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Lorenz Models

heating solutions references
terms

3DLM 24.74 steady or chaotic  Lorenz (1963)
3D-NLM n/a rX periodic Shen (2014b)
SDLM 42.9 rX steady or chaotic  Shen (2014a,2015a,b)
5D-NLM  n/a rX quasi-periodic Faghih-Naini and Shen (2017)
6DLM 41.1 rX, rX, steady or chaotic  Shen (2015a,b)
7DLM 116.9 rX steady or chaotic  Shen (2016a,b)
7/D-NLM  n/a rX quasi-periodic Shen and Faghih-Naini (2017)

8DLM  103.4 rX, rX, steady or chaotic  Shen(2016b)
9DLM 102.9 rX, rX;, rX, steady or chaotic  Shen(20716b)
O9DLMr  679.8 rX steady or chaotic  In preparation

rc: a critical value of Raleigh parameter for the onset of chaos

Recurrent orbits in high-dimensional Lorenz models 3 CHAOS2017, Barcelona, Spain, 30 May — 2 June, 2017



QOutline

1. Introduction

e The Three-Dimensional Lorenz Model (3DLM, Lorenz, 1963)
-- the nonlinear feedback loop (NFL)

e The 5DLM (Shen 2014)
-- an extension of nonlinear feedback loop

2. Results: the role of the extended nonlinear feedback loop

e The 7D nondissipative LM (7D-NLM)
-- quasi-periodic solutions with three incommensurate frequencies

3. Summary
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Promising 30-day Simulations of Hurricane Helene

Track Forecast Intensity Forecast
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1. Are the simulations of tropical cyclone (TC) genesis consistent with
Chaos theory?

2. Why can the high-resolution global model have skills?

Shen, B.-W., W.-K. Tao, and M.-L. Wu, 2010b: African Easterly Waves and African Easterly Jet in
30-day High-resolution Global Simulations. A Case Study during the 2006 NAMMA period.
Geophys. Res. Lett., L18803, doi:10.1029/2010GL044355.
(Helene: 12-24 September, 2006)
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Chaos and Butterfly Effect

The following folklore has been used as an analogy of the butterfly effect (Gleick, 1987):

“For want of a nail, the shoe was lost.
For want of a shoe, the horse was lost.
For want of a horse, the rider was lost.
For want of a rider, the battle was lost.

For want of a battle, the kingdom was lost.
And all for the want of a horseshoe nail.”

However, Lorenz (2008) made the following comments:

1. Let me say right now that | do not feel that this verse is describing true chaos,
but better illustrates the simpler phenomenon of instability.

2. The implication is that subsequent small events will not reverse the outcome.

« Gleick, J., 1987: Chaos: Making a New Science. New York. Penguin. 360pp.
« Lorenz, E., 2008: The butterfly effect. Premio Felice Pietro Chisesi e Caterina
Tomassoni award lecture, University of Rome, Rome, April 2008.
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“Responses”

Lorenz’s comments support the view that the verse neither describes
negative (nonlinear) feedback nor indicates recurrence, the latter of
which is required for the appearance of a butterfly pattern.
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Objectives

« Determine the physical process that is responsible for the recurrence of
the solution.

« the nonlinear feedback loop (NFL)

* Propose a systematic approach for selecting new (spatial) modes to
improve the stability of high-dimensional Lorenz models.

« an analysis on the extension of the nonlinear feedback loop

« Examine the impact of the extended nonlinear feedback loop on the
appearance of quasi-periodic solutions with incommensurate
frequencies.

» Understand whether a steady solution, a chaotic solution, a limit cycle
solution or a high-dimensional torus can better describe weather.
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Equations for Rayleigh-Benard Convection

By assuming 2D (x,z), incompressible and Boussinesq flow, the following
equations that describe the so-called Rayleigh-Benard Convection
were used in Lorenz (1963):

This does not appear explicitly in the Lorenz model.

d _, A 0(9
@— anr/a:VQQ
ot _ H\ox

Boundary Forcing, which is represented by ‘r’.

Here 1) is the streamfunction that gives u = —¢, and w = 1,.. 0 is
the temperature perturbation. The constants, g, a, v, and s denote
the acceleration of gravity, the coefficient of thermal expansion, the
kinematic viscosity, and the thermal conductivity, respectively.

» Navier-Stokes equation with constant viscosity
» Heat transfer equation with constant thermal conductivity
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3-Dimenaional Lorenz Model (3DLM)

1) r — Rayleigh number: (Ra/Rc)

a dimensionless measure of temperature

difference between top and bottom

surfaces of liquid; proportional to effective

force on fluid;
2) o — Prandtl number: (v/K)

the ratio of the kinetic viscosity (K,
momentum diffusivity) to thermal
diffusivity (v);
3) b — Physical proportion: (4/(1+a2)), b=8/3;
4) a — a=I/m, the ratio of the vertical height h

of the fluid layer to the horizontal size of
the convection rolls. b =8/3;

e |=amn/H and m=1i/H.

dX
dr =—oX +a¥, M
dy
o :@ rX -, M,
dr
dz
— bZ.
dT M;

-XZ is associated with the J(M1, M3),
indicating the impact of the M3 mode.
With no —XZ, the above system is
reduced to become a system with
linear terms only, leading to an
unstable solution as r>1.
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Physical Processes in Lorenz Models

¢ Dissipative terms (e.g., -bZ)
¢ Heating terms (e.g., rX)
¢ Nonlinear terms. (e.g., -XZ and XY)

(A) Dissipative Lorenz models (B) non-Dissipative Lorenz models

« small r, steady state solutions « "Periodic” solutions or

* moderate r, chaotic solutions homoclinic orbits

* large r, limit cycles » Quasi-periodic solutions in high-
dimensional Lorenz models

v

Dissipative Lorenz models

» large dissipations, steady state solutions
 moderate dissipations, chaotic solutions
« small dissipations, limit cycles
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Nonlinear Feedback Loop

e -XZ and XY form a nonlinear feedback loop (NFL).

e Mathematically, the NFL leads to complex eigenvalues in
locally linear systems.

e Physically, the NFL acts as a nonlinear restoring force to
produce nonlinear oscillatory solutions (e.g., 3D-NLM).

Recurrent orbits in high-dimensional Lorenz models 17 CHAOS2017, Barcelona, Spain, 30 May — 2 June, 2017



Six Modes and their Derivatives

These three modes were used in the original Lorenz model
\

o o* o
\ mode D Oz 92
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-

—/
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Mg = sin(4mz)
- / 4

Three additional modes with two additional vertical wavenumbers are included in this study.

dmcos(4mz)
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The Nonlinear Feedback Loop in the 3DLM

In the original 3D Lorenz model, the Jacobian has only two terms:

J(1,0) = C1Cs ( XYy, M) |- X 2y, MSN |

l

~ —miMy — =+ XY, M,
dr

v Z
— milMs; :Ccll :— bZz. M
T

A loop appears as My,> M; 2 (-M,)

* In the original 3D Lorenz model, a feedback loop forms with J(M,,M,) and
J(M1,M3).

* Note that the feedback loop also indicates that any error growth of small-
scale perturbations will be remained within the system. Namely, they can not
upscale further to alter large-scale (or environmental) flow.
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Five-Dimensional Lorenz Model (5DLM)

r=x(+a>)(x/H)*t (dimensionless time)

1) r — Rayleigh number: (Ra/Rc) e = —0X + 7Y,

a dimensionless measure of temperature
difference between top and bottom surfaces of ﬂ XZ4+rX—Y
liquid; proportional to effective force on fluid dr ’

2) o — Prandtl number: (v/K) d7
the ratio of the kinetic viscosity (k, momentum E = XY @ bz,

diffusivity) to thermal diffusivity (v)

3) b — Physical proportion: (4/(1+a?2)) dY, — X7 —2X7, —dY;
T Y
4) d — (9+a2) /(1+a2) dr
5) a — the ratio of the vertical height h of the fluid d/
layer to the horizontal size of the convection A+ =2XY, —4bZ;.
rolls. It turns out that for b =8/3, the convection
begins for the smallest value of the Rayleigh
number, that is, for the smallest value of the
temperature difference.

Major negative feedback term
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An Extension of Nonlinear Feedback Loop

Scale Interactions via J(M;,M))

m

‘J(Ml,Mg) ml(M5—M2) ‘ X7 ‘

The degree of nonlinearity is measured by the @ @ @

degree of the extension of the nonlinear
feedback loop.

3D
-XY

Jacobian Outcome Coef it} -
B l Branches
.\ w My (1)) m l\

X

Shen, Bo-Wen, 2014a: Nonlinear Feedback in a Five- K

dimensional Lorenz Model. (JAS)

Recurrent orbits in high-dimensional Lorenz models 32 CHAOS2017, Barcelona, Spain, 30 May — 2 June, 2017



Extended Nonlinear Feedback Loop in the 7DLM

7 ~ \
3DLM
(o) () JQ 5DLM

3D
X _xv,
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Nondissipative Lorenz Models

5D-NLM

dX
= —6X +0Y,
dr

ar _ —XZ+rX =Y,
dr

% = XY — XY, — b7,
dr

d dYy

— = XZ - 2XZi — do¥.
-

le
= 2XY, .
dr L %

/D-NLM
dX
dr
dy
dt
2 Xy XV, —b7
dr
dy;
dr
ddzl — 2XY) — 2XY, — 4b77,
.
dYs

dr

— _XZ+rX-Y,

= XZ —2X 7y — do¥7,

= 2X 7, — 3XZy — de¥5,

4z
d2_3XY2—QbZ/
.
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Locally Linear Systems

(0 ¢ 0 0 0 )
0 0 —X. 0 0
AP—|0 X, 0 [—Xx.| 0
0 0 [x] o0 —2x.
\0 0 0 2x. 0 )
(0 0 0 0 0 0 )
0 0 —X. 0 0 0 0
0 X. 0 [-x.| o0 0 0
A—|0 0o [x] o —2x. 0 0
0 0 0 2x. 0 [=2x.] o0
00 0 0 J[-2x]| o0 @ -3x
\0 0 0 0 0 3, 0 )
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Uncoupled Locally Linear Systems

(O o 0 0 0 \ Two frequencies, X; and 2X,
0o 0 —-X. O 0
AP=10 X. O 0 0
0 0 O 0 —-2X.
\0 0 0 2x. 0 )
(O c 0 0 0 0 0 \ Three
L 0 0 0 frequencies, X, ,
0 X. 0 0 0 0 0 [ 2X,, and 3X,
AP—-10 0 O 0 —2X, 0 0
O 0 0 2X. 0 0 0
0 0 O 0 0 0 —3X,
\0 0 0 0 0 3, 0 )
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Locally Linear Systems

(0 o 0 0 0 \ Two incommensurate frequencies
0 0 —X. 0 0
AP0 X. 0 —X, 0
0 0 |X. 0 —2X,
\0 0 0 2x. 0 )
(O c 0 0 0 0 0 \Three
00 X 0 0 0 0 Incommensurate
0 X 0 | =X 0 0 0" lfrequencies
A P—|10 O X, 0 —2X, 0 0
0 0 0 2X. 0 —2X. 0
0 O 0 0 —2X. 0 —3X,
\0 0 0 0 0 3X. 0 /
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Lorenz Models

heating solutions references
terms

3DLM 24.74 steady or chaotic  Lorenz (1963)
3D-NLM n/a rX periodic Shen (2014b)
SDLM 42.9 rX steady or chaotic  Shen (2014a,2015a,b)
5D-NLM  n/a rX quasi-periodic Faghih-Naini and Shen (2017)
6DLM 41.1 rX, rX, steady or chaotic  Shen (2015a,b)
7DLM 116.9 rX steady or chaotic  Shen (2016a,b)
7/D-NLM  n/a rX quasi-periodic Shen and Faghih-Naini (2017)

8DLM  103.4 rX, rX, steady or chaotic  Shen(2016b)
9DLM 102.9 rX, rX;, rX, steady or chaotic  Shen(20716b)
O9DLMr  679.8 rX steady or chaotic  In preparation

rc: a critical value of Raleigh parameter for the onset of chaos
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Linearized Lorenz Models vs. Coupled Systems

3D-NLM

5D-NLM

/D-NLM

&) b) <)

e 8 X% ke  4X2 ks < 9X2
xl(T)IY/ $2(7‘)-[Y1" zg(T)-[YQ’

kl X02 kQ 4X02
xl(T)IY’ $2(T)IY{

For x2
x1(7) Y/

Two Three
incommensurate iIncommensurate
frequencies frequencies

Systems with one mass and one spring (a), two masses and two springs (b) and three masses and three springs (c).
Three masses are identical, i.e. m;=m,=m,. Three spring constants k,, k, and k; are selected as X2, 4X.?, and 9X_?,
respectively. It is shown that the governing equations for the above systems in panels (a)-(c) are identical to those for
the locally linear 3D-NLM, 5D-NLM, and 7D-NLM, respectively. This comparison illustrates how the nonlinear feedback
loop and its extension enabled by a proper selection of high wavenumber modes can produce recurrent (i.e., periodic or
quasi-periodic) solutions.
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Two Spatial Modes in the 5D-NLM

T T
— high freq mode ---- high freq mode
— low freq mode I B ---- low freq mode
— total field . i H - total field

0.0 0.2 0.4 r 0.6 0.8 1.0 0.0 0.2 0.4 - 0.6 0.8 1.0

Our the linear analytical Solutions suggest that:

* The primary spatial mode (Y’), which is dominated by the low frequency
component, appears “periodic” (panel a).

« The secondary spatial mode (Y’;), which has a ratio of 0.38 between the
amplitude of the high-frequency component and that of the low-frequency
component, displays “quasi-periodicity”, appearing “more irregular’” as compared
to the primary spatial mode (Y’) (panel b).
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Three Spatial Modes in the 7D-NLM
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The tertiary mode (Y’,) with the smallest spatial scale displays three prominent
incommensurate frequencies, appearing the most “irregular” solution (right panels).

Recurrent orbits in high-dimensional Lorenz models 45 CHAOS2017, Barcelona, Spain, 30 May — 2 June, 2017



Summary

Challenging questions that have been (partially) addressed are:
* how can we build models (e.g., increasing resolutions) to improve the
extended-range (15-30 days) numerical weather predictions?

* |s weather chaotic?

In additional to real-world modeling studies, we have derived high-
dimensional Lorenz models to illustrate the following processes that are
associated with the nonlinear feedback loop and its interactions with
dissipative and heating terms:

1.  Negative nonlinear feedback using the 5D, 7D, and 9DLMs;
2. Positive nonlinear feedback using the 6D and 8DLMs;

3. Recurrence (in periodic and quasi-periodic solutions) using the non-
dissipative 3D, 5D and 7D LMs.
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Summary: the Role of Nonlinear Feedback Loop

« Using the dissipative LMs or non-dissipative LMs (NLMs), we have
discussed the association of recurrent solutions (e.g., quasi-periodic
solutions and limit cycles) with the nonlinear feedback loop (NFL).

 Mathematically, the NFL leads to complex eigenvalues in locally linear
systems.

« Physically, it acts as a nonlinear restoring force to produce nonlinear
oscillatory solutions (e.g., in the 3D-NLM).

* In the 5D-NLM, the occurrence of two incommensurate frequencies is
associated with the extended NFL that provides two-way interactions
between the primary (X,Y,Z) and secondary Fourier modes (Y, Z,).

« Using the 7D-NLM (9D-NLM) that was derived based on the further
extension of the nonlinear feedback loop, we obtain quasi-periodic
solutions with three (four) incommensurate frequencies.

« A mathematical analogy between the linearized NLMs and the systems
with various springs is derived, indicating the association of recurrent
solutions with the NFL.
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Future Work

« The 9DLM is derived based on the extension of the nonlinear feedback loop

in the 7DLM.

« Alinear stability analysis suggests that non-trivial critical points are stable.

* An analysis suggests that the ensemble Lyapunov exponent (eLE) becomes

positive when r is equal or greater than 679.8.
» |s the solution with r=680 chaotic? A strange attractor or "Hamiltonian”-type

chaos?

Y (9DLMr,r=680)
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