have been proposed or are under development, which might also operate and observe in para...
Preprint
Full-text available
Gravitational waves are expected to be produced from neutron star oscillations associated with magnetar giant flares and short bursts. We present the results of a search for short-duration (milliseconds to seconds) and long-duration ($\sim$ 100 s) transient gravitational waves from 13 magnetar short bursts observed during Advanced LIGO, Advanced Vi...
Preprint
Full-text available
The Advanced Virgo detector has contributed with its data to the rapid growth of the number of detected gravitational-wave (GW) signals in the past few years, alongside the two Advanced LIGO instruments. First during the last month of the Observation Run 2 (O2) in August 2017 (with, most notably, the compact binary mergers GW170814 and GW170817), a...
Preprint
Full-text available
Detector characterization and data quality studies -- collectively referred to as {\em DetChar} activities in this article -- are paramount to the scientific exploitation of the joint dataset collected by the LIGO-Virgo-KAGRA global network of ground-based gravitational-wave (GW) detectors. They take place during each phase of the operation of the...
Article
Full-text available
We present a targeted search for continuous gravitational waves (GWs) from 236 pulsars using data from the third observing run of LIGO and Virgo (O3) combined with data from the second observing run (O2). Searches were for emission from the l = m = 2 mass quadrupole mode with a frequency at only twice the pulsar rotation frequency (single harmonic)...
Article
Full-text available
Previous detections of individual astrophysical sources of neutrinos are limited to the Sun and the supernova 1987A, whereas the origins of the diffuse flux of high-energy cosmic neutrinos remain unidentified. On 22 September 2017, we detected a high-energy neutrino, IceCube-170922A, with an energy of e290 tera–electronvolts. Its arrival direction...
Preprint
The dwarf spheroidal galaxy Ursa Major II (UMaII) is believed to be one of the most dark-matter dominated systems among the Milky Way satellites and represents a suitable target for indirect dark matter (DM) searches. The MAGIC telescopes carried out a deep observation campaign on UMaII between 2014 and 2016, collecting almost one hundred hours of...
Preprint
Spontaneous breaking of Lorentz symmetry at energies on the order of the Planck energy or lower is predicted by many quantum gravity theories, implying non-trivial dispersion relations for the photon in vacuum. Consequently, gamma-rays of different energies, emitted simultaneously from astrophysical sources, could accumulate measurable differences...
Preprint
The microquasar Cygnus X-1 displays the two typical soft and hard X-ray states of a black-hole transient. During the latter, Cygnus X-1 shows a one-sided relativistic radio-jet. Recent detection of the system in the high energy (HE; $E\gtrsim60$ MeV) gamma-ray range with \textit{Fermi}-LAT associates this emission with the outflow. Former MAGIC obs...
Preprint
It is widely believed that the bulk of the Galactic cosmic rays are accelerated in supernova remnants (SNRs). However, no observational evidence of the presence of particles of PeV energies in SNRs has yet been found. The young historical SNR Cassiopeia A (Cas A) appears as one of the best candidates to study acceleration processes. Between Decembe...
Preprint
The microquasar V404 Cygni underwent a series of outbursts in 2015, June 15-31, during which its flux in hard X-rays (20-40 keV) reached about 40 times the Crab Nebula flux. Because of the exceptional interest of the flaring activity from this source, observations at several wavelengths were conducted. The MAGIC telescopes, triggered by the INTEGRA...
Preprint
B1957+20 is a millisecond pulsar located in a black widow type compact binary system with a low mass stellar companion. The interaction of the pulsar wind with the companion star wind and/or the interstellar plasma is expected to create plausible conditions for acceleration of electrons to TeV energies and subsequent production of very high energy...
Preprint
The extragalactic VHE gamma-ray sky is rich in blazars. These are jetted active galactic nuclei viewed at a small angle to the line-of-sight. Only a handful of objects viewed at a larger angle are known so far to emit above 100 GeV. Multi-wavelength studies of such objects up to the highest energies provide new insights into the particle and radiat...
Preprint
In this work we present data from observations with the MAGIC telescopes of SN 2014J detected in January 21 2014, the closest Type Ia supernova since Imaging Air Cherenkov Telescopes started to operate. We probe the possibility of very-high-energy (VHE; $E\geq100$ GeV) gamma rays produced in the early stages of Type Ia supernova explosions. We perf...
Preprint
We present an extensive study of the BL Lac object Mrk 501 based on a data set collected during the multi-instrument campaign spanning from 2009 March 15 to 2009 August 1 which includes, among other instruments, MAGIC, VERITAS, Whipple 10-m, Fermi-LAT, RXTE, Swift, GASP-WEBT and VLBA. We find an increase in the fractional variability with energy, w...
Preprint
Blazars are variable emitters across all wavelengths over a wide range of timescales, from months down to minutes. It is therefore essential to observe blazars simultaneously at different wavelengths, especially in the X-ray and gamma-ray bands, where the broadband spectral energy distributions usually peak. In this work, we report on three "target...
Preprint
Context. PKS 1510-089 is one of only a few flat spectrum radio quasars detected in the VHE (very-high-energy, > 100 GeV) gamma-ray band. Aims. We study the broadband spectral and temporal properties of the PKS 1510-089 emission during a high gamma-ray state. Methods. We performed VHE gamma-ray observations of PKS 1510-089 with the MAGIC telescopes...
Preprint
The BL Lac object 1ES 1011+496 was discovered at Very High Energy gamma-rays by MAGIC in spring 2007. Before that the source was little studied in different wavelengths. Therefore a multi-wavelength (MWL) campaign was organized in spring 2008. Along MAGIC, the MWL campaign included the Metsahovi radio observatory, Bell and KVA optical telescopes an...
Preprint
The MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov) telescopes observed the BL Lac object H1722+119 (redshift unknown) for six consecutive nights between 2013 May 17 and 22, for a total of 12.5 h. The observations were triggered by high activity in the optical band measured by the KVA (Kungliga Vetenskapsakademien) telescope. The source was f...
Preprint
We present the first joint analysis of gamma-ray data from the MAGIC Cherenkov telescopes and the Fermi Large Area Telescope (LAT) to search for gamma-ray signals from dark matter annihilation in dwarf satellite galaxies. We combine 158 hours of Segue 1 observations with MAGIC with 6-year observations of 15 dwarf satellite galaxies by the Fermi-LAT...
Article
Various methods of treating the hard-core in a finite nucleus are examined, by carrying out a shell model calculation for the 18O nucleus, using the hard-core potential of Kallio and Kolltveit. The energies and the wave functions of the 0+, 2+, 4+ states in 18O are calculated. A comparison of the matrix elements in the three methods is made, and th...
Article
The short-range correlation between neutrons and protons in the configuration (j)N is discussed in the BCS approximation. The interaction is assumed to exist only in the J=0 and T=1 state of two nucleons. The ground- and excited-state energies are calculated and compared with the exact values.

Network

Cited By