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Lorenz Models

model rc heating 
terms

solutions references

3DLM 24.74 rX steady or chaotic Lorenz (1963)

3D-NLM n/a rX periodic Shen (2014b)

5DLM 42.9 rX steady or chaotic Shen (2014a,2015a,b)

5D-NLM n/a rX quasi-periodic Faghih-Naini and Shen (2017) 

6DLM 41.1 rX, rX1 steady or chaotic Shen (2015a,b)

7DLM 116.9 rX steady or chaotic Shen (2016a,b)

7D-NLM n/a rX quasi-periodic Shen and Faghih-Naini (2017) 

8DLM 103.4 rX, rX1 steady or chaotic Shen(2016b)

9DLM 102.9 rX, rX1, rX2 steady or chaotic Shen(2016b)

9DLMr 679.8 rX steady or chaotic In preparation

rc: a critical value  of Raleigh parameter for the onset of chaos 
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Outline

1. Introduction (butterfly effect)

• The Three-Dimensional Lorenz Model (3DLM, Lorenz, 1963)
-- the nonlinear feedback loop (NFL) 

• The 5DLM (Shen 2014)
-- an extension of nonlinear feedback loop 
-- negative nonlinear feedback (stabilization) 

• The 6DLM (Shen 2015b)
-- impact of additional heating term (destabilization) 

2. Results: the role of the extended nonlinear feedback loop

• The 7DLM and 9DLM (Shen 2016a)
-- hierarchical scale dependence 

• The 7D nondissipative LM (7D-NLM)
-- quasi-periodic solutions with three incommensurate frequencies 

3. Summary
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Promising 30-day Simulations of Hurricane Helene

Track Forecast Intensity Forecast 

OBS

OBS

model

model

Shen, B.-W., W.-K. Tao, and M.-L. Wu, 2010b: African Easterly Waves and African Easterly Jet in 
30-day High-resolution Global Simulations. A Case Study during the 2006 NAMMA period. 
Geophys. Res. Lett., L18803, doi:10.1029/2010GL044355.

(Helene: 12-24 September, 2006)

1. Are the simulations of tropical cyclone (TC) genesis consistent with 
Chaos theory?

2. Why can the high-resolution global model have skills?
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The following folklore has been used as an analogy of the butterfly effect (Gleick, 1987):

“For want of a nail, the shoe was lost. 
For want of a shoe, the horse was lost. 
For want of a horse, the rider was lost. 
For want of a rider, the battle was lost. 

For want of a battle, the kingdom was lost. 
And all for the want of a horseshoe nail.” 

• Gleick, J., 1987: Chaos: Making a New Science.  New York. Penguin. 360pp. 
• Lorenz, E., 2008: The butterfly effect. Premio Felice Pietro Chisesi e Caterina

Tomassoni award lecture, University of Rome, Rome, April 2008. 

However, Lorenz (2008) made the following comments: 

1. Let me say right now that I do not feel that this verse is describing true chaos, 
but better illustrates the simpler phenomenon of instability.

2. The implication is that subsequent small events will not reverse the outcome.

Chaos and Butterfly Effect 
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“Responses” 

Lorenz’s comments support the view that the verse neither describes 
negative (nonlinear) feedback nor indicates recurrence, the latter of 
which is required for the appearance of a butterfly pattern. 

Our studies have been performed to understand their individual and/or 
collective impact of nonlinearity, heating and dissipation on the following 
characteristics of a chaotic system defined by Devaney (1989): (1) 
sensitivity to initial conditions; (2) topological transitivity; and (3) dense 
periodic points. 

We have illustrated the following roles by the nonlinear feedback loop 
and its interactions with dissipative and heating terms.

1. Negative nonlinear feedback using 5D, 7D, and 9DLMs
2. Positive nonlinear feedback using 6D and 8DLMs
3. Recurrence (in periodic and quasi-periodic solutions) using non-

dissipative 3D, 5D and 7D LMs (with Sara)
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Objectives 

• Determine the physical process that is responsible for the recurrence of 
the solution. 

• the nonlinear feedback loop (NFL)

• Propose a systematic approach for selecting new (spatial) modes to 
improve the stability of high-dimensional Lorenz models. 

• an analysis on the extension of the nonlinear feedback loop

• Examine the impact of the extended nonlinear feedback loop on the 
appearance of quasi-periodic solutions with incommensurate 
frequencies.

• Understand whether a steady solution, a chaotic solution, a limit cycle 
solution or a high-dimensional torus can better describe weather.
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Equations for Rayleigh-Benard Convection 

• Navier-Stokes equation with constant viscosity
• Heat transfer equation with constant thermal conductivity

Non-linear terms

Boundary Forcing, which is represented by ‘r’.

This does not appear explicitly in the Lorenz model.

By assuming 2D (x,z), incompressible and Boussinesq flow, the following 
equations that describe the so-called Rayleigh-Benard Convection
were used in  Lorenz (1963): 
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3-Dimenaional Lorenz Model (3DLM)

-XZ is associated with the J(M1, M3), 
indicating the impact of the M3 mode. 
With no –XZ, the above system is 
reduced to become a system with 
linear terms only, leading to an 
unstable solution as r>1.

M1

M2

M3

1) r – Rayleigh number:  (Ra/Rc)
a dimensionless measure of temperature 
difference between top and bottom 
surfaces of liquid; proportional to effective 
force on fluid;

2) σ – Prandtl number: (ν/κ)
the ratio of the kinetic viscosity (κ, 
momentum diffusivity) to thermal 
diffusivity (ν);

3) b – Physical proportion: (4/(1+a2)), b=8/3;
4) a – a=l/m, the ratio of the vertical height h 

of the fluid layer to the horizontal size of 
the convection rolls. b =8/3;

• l=aπ/H and m=π/H.
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Physical Processes in Lorenz Models

• Dissipative terms (e.g., -bZ) 
• Heating terms      (e.g., rX)
• Nonlinear terms.   (e.g., -XZ and XY)

(A) Dissipative Lorenz models
• small r, steady state solutions
• moderate r, chaotic solutions
• large r, limit cycles 

(B) non-Dissipative Lorenz models
• ”Periodic” solutions or 

homoclinic orbits
• Quasi-periodic solutions in high-

dimensional Lorenz models

Dissipative Lorenz models
• large dissipations, steady state solutions
• moderate dissipations, chaotic solutions
• small dissipations, limit cycles 
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Nonlinear Feedback Loop

• -XZ and XY form a nonlinear feedback loop (NFL).
• Mathematically, the NFL leads to complex eigenvalues in 

locally linear systems.
• Physically, the NFL acts as a nonlinear restoring force to 

produce nonlinear oscillatory solutions (e.g., 3D-NLM). 
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Six Modes and their Derivatives 

These three modes were used in the original Lorenz model

Three additional modes with two additional vertical wavenumbers are included in this study.
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The Nonlinear Feedback Loop in the 3DLM

• In the original 3D Lorenz model, a feedback loop forms with J(M1,M2) and 
J(M1,M3). 

• In the 5DLM, the inclusion of M5 extends the feedback loop.
• Note that the feedback loop also indicates that any error growth of small-

scale perturbations will be remained within the system. Namely, they can not 
upscale further to alter large-scale  (or environmental) flow.

In the original 5D Lorenz model, the Jacobian has only two terms:  

A loop appears as M2à M3 à (-M2)

≈

3D

M2

M3
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Five-Dimensional Lorenz Model (5DLM)

Major negative feedback term

1) r – Rayleigh number:  (Ra/Rc)
a dimensionless measure of temperature 
difference between top and bottom surfaces of 
liquid; proportional to effective force on fluid

2) σ – Prandtl number: (ν/κ)
the ratio of the kinetic viscosity (κ, momentum 
diffusivity) to thermal diffusivity (ν)

3) b – Physical proportion: (4/(1+a2))
4) d – (9+a2) /(1+a2)
5) a – the ratio of the vertical height h of the fluid 

layer to the horizontal size of the convection 
rolls. It turns out that for b =8/3, the convection 
begins for the smallest value of the Rayleigh 
number, that is, for the smallest value of the 
temperature difference.

tHa 22 )/)(1( pkt += (dimensionless time)
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An Extension of Nonlinear Feedback Loop
Scale Interactions via J(M1,Mj) 

A schematic diagram of downscaling and upscaling
processes associated with J(M1,Mj), j = 2, 3, 5, or, 
6. For a given Mj mode, J(M1,Mj) may lead to a 
downscaling process indicated by a downward 
arrow, and an upscaling process by an upward 
arrow. Scale interactions in the 3DLM are shown 
with red arrows, while additional interactions 
enabled in the 5DLM with blue arrows.

Trunk 

Branches 

Shen, Bo-Wen,  2014a: Nonlinear Feedback in a Five-
dimensional Lorenz Model.  (JAS)

The degree of nonlinearity is measured by the 
degree of the extension of the nonlinear 
feedback loop.



34Recurrent orbits in high-dimensional Lorenz models CHAOS2017, Barcelona, Spain, 30 May – 2 June, 2017

Extended Nonlinear Feedback Loop in the 7DLM

3DLM

5DLM

7DLM



36Recurrent orbits in high-dimensional Lorenz models CHAOS2017, Barcelona, Spain, 30 May – 2 June, 2017

Nondissipative Lorenz Models

7D-NLM5D-NLM
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Locally Linear Systems
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Uncoupled Locally Linear Systems

0
0

Two frequencies, Xc and 2Xc

0
0

0
0

Three 
frequencies, Xc , 
2Xc, and 3Xc
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Locally Linear Systems

Two incommensurate frequencies

Three 
incommensurate 
frequencies
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Lorenz Models

model rc heating 
terms

solutions references

3DLM 24.74 rX steady or chaotic Lorenz (1963)

3D-NLM n/a rX periodic Shen (2014b)

5DLM 42.9 rX steady or chaotic Shen (2014a,2015a,b)

5D-NLM n/a rX quasi-periodic Faghih-Naini and Shen (2017) 

6DLM 41.1 rX, rX1 steady or chaotic Shen (2015a,b)

7DLM 116.9 rX steady or chaotic Shen (2016a,b)

7D-NLM n/a rX quasi-periodic Shen and Faghih-Naini (2017) 

8DLM 103.4 rX, rX1 steady or chaotic Shen(2016b)

9DLM 102.9 rX, rX1, rX2 steady or chaotic Shen(2016b)

9DLMr 679.8 rX steady or chaotic In preparation

rc: a critical value  of Raleigh parameter for the onset of chaos 
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Linearized Lorenz Models vs. Coupled Systems

Systems with one mass and one spring (a), two  masses and two springs (b) and three  masses and three springs (c). 
Three masses are identical, i.e. m1=m2=m3. Three spring constants k1, k2 and k3 are selected as Xc

2, 4Xc
2, and 9Xc

2, 
respectively. It is shown that the governing equations for the above systems in panels (a)-(c) are identical to those for 
the locally linear 3D-NLM, 5D-NLM, and 7D-NLM, respectively. This comparison illustrates how the nonlinear feedback 
loop and its extension enabled by a proper selection of high wavenumber modes can produce recurrent (i.e., periodic or 
quasi-periodic) solutions.

3D-NLM                5D-NLM                7D-NLM

Two 
incommensurate 

frequencies

Three 
incommensurate 

frequencies
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Two Spatial Modes in the 5D-NLM

Our the linear analytical solutions suggest that:

• The primary spatial mode (Y’), which is dominated by the low frequency 
component, appears ”periodic” (panel a). 

• The secondary spatial mode (Y’1), which has a ratio of 0.38 between the 
amplitude of the high-frequency component and that of the low-frequency 
component, displays “quasi-periodicity”, appearing “more irregular” as compared 
to the primary spatial mode (Y’) (panel b).
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Three Spatial Modes in the 7D-NLM

The tertiary mode (Y’2) with the smallest spatial scale displays three prominent 
incommensurate frequencies, appearing the most “irregular” solution (right panels).  

spectral 
analysis 

Three 
prominent 
frequencies 
for Y’2.

(a) X’                  (b) Y’               (c) Y‘1 (d) Y‘2
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Summary

Challenging questions that have been (partially) addressed are:
• how can we build models (e.g., increasing resolutions) to improve the 

extended-range (15-30 days) numerical weather predictions? 

• Is weather chaotic?

In additional to real-world modeling studies, we have derived high-
dimensional Lorenz models to illustrate the following processes that are 
associated with the nonlinear feedback loop and its interactions with 
dissipative and heating terms:
1. Negative nonlinear feedback using the 5D, 7D, and 9DLMs;

2. Positive nonlinear feedback using the 6D and 8DLMs;

3. Recurrence (in periodic and quasi-periodic solutions) using the non-
dissipative 3D, 5D and 7D LMs.
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Summary: the Role of Nonlinear Feedback Loop

• Mathematically, the NFL leads to complex eigenvalues in locally linear 
systems.

• Physically, it acts as a nonlinear restoring force to produce nonlinear 
oscillatory solutions (e.g., in the 3D-NLM). 

• In the 5D-NLM, the occurrence of two incommensurate frequencies is 
associated with the extended NFL that provides two-way interactions 
between the primary (X,Y,Z) and secondary Fourier modes (Y1, Z1).

• Using the 7D-NLM (9D-NLM) that was derived based on the further 
extension of the nonlinear feedback loop, we obtain quasi-periodic 
solutions with three (four) incommensurate frequencies. 

• A mathematical analogy between the linearized NLMs and the systems 
with various springs is derived, indicating the association of recurrent 
solutions with the NFL. 

• Using the dissipative LMs or non-dissipative LMs (NLMs), we have 
discussed the association of recurrent solutions (e.g., quasi-periodic 
solutions and limit cycles) with the nonlinear feedback loop (NFL).
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Future Work

• The 9DLM  is derived based on the extension of the nonlinear feedback loop 
in the 7DLM.

• A linear stability analysis suggests that non-trivial critical points are stable. 
• An analysis suggests that the ensemble Lyapunov exponent (eLE) becomes 

positive when r is equal or greater than 679.8.
• Is the solution with r=680 chaotic? A strange attractor or ”Hamiltonian”-type 

chaos?

(x=100, y=100, z=100, y1=100, z1=100, y2=100, z2=100, y3=100, z3=100)(x=0, y=1, z=0, y1=0, z1=0, y2=0, z2=0, y3=0, z3=0)

a strange attractor,
a limit cycle or

a high-dimensional 
torus? 



55Recurrent orbits in high-dimensional Lorenz models CHAOS2017, Barcelona, Spain, 30 May – 2 June, 2017

Acknowledgements

• SDSU: Ricardo Carretero, Joey Lin and Sam Shen 
• UTA: Zdzislaw E. Musielak
• CU: Roger Pielke Sr.
• The University of Arizona: Xubin Zeng
• Federal University of Rio de Janeiro: Julio Buchnann
• UCAR: Richard Anthes
• University of Hamburg: V. Lucarini
• NC A&T State U.: Yuh-Lang Lin
• NASA/JPL: Frank Li
• NASA/GSFC: Chung-Lin Shie
• UAH: Yu-Ling Wu
• NASA/ARC: Samson Cheung and David Kao
• Royal Meteorological Institute of Belgium: S. Vannitsem

• Funding Sources: SDSU College of Sciences, NASA ESTO (Earth Science Technology 
Office) AIST (Advanced Information System Technology) Program


