
September 11, 2008 16:20 WSPC/181-IJWMIP 00257

International Journal of Wavelets, Multiresolution
and Information Processing
Vol. 6, No. 5 (2008) 665–674
c© World Scientific Publishing Company

THE REPLACEABILITY OF SAMPLING MATRIX
FOR MULTIDIMENSIONAL PERFECT RECONSTRUCTION

FILTER BANKS

BO YANG

Institute of Aerospace Science and Technology

Shanghai Jiaotong University, Shanghai, 200240, P. R. China

and

College of Information and Electrical Engineering
Shandong University of Science and Technology, 579 Qianwangang Road

Huangdao, Qingdao, 266510, P. R. China
yangbo.sd@gmail.com

ZHONGLIANG JING

Institute of Aerospace Science and Technology
Shanghai Jiaotong University, Shanghai, 200240, P. R. China

zljing@sjtu.edu.cn

Received 11 April 2007
Revised 26 March 2008

It is shown under a divisibility condition the sampling matrix for a filter bank can be
replaced without loss of perfect reconstruction. This is the generalization of the common
knowledge that removing up/downsampling will not alter perfect reconstruction. The
result provides a simple way to implement redundant perfect reconstruction filter banks,
which constitute tight frames of l2(Zn) when iterated. As an example, a quincunx-
sampled frame is presented, which is nearly shift-invariant as well as limited-redundancy.
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1. Introduction

Filter banks and wavelets, which had developed independently, have converged to
form a single theory more than a decade ago.1,2 The Discrete Wavelet Transform
(DWT) has proven to be highly successful for efficient image coding.3,4 However, the
nonredundant transform lacks Shift Invariance (SI), which may be more desirable
for many other signal processing tasks.5–11

It is well known that removing up/downsampling for a filter bank will not lose
the Perfect Reconstruction (PR), on which the Undecimated DWT (UDWT)8–10
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is based. As a result, the UDWT is exactly shift-invariant; however, the transform
suffers from the high degree of redundancy, making it impractical for very large
multidimensional data sets. Kingsbury11 showed that the SI of the DWT could be
dramatically improved by using a Dual-Tree Complex DWT (DTCWT), which is
much less redundant than the UDWT.

In this paper, we show the replaceability of sampling matrix for multidimen-
sional PR Filter Banks (PRFB’s), which is the extension of the common knowledge
that removing up/downsampling will not lose PR. One of the possible applica-
tions of the result would be in building tight frames of l2(Zn). A useful example is
given in Sec. 5. We derive a Quincunx-Sampled Frame Transform (QSFT) from the
standard wavelet filters. Like the DTCWT, the transform has near SI and limited
redundancy.

2. Multidimensional Perfect Reconstruction Filter Banks

The multidimensional PRFB’s are briefly reviewed in this section; for more details,
see Refs. 12 and 13. A general multidimensional filter bank is shown in Fig. 1. The
system is critically sampled, i.e. D = |det (D)|.

The vectors of the analysis and synthesis filter banks can be defined as:

h(z) = [H0(z), . . . , HD−1(z)]T ,
(2.1)

g(z) = [G0(z), . . . , GD−1(z)]T

with z = (z1, . . . , zn)T . Modulation analysis for Fig. 1 gives the output of the
system:

Y (z) =
1
D

g(z)T HAC(z)xAC(z) (2.2)

where xAC is the Aliasing-Component (AC) vector for the input, HAC is the AC
matrix for the analysis bank, that is,

xAC(z) =
{
X [e(2πD−T k0) ◦ z], . . . , X [e(2πD−T kD−1) ◦ z]

}T
, (2.3)

HAC(z) =
{
h[e(2πD−T k0) ◦ z], . . . ,h[e(2πD−T kD−1) ◦ z]

}
. (2.4)

In (2.3) and (2.4), the Schur product of two complex vectors is defined as:

e(ω) ◦ z =
(
e−jω1 , . . . , e−jωn

)T ◦ (z1, . . . , zn)T

=
(
e−jω1z1, . . . , e

−jωnzn

)T
(2.5)

Fig. 1. A general multidimensional D-channel filter bank.
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with ω = (ω1, . . . , ωn)T ; the vectors ki are a set of samples belonging to FP(DT )
(the Fundamental Parallelepiped (FP) of the transposed matrix)13 and shall always
be chosen such that k0 = 0; 2πD−T ki represent physically aliasing offsets in
frequency.

Equation (2.2) yields the following result on PR12,13:

Theorem 2.1. PR Condition: Perfect reconstruction is achieved iff

g(z)T HAC(z) = D(1 0 · · · 0︸ ︷︷ ︸
D

). (2.6)

The AC matrix is paraunitary for an orthogonal filter bank, that is,

HAC(z)H∗
AC(z) = H∗

AC(z)HAC(z) = DI, (2.7)

Gi(z) = H∗
i (z), i = 0, . . . , D − 1. (2.8)

3. The Replaceability of Sampling Matrix

We now use D′ to replace the sampling matrix D, while the original analysis/
synthesis filters are still used. Analyzing the replaced system as in Sec. 2, we obtain

Y (z) =
1
D′ g(z)T H ′

AC(z)x′
AC(z), (3.1)

x′
AC(z) =

{
X [e(2πD′−T k′

0) ◦ z], . . . , X [e(2πD′−T k′
D′−1) ◦ z]

}T
, (3.2)

H ′
AC(z) =

{
h[e(2πD′−T k′

0) ◦ z], . . . ,h[e(2πD′−T k′
D′−1) ◦ z]

}
, (3.3)

with D′ = |det (D′)| and k′
i ∈ FP(D′T ).

From (2.4) and (3.3), we observe that HAC and H ′
AC have the same first-

column, which is the alias-free version of the analysis bank. If all aliased versions
contained by H ′

AC (from the second to the last column) are also contained by
HAC , from (2.6) one can derive:

g(z)T H ′
AC(z) = D(1 0 · · · 0︸ ︷︷ ︸

D′

). (3.4)

Substituting into (3.1) and equalizing the proportion, PR is achieved for the
replaced system.

Next, we have to find when the set of aliasing offsets generated in (3.3) is a
subset of that generated in (2.4). We define the set associated with D as AO(D),
that is,

AO(D) = {2πD−T k |k ∈ FP(DT )}
= {2πD−T k ∈ [0, 2π)n |k ∈ Zn}. (3.5)

Proposition 3.1. Assuming nonsingular integer matrices D and D′, there is
AO(D′) ⊆ AO(D) iff D′−1D is an integer matrix, i.e. D is left-divisible by D′.
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Proof. Prove sufficiency first. Letting M = D′−1D, using (3.5), one can write

AO(D′) =
{
2πD−T (MT k) ∈ [0, 2π)n | k ∈ Zn

}
. (3.6)

Since M is an integer matrix, one has{
k | MT k ∈ Zn

} ⊇ Zn. (3.7)

Consequently, one can write{
2πD−T (MT k) ∈ [0, 2π)n | k ∈ Zn

}
⊆ {

2πD−T (MT k) ∈ [0, 2π)n | (MT k) ∈ Zn
}

(3.8)

that is, AO(D′) ⊆ AO(D).
To prove necessity, we first prove a fact that for any k ∈ Zn and nonsingular

integer matrix D, there exist l ∈ Zn and a ∈ AO(D) such that

2πD−T k = 2πl + a. (3.9)

It is clear that there exists ξ ∈ [0, 2π)n such that

2πD−T k = 2πl + ξ. (3.10)

Left multiplying both sides of (3.10) by DT , one obtains

(2π)−1DT ξ = DT (D−T k − l) ∈ Zn. (3.11)

From (3.5) and (3.11), one can derive ξ ∈ AO(D), thus, the fact is true. Next
rewriting (3.9) with D′, one obtains

2πD′−T k = 2πl + a′, a′ ∈ AO(D′). (3.12)

For AO(D′) ⊆ AO(D), one has a′ ∈ AO(D), and thus (2π)−1DT a′ ∈ Zn. Left
multiplying (3.12) by (2π)−1DT , one can write

∀k ∈ Zn, DT D′−T k = [DT l + (2π)−1DT a′] ∈ Zn. (3.13)

Therefore, D′−1D must be an integer matrix.

Now we are ready to state the following theorem.

Theorem 3.1 (Replaceability Theorem (RT)). The sampling matrix for a
filter bank can be replaced without loss of PR if the original sampling matrix is
left-divisible by the new one.

Let us consider two special cases, both of which have been already used in the
fields of filter banks and wavelets.

Lemma 3.1. Removing sampling (i.e. D′ = I) will not alter PR, on which undec-
imated systems are based.

Lemma 3.2. Adding a unimodular14 sampler (i.e. D′ = DV with unimodular V )
will not alter PR, which is used to remove the frequency scrambling for directional
filter banks.15
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In addition, there is a link between the replaced system and the cycle-spinning
method.16 Let LAT(D) denote a sampling lattice generated by D. The divisibility
essentially means LAT(D) ⊆ LAT(D′). From lattice theory, we know that LAT(D′)
in this case can be generated by the union of D/D′ sublattices LAT(D), related
to the conception of cosets.17 In this sense, the replacement of sample matrix (for
the 1 < D′ < D case) is equivalent to an incomplete cycle-spinning; the iterative
approach, however, is avoided for the same quality.

Note that all results derived above hold true in one dimension, where the matri-
ces reduce to scalars.

4. Connection to Tight Frames

It is well known that an orthogonal filter bank constructs a discrete orthonormal
basis when iterated.18 Similarly, the replaced version of an orthogonal bank con-
structs a tight frame19 of l2(Zn). In this case, the equivalent synthesis filters for i
iteration steps are written as

G
′(i)
0 (z) =

i−1∏
m=0

G0(zD′m

),

(4.1)
G

′(i)
j (z) = Gj(zD′i−1

)G′i−1
0 (z).

The discrete frame functions are represented as:

ϕ′
i,l = α · g′(i)0 (n − D′il),

(4.2)
ψ′

i,j,l = α · g′(i)j (n − D′il), l ∈ Zn,

where g′(i)j (n) is the impulse responses of G′(i)
j (z) and α = (D′/D)i/2 is chosen to

offset the power increase resulting from the change of sampling.
An overcomplete set is then obtained:

Γ =
{
ψ′

i,j,l, ϕ
′
I,l | i = 1, 2, . . . , I; j = 1, 2, . . . , D − 1; l ∈ Zn

}
. (4.3)

If the original filter bank is orthogonal, from the PR of the replaced system we
derive that for ∀x(n) ∈ l2(Zn), one has

x =
∑

i

∑
j

∑
l

〈
ψ′

i,j,l, x
〉
ψ′

i,j,l +
∑

l

〈
ϕ′

I,l, x
〉
ϕ′

I,l. (4.4)

From (4.4), one can easily derive that

‖x‖2
2 =

∑
i

∑
j

∑
l

∣∣〈ψ′
i,j,l, x

〉∣∣2 +
∑

l

∣∣〈ϕ′
I,l, x

〉∣∣2 . (4.5)

As a result, we obtain the following lemma:

Lemma 4.1. Assuming an orthogonal filter bank, the set Γ constitutes a tight frame
of l2(Zn).
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Such a frame analysis can also be extended to the biorthogonal case. In this
case, the equivalent analysis filters also construct a group of frame functions

ϕ̃′
i,l = α · h′(i)0 (D′il − n),

(4.6)
ψ̃′

i,j,l = α · h′(i)j (D′il − n),

which corresponds to another set

Γ̃ = {ψ̃′
i,j,l, ϕ̃

′
I,l | i = 1, 2, . . . , I; j = 1, 2, . . . , D − 1; l ∈ Zn}. (4.7)

It is not difficult to show that {Γ̃,Γ} constructs a pair of dual frames,19 that is, for
∀x(n) ∈ l2(Zn), there is a more general expansion form

x =
∑

i

∑
j

∑
l

〈
ψ̃′

i,j,l, x
〉
ψ′

i,j,l +
∑

l

〈
ϕ̃′

I,l, x
〉
ϕ′

I,l. (4.8)

Different with the standard wavelet expansion, the representations in (4.4) and
(4.8) are redundant by a factor r, where

r = (D − 1)
I∑

i=1

D′−i +D′−I . (4.9)

If D > D′ > 1, the redundancy is bounded by 1 < r ≤ (D − 1)/(D′ − 1).

5. A Useful Example: The QSFT

The replaceability of sampling matrix provides a simple and direct way to imple-
ment redundant PRFB’s and frame transforms. We consider in this section a
quincunx-sampled example, i.e. the QSFT, which is derived from the standard
DWT using this method.

The rectangular sampling for the standard DWT is shown in Fig. 2(a), and one
can write

DR =
[

2 0
0 2

]
, AO(DR) =

{(
0
0

)
,

(
π

0

)
,

(
0
π

)
,

(
π

π

)}
. (5.1)

The matrix DR is clearly divisible by any integer matrix with determinant ±2,
such as DQ, where

DQ =
[

1 1
1 −1

]
, AO(DQ) =

{(
0
0

)
,

(
π

π

)}
(5.2)

corresponds to the quincunx sampling,13,17 see Fig. 2(b).
It is clear that AO(DQ) ⊆ AO(DR), consistent with RT. The matrix DQ pro-

vides unique advantages over other possible matrices, besides satisfying the divisi-
bility condition:

• All eigenvalues of DQ have magnitude greater than one, making sure an associ-
ated frame is dilated in all dimensions;
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(a) Rectangular sampling (b) Quincunx sampling

Fig. 2. Rectangular and quincunx sampling lattices generated by DR and DQ, respectively.

• The second power of DQ is a diagonal matrix (i.e. D2
Q = DR), implying that a

rectangular sampling is achieved after every other iteration step.

In addition, the matrix can be easily extended to multi-dimensions (for more details,
see Ref. 20).

The replacement of DR by DQ makes the QSFT provide some desirable prop-
erties, as follows:

Higher Frequency-Resolution: The QSFT has a higher sampling not only in time but
also in frequency. This can be well understood by examining the frequency supports
of equivalent lowpass filters. As shown in Fig. 3, the basic spectrum for the QSFT
rotates by 45◦ and reduces by a factor

√
2 after every iteration step, more gradually

than it does in the DWT case. As a result, the transform has intermediate scales,
similar to the critically sampled quincunx DWT.13,21

Near SI: Having more samples within the equivalent scale makes the QSFT less
shift-sensitive than the DWT. Following Kingsbury’s illustration,11 the improved
SI can be indicated by reconstructing a disc image from only its wavelet or scaling
function coefficients at a single scale. Figure 4 shows the reconstruction components

(a) DWT (b) QSFT

Fig. 3. Frequency supports of equivalent lowpass filters for DWT vs. QSFT.
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(a) (b)

(c)

Fig. 4. SI for QSFT vs. DWT. (a) Input image; (b) Reconstruction components for DWT;
(c) Reconstruction components for QSFT.

Table 1. Redundancy and complexity for various
wavelets in two-dimensions.

Wavelet Methods Redundancy Ratio Complexity

DWT 1 O(N)
UDWT 3I + 1 O(N log N)

DTCWT 4 O(N)
QSFT 3 − 21−I O(N)

for the QSFT and the DWT under the same wavelets, DB2 (the Daubechies wavelet
of order 2). Near-perfect circular arcs are generated by the QSFT; contrast these
with the severely distorted arcs for the DWT.

Low Redundancy and Complexity: Let N refer to the size of the image and I refer
to the number of the decomposition levels. In Table 1, we compare the redundancy
and computational complexity of various transforms. The QSFT is at most 3-times
redundant, better than the DTCWT and the UDWT. Note that the redundancy for
the QSFT and the DTCWT is limited, whereas for the UDWT it increases infinitely
with the number of the decomposition levels. In the complexity, the QSFT is of order
O(N), same as the DWT.

6. Conclusion

We have shown the replaceability of the sampling matrix for general filter
banks, which is the generalization of the common knowledge that removing
up/downsampling will not lose PR. The replaceability provides a simple way to
build redundant filter banks and tight frames of l2(Zn). As an example, we imple-
mented the QSFT using the standard wavelet filters. The transform has a higher
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sampling in both time and frequency; consequently, it provides higher frequency-
resolution, near SI, besides low redundancy and complexity.
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