
Bo Li- Google Inc.
Bo Li
- Google Inc.
About
118
Publications
27,476
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
8,852
Citations
Introduction
Skills and Expertise
Current institution
Publications
Publications (118)
In this work, we introduce a ``score-based assessment'' framework for estimating the transferability of pre-trained speech models (PSMs) for fine-tuning target tasks. We leverage upon two representation theories, Bayesian likelihood estimation and optimal transport, to generate rank scores for the PSM candidates using the extracted representations....
End-to-end models with large capacity have significantly improved multilingual automatic speech recognition, but their computation cost poses challenges for on-device applications. We propose a streaming truly multilingual Conformer incorporating mixture-of-expert (MoE) layers that learn to only activate a subset of parameters in training and infer...
Speech data from different domains has distinct acoustic and linguistic characteristics. It is common to train a single multidomain model such as a Conformer transducer for speech recognition on a mixture of data from all domains. However, changing data in one domain or adding a new domain would require the multidomain model to be retrained. To thi...
We propose Conditional Adapter (CoDA), a parameter-efficient transfer learning method that also improves inference efficiency. CoDA generalizes beyond standard adapter approaches to enable a new way of balancing speed and accuracy using conditional computation. Starting with an existing dense pretrained model, CoDA adds sparse activation together w...
Word-piece models (WPMs) are commonly used subword units in state-of-the-art end-to-end automatic speech recognition (ASR) systems. For multilingual ASR, due to the differences in written scripts across languages, multilingual WPMs bring the challenges of having overly large output layers and scaling to more languages. In this work, we propose a un...
While large language models (LLM) have made impressive progress in natural language processing, it remains unclear how to utilize them in improving automatic speech recognition (ASR). In this work, we propose to train a single multilingual language model (LM) for shallow fusion in multiple languages. We push the limits of the multilingual LM to cov...
We propose JEIT, a joint end-to-end (E2E) model and internal language model (ILM) training method to inject large-scale unpaired text into ILM during E2E training which improves rare-word speech recognition. With JEIT, the E2E model computes an E2E loss on audio-transcript pairs while its ILM estimates a cross-entropy loss on unpaired text. The E2E...
In this work, we propose a new parameter-efficient learning framework based on neural model reprogramming for cross-lingual speech recognition, which can \textbf{re-purpose} well-trained English automatic speech recognition (ASR) models to recognize the other languages. We design different auxiliary neural architectures focusing on learnable pre-tr...
Automatic speech recognition (ASR) systems typically rely on an external endpointer (EP) model to identify speech boundaries. In this work, we propose a method to jointly train the ASR and EP tasks in a single end-to-end (E2E) multitask model, improving EP quality by optionally leveraging information from the ASR audio encoder. We introduce a "swit...
We present JOIST, an algorithm to train a streaming, cascaded, encoder end-to-end (E2E) model with both speech-text paired inputs, and text-only unpaired inputs. Unlike previous works, we explore joint training with both modalities, rather than pre-training and fine-tuning. In addition, we explore JOIST using a streaming E2E model with an order of...
Multilingual end-to-end automatic speech recognition models are attractive due to its simplicity in training and deployment. Recent work on large-scale training of such models has shown promising results compared to monolingual models. However, the work often focuses on multilingual models themselves in a single-pass setup. In this work, we investi...
We summarize the results of a host of efforts using giant automatic speech recognition (ASR) models pre-trained using large, diverse unlabeled datasets containing approximately a million hours of audio. We find that the combination of pre-training, self-training and scaling up model size greatly increases data efficiency, even for extremely large t...
Language identification is critical for many downstream tasks in automatic speech recognition (ASR), and is beneficial to integrate into multilingual end-to-end ASR as an additional task. In this paper, we propose to modify the structure of the cascaded-encoder-based recurrent neural network transducer (RNN-T) model by integrating a per-frame langu...
On-device end-to-end (E2E) models have shown improvements over a conventional model on English Voice Search tasks in both quality and latency. E2E models have also shown promising results for multilingual automatic speech recognition (ASR). In this paper, we extend our previous capacity solution to streaming applications and present a streaming mul...
In voice-enabled applications, a predetermined hotword isusually used to activate a device in order to attend to the query.However, speaking queries followed by a hotword each timeintroduces a cognitive burden in continued conversations. Toavoid repeating a hotword, we propose a streaming end-to-end(E2E) intended query detector that identifies the...
While a streaming voice assistant system has been used in many applications, this system typically focuses on unnatural, one-shot interactions assuming input from a single voice query without hesitation or disfluency. However, a common conversational utterance often involves multiple queries with turn-taking, in addition to disfluencies. These disf...
Almost none of the 2,000+ languages spoken in Africa have widely available automatic speech recognition systems, and the required data is also only available for a few languages. We have experimented with two techniques which may provide pathways to large vocabulary speech recognition for African languages: multilingual modeling and self-supervised...
The recurrent neural network transducer (RNN-T) has recently become the mainstream end-to-end approach for streaming automatic speech recognition (ASR). To estimate the output distributions over subword units, RNN-T uses a fully connected layer as the joint network to fuse the acoustic representations extracted using the acoustic encoder with the t...
Self-supervised training has shown promising gains in pretraining models and facilitating the downstream finetuning for speech recognition, like multilingual ASR. Most existing methods adopt a 2-stage scheme where the self-supervised loss is optimized in the first pretraining stage, and the standard supervised finetuning resumes in the second stage...
We summarize the results of a host of efforts using giant automatic speech recognition (ASR) models pre-trained using large, diverse unlabeled datasets containing approximately a million hours of audio. We find that the combination of pre-training, self-training and scaling up model size greatly increases data efficiency, even for extremely large t...
Building ASR models across many language families is a challenging multi-task learning problem due to large language variations and heavily unbalanced data. Existing work has shown positive transfer from high resource to low resource languages. However, degradations on high resource languages are commonly observed due to interference from the heter...
End-to-end models with auto-regressive decoders have shown impressive results for automatic speech recognition (ASR). These models formulate the sequence-level probability as a product of the conditional probabilities of all individual tokens given their histories. However, the performance of locally normalised models can be sub-optimal because of...
We study the problem of word-level confidence estimation in subword-based end-to-end (E2E) models for automatic speech recognition (ASR). Although prior works have proposed training auxiliary confidence models for ASR systems, they do not extend naturally to systems that operate on word-pieces (WP) as their vocabulary. In particular, ground truth W...
End-to-end (E2E) models have shown to outperform state-of-the-art conventional models for streaming speech recognition [1] across many dimensions, including quality (as measured by word error rate (WER)) and endpointer latency [2]. However, the model still tends to delay the predictions towards the end and thus has much higher partial latency compa...
For various speech-related tasks, confidence scores from a speech recogniser are a useful measure to assess the quality of transcriptions. In traditional hidden Markov model-based automatic speech recognition (ASR) systems, confidence scores can be reliably obtained from word posteriors in decoding lattices. However, for an ASR system with an auto-...
Streaming automatic speech recognition (ASR) aims to emit each hypothesized word as quickly and accurately as possible. However, emitting fast without degrading quality, as measured by word error rate (WER), is highly challenging. Existing approaches including Early and Late Penalties and Constrained Alignments penalize emission delay by manipulati...
Streaming automatic speech recognition (ASR) aims to emit each hypothesized word as quickly and accurately as possible, while full-context ASR waits for the completion of a full speech utterance before emitting completed hypotheses. In this work, we propose a unified framework, Universal ASR, to train a single end-to-end ASR model with shared weigh...
Recently, a semi-supervised learning method known as "noisy student training" has been shown to improve image classification performance of deep networks significantly. Noisy student training is an iterative self-training method that leverages augmentation to improve network performance. In this work, we adapt and improve noisy student training for...
End-to-end (E2E) models fold the acoustic, pronunciation and language models of a conventional speech recognition model into one neural network with a much smaller number of parameters than a conventional ASR system, thus making it suitable for on-device applications. For example, recurrent neural network transducer (RNN-T) as a streaming E2E model...
Thus far, end-to-end (E2E) models have not been shown to outperform state-of-the-art conventional models with respect to both quality, i.e., word error rate (WER), and latency, i.e., the time the hypothesis is finalized after the user stops speaking. In this paper, we develop a first-pass Recurrent Neural Network Transducer (RNN-T) model and a seco...
Recently, SpecAugment, an augmentation scheme for automatic speech recognition that acts directly on the spectrogram of input utterances, has shown to be highly effective in enhancing the performance of end-to-end networks on public datasets. In this paper, we demonstrate its effectiveness on tasks with large scale datasets by investigating its app...
The papers in this special section focus on audio signal processing which is currently undergoing a paradigm change, where data-driven machine learning is replacing hand-crafted feature design. These papers aim to promote progress, systematization, understanding, and convergence of applying machine learning in the area of audio signal processing. S...
Given the recent surge in developments of deep learning, this article provides a review of the state-of-the-art deep learning techniques for audio signal processing. Speech, music, and environmental sound processing are considered side-by-side, in order to point out similarities and differences between the domains, highlighting general methods, pro...
Lingvo is a Tensorflow framework offering a complete solution for collaborative deep learning research, with a particular focus towards sequence-to-sequence models. Lingvo models are composed of modular building blocks that are flexible and easily extensible, and experiment configurations are centralized and highly customizable. Distributed trainin...
We present two end-to-end models: Audio-to-Byte (A2B) and Byte-to-Audio (B2A), for multilingual speech recognition and synthesis. Prior work has predominantly used characters, sub-words or words as the unit of choice to model text. These units are difficult to scale to languages with large vocabularies, particularly in the case of multilingual proc...
End-to-end (E2E) models, which directly predict output character sequences given input speech, are good candidates for on-device speech recognition. E2E models, however, present numerous challenges: In order to be truly useful, such models must decode speech utterances in a streaming fashion, in real time; they must be robust to the long tail of us...
Sequence-to-sequence models provide a simple and elegant solution for building speech recognition systems by folding separate components of a typical system, namely acoustic (AM), pronunciation (PM) and language (LM) models into a single neural network. In this work, we look at one such sequence-to-sequence model, namely listen, attend and spell (L...
Attention-based encoder-decoder architectures such as Listen, Attend, and Spell (LAS), subsume the acoustic, pronunciation and language model components of a traditional automatic speech recognition (ASR) system into a single neural network. In our previous work, we have shown that such architectures are comparable to state-of-the-art ASR systems o...
For decades, context-dependent phonemes have been the dominant sub-word unit for conventional acoustic modeling systems. This status quo has begun to be challenged recently by end-to-end models which seek to combine acoustic, pronunciation, and language model components into a single neural network. Such systems, which typically predict graphemes o...
We investigate the effectiveness of generative adversarial networks (GANs) for speech enhancement, in the context of improving noise robustness of automatic speech recognition (ASR) systems. Prior work demonstrates that GANs can effectively suppress additive noise in raw waveform speech signals, improving perceptual quality metrics; however this te...
Training a conventional automatic speech recognition (ASR) system to support multiple languages is challenging because the sub-word unit, lexicon and word inventories are typically language specific. In contrast, sequence-to-sequence models are well suited for multilingual ASR because they encapsulate an acoustic, pronunciation and language model j...