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Abstract—This paper studies the distributed dimensionality
reduction fusion estimation problem for a class of cyber-physical
systems (CPSs) under denial-of-service (DoS) attacks. The prob-
lem is modeled under the resource constraints (i.e. bandwidth or
energy) for the defender and attacker. Based on a new attack
and compensation model, a recursive distributed Kalman fusion
estimator (DKFE) is designed for the addressed CPSs. Though the
optimization objects of the defender and attacker are opposite,
the corresponding optimization problems are established based
on different available information. In this case, an explicit form of
suboptimal dimensionality reduction is given against DoS attacks,
while an effective attack strategy is proposed for the attacker.
A stability condition is derived such that the mean square error
of the designed DKFE is bounded. Two illustrative examples are
given to show the effectiveness of the proposed methods.

Index Terms—Fusion estimation, Kalman filtering, DoS at-
tacks, Dimensionality reduction, Stability analysis, Cyber-
physical systems

I. INTRODUCTION

As cyber-physical systems (CPSs) are being widely inte-
grated in various critical infrastructure and running on wired
or wireless communication networks, however, these critical
infrastructures are vulnerable to cyber security threats [1]–
[4]. Since state estimation plays an essential role in the
monitoring and supervision of CPSs, its importance has made
the security and estimation performance a major concern [5]–
[9]. As is known, multi-sensor information fusion estimation,
which is one of the important issues in information fusion,
utilizes useful information contained in multiple sets of data
for the purpose of estimating a quantity/a parameter in a
process [10]. Thus, fusion estimation provides an attractive
alternative to study secure estimation problem under attacks,
and the approach leads to improvement of estimation accuracy
and enhancement of reliability and robustness against faults
[10]–[16]. Moreover, distributed fusion structure is generally
more robust, reliable, and fault-tolerant than centralized fusion
framework [11], [12], [17], while the denial-of-service (DoS)
attack (which can congest the communication channel) is the
most reachable attack pattern in the attack space [18] and
the most financially expensive security incidents [19]. In this
sense, the distributed information fusion estimation problem
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is investigated in this paper for a class of CPS architecture
(see Fig.1) under DoS attacks, where the sensor node only
measures the target information, and the sink node is a gate-
way node, which is responsible for receiving measurements,
computing the local estimate and sending the estimate to an
information fusion center. A typical example of such CPS is
the smart grid communication systems [20], [21].

Physical Process: x(t)

Information Fusion Center

Sensor node Sink node

DoS attack that can congest communication channel

Communication channel

An effective coverage can be managed by the sink node

Feedback channel from FC to each sink node

Fig. 1. Distributed information fusion estimation for a class of spatially
distributed physical systems under DoS attacks.

When each local estimate with the same dimension of
system state “x(t)” is sent to the fusion center (FC) through
a communication channel, it may suffer communication band-
width constraints, particularly, for large-scale CPSs with high-
dimension state “x(t)”. This is because any communication
network can only carry a finite amount of information per
unit of time. It has been pointed out in [8] that, for a multi-
dimensional local estimate of “x(t)” in CPSs, the dimensional-
ity reduction method (see [22]–[24]) is more suitable to solve
the problem of bandwidth constraint as compared with the
vector quantization method (see [25], [26]). On the other hand,
when considering the state estimation under attacks, the false
data injection attack, which affects the data integrity of pack-
ets, has been studied in [27]–[32] to design different secure
estimation strategies. Meanwhile, the problem of estimating a
deterministic mean-shift parameter was investigated in [33] in
the presence of Byzantine attacks, and a data driven approach
was proposed in [34] to study the state estimation problem
under subspace attacks. Since attacks may run out of energy
very fast when their energy budget is limited [35], a random
DoS attack strategy was introduced in [36] to save energy
by intermittently launching attacks. Then, an optimal energy-
constrained attack strategy was proposed in [37] to maximize
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the expected average estimation error. By simultaneously
considering decision processes of the attacker and defender,
the game-theoretic approach was used in [38] to study state
estimation problem under attacks. Meanwhile, the resilient
control problem has been studied in [39]–[43] for the CPSs
under attacks. It should be pointed out that most existing works
are focus on the single-sensor state estimation or centralized
fusion state estimation under attacks, however, the distributed
dimensionality reduction fusion estimation problem under DoS
attacks is challenging, and has not yet been fully investigated.

Under the distributed fusion framework, only partial compo-
nents of each local estimate of “x(t)” can be transmitted to the
FC because of bandwidth constraints. At the same time, due
to the attacking energy constraints and the spatially distributed
sink nodes, the adversary can only intermittently execute DoS
attacks, and only κ of the L communication channels can be
jammed to cause packet losses when launching a DoS attack.
Motivated by the aforementioned analysis, the aims of this
paper are i) how to design dimensionality reduction strategy
so as to minimize the fusion estimation error by resorting to
the feedback channels, and ii) how to design attack strategy so
as to maximize the fusion estimation error by the eavesdropped
information of the attacker. In summary, the main contributions
are as follows:

• By constructing a unified model that can compensate
the information loss caused by dimensionality reduction
and DoS attacks, the recursive distributed Kalman fusion
estimator (DKFE) is designed for the CPSs under attacks.

• A simple judgement criterion is proposed to determine the
dimensionality reduction and information compensation
strategy for the defender, and an effective attack schedule,
which is dependent on the accuracy of the eavesdropped
information, is proposed for the attacker.

• Based on the defender’s dimensionality reduction and
compensation strategy and the attacker’s attack strategy,
a stability condition is derived such that the mean square
error (MSE) of the DKFE is bounded.

Table I summarizes the notation most frequently used
throughout the remainder of the paper.

II. PROBLEM FORMULATION

A. Modeling of Dimensionality Reduction and DoS Attacks

Consider the physical process of Fig.1 modeled by the
following discrete state-space model:

x(t+ 1) = Ax(t) + w(t), (1)

where x(t) ∈ Rn is the current state of the process. It is
considered that each sensor can collect information on the
partial state components. When the sensor measurements are
sent to the corresponding sink nodes, the ith sink node’s
measurement yi(t) ∈ Rqi is modeled by:

yi(t) = Cix(t) + vi(t)(i = 1, 2, · · · , L), (2)

where A ∈ Rn×n and Ci ∈ Rqi×n. w(t) ∈ Rn and
vi(t) ∈ Rqi are uncorrelated zero-mean Gaussian white noises

TABLE I
TABLE OF NOTATIONS

∆
= define
E{·} mathematical expectation
diag{·} block diagonal matrix
Tr(·) trace of the matrix
rank(·) rank of the matrix
|| · ||2 2-norm of the matrix
Prob{X} occurrence probability of the event X
XT transpose of matrix X
X(i, i) the ith diagonal element of the matrix X
a⊥b orthogonal vectors a and b
Rn n-dimensional real Euclidean space
Rn×m set of n×m real matrix
In identity matrix of size n× n
n! n(n− 1)(n− 2) · · · 1

δt,t1 δt,t1 =

{
1 t = t1
0 t ̸= t1

A system matrix of a CPS
w(t) process noise in a CPS
Qw covariance of w(t)
Ci measurement matrix
vi(t) measurement noise from the ith sensor
Qvi covariance of vi(t)
L the number of sensors or communication channels
x(t) state of a CPS
yi(t) measurement from ith sensor
x̂i(t) the ith local state estimate of a CPS based on yi(t)
η(t) decision variable is used to determine whether the

adversary launches a DoS attack or not at time t
ηi(t) decision variable is used to determine whether the ith

communication channel is jammed or not by attacks
at time t

ri only ri components of x̂i(t) are allowed to be
transmitted to the FC at each time

γij(t) decision variable is used to determine whether the jth
component of x̂i(t) is selected and sent to the FC or not

Hi(t) compression operator:
Hi(t) = diag{γi1(t), γi2(t), · · · , γin(t)}

κ only κ communication channels can be jammed when
the adversary launches a DoS attack

x̃i(t) estimation error of x̂i(t)
x̂si (t) dimensionality reduction signal that is sent to the FC
x̄si (t) local estimation signal received by the FC
x̂ci (t) compensating state estimate of x(t) in the FC
x̃ci (t) estimation error of x̂ci (t)
zx(t) the adversary eavesdrops on the x(t)
zic(t) the adversary eavesdrops on the x̂ci (t)
x̂A(t− 1) least square estimate of x(t− 1) based on zx(t)
x̂iAC(t− 1) least square estimate of x̂ci (t− 1) based on zic(t)
x̂(t) DKFE for the CPSs
x̃(t) fusion estimation error of x̂(t)
Pij(t) estimation error covariance between x̂i(t) and x̂j(t):

E{x̃i(t)x̃Tj (t)}(∀i, j)
Σij(t) estimation error covariance between x̂ci (t) and x̂cj(t):

E{x̃ci (t)[x̃cj(t)]T}(∀i, j)
P (t) fusion estimation error covariance: E{x̃(t)x̃T(t)}
Wi(t) weighting fusion matrix

satisfying

E{[wT(t) vTi (t)]
T[wT(t1) v

T
j (t1)]}

= δt,t1diag{Qw, δi,jQvi
} . (3)

As pointed out in [6], model (1) is widely adopted for
describing state dynamics of power systems, smart gird in-
frastructures, and build automation systems, etc. Based on the
measurements {yi(1), · · · , yi(t)}, the local optimal estimator
at the ith sink node is given by the Kalman filter [44]:{

x̂i(t) = ΦKi(t)x̂i(t− 1) + Ki(t)yi(t)
Ki(t) = P ∗

ii(t)C
T
i [CiP

∗
ii(t)C

T
i +Qvi ]

−1 , (4)
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where GKi(t)
∆
= In − Ki(t)Ci,ΦKi(t)

∆
= GKi(t)A, and

the local optimal estimation error covariance matrix Pii(t) is
computed by:{

Pii(t) = GKi(t)P
∗
ii(t)

P ∗
ii(t) = APii(t− 1)AT +Qw

, (5)

where P ∗
ii(t) denotes one-step prediction error covariance

matrix. Moreover, it follows from (4–5) that the estimation
error cross-covariance matrix Pij(t) is calculated by:

Pij(t) = GKi(t)[APij(t− 1)AT +Qw]G
T
Kj

(t). (6)

As shown in Fig.1, to design an optimal fusion estimator,
each local estimate x̂i(t) must be transmitted to the FC
through communication channel. In fact, the dimension of
the state variable “x(t)” in (1) is high in many large-scale
CPSs, however, any communication channel can only carry a
finite amount of information per unit time. In this case, it is
unrealistic that each sink node can send complete information
on the x̂i(t) to the FC. To reduce communication traffic,
similar to the idea of the dimensionality reduction strategies
in [22], [23], only ri (1 ≤ ri < n) components of the ith
local estimate x̂i(t) are selected and transmitted to the FC at
a particular time. According to this dimensionality reduction
strategy, the allowed sending components (ASC) of x̂i(t) has
∆i possible cases, where ∆i is taken as

∆i = Cri
n =

n!

ri!(n− ri)!
. (7)

Then, at a particular time, only one vector signal, which is
taken from one groups of the above ∆i cases, is selected and
transmitted to the FC, and this selected signal is denoted by
x̂si(t)(∈ Rri).

When each sink node sends x̂si(t) to the remote FC through
communication networks, an adversary can congest the com-
munication channels between the sink nodes and the FC by
launching DoS attacks. This means that the FC may not receive
x̂si(t) at time t. Notice that the attacker has a limited energy
budget and has to determine whether to jam the channels
or not at each sampling time [37]. Moreover, due to the
limited energy and the spatially distributed sink nodes, when
the adversary launches a DoS attack, only κ (1 ≤ κ < L)
channels of the L communication channels can be jammed
such that packets are dropped. To model the above attack
strategy, let η(t) ∈ {0, 1} denote whether the adversary
launches a DoS attack or not at time t. Meanwhile, denote
ηi(t) = 1 or ηi(t) = 0 as the indicator function whether the
ith communication channel is jammed by attacks or not at
time t, and ηi(t) must satisfy:∑L

i=1
ηi(t) = κ (1 ≤ κ < L), (8)

where ηi(t)(i = 1, · · · , L) are to be designed in Section III for
maximizing the performance degradation when the adversary
launches a DoS attack at time t. Meanwhile, it is considered
that η(t) is a Bernoulli random variable with E{η(t)} = η,
where η is called the rate of attack.

Let x̄si(t) denote the local estimation signal received by the
FC. Then, under DoS attacks, each x̄si(t) is modeled by:

x̄si(t) = [1− η(t)ηi(t)]x̂si(t), (9)
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Fig. 2. Block diagram of modeling process.

which means that when η(t) = 0 or η(t) = 1, ηi(t) = 0, the
ith communication channel is not jammed by a DoS attack
at time t, then one has x̄si(t) = x̂si(t). If the distributed
fusion estimator is directly designed based on the signals
x̄si(t)(i = 1, 2, · · · , L), the fusion estimation performance
will be degraded seriously. To prevent the rapid performance
degradation from attacks, according to (9), the compensating
state estimate (CSE) of x(t) in the FC, denoted by x̂ci (t), is
given by:

x̂ci (t) = (1− η(t)ηi(t))[Hi(t)x̂i(t)
+(In −Hi(t))Ax̂

c
i (t− 1)] + η(t)ηi(t)Ax̂ci (t− 1)

(10)

where Hi(t) denotes the compression operator, and

Hi(t) = diag{γi1(t), γi2(t), · · · , γin(t)} (11)

with γij(t) ∈ {0, 1}. When there is no attack at time t, γij(t)
denotes that the jth component of x̂i(t) is sent to the FC or
not. Obviously, Hi(t) can determine the selected ASC x̂si(t).
Then, the binary variables γij(t)(j = 1, · · · , n) must satisfy∑n

j=1
γij(t) = ri (i ∈ {1, · · · , L}), (12)

where ri represents the bandwidth constraint. To clearly show
the selection process of x̂si(t), we give the following example:

Let x̂i(t)
∆
=

1.5
2.7
3.6

. Due to bandwidth constraints, only

two components of x̂i(t) are allowed to be transmitted to
the FC, i.e., ri = 2. Then, the corresponding compression
matrix is Hi(t) = diag{γi1(t), γi2(t), γi3(t)}, where γij(t) ∈
{0, 1}(j = 1, 2, 3) and γi1(t) + γi2(t) + γi3(t) = 2. Notice
that γij(t) = 1 represents the jth component of x̂i(t) is sent
to the FC; otherwise, this component is not allowed to be sent.
From the above analysis, Hi(t) has the following three cases:Case 1 : Hi(t) = diag{1, 1, 0}

Case 2 : Hi(t) = diag{1, 0, 1}
Case 3 : Hi(t) = diag{0, 1, 1}

This result is in line with (7) (i.e., ∆i = 3). Under this case,
when choosing different Hi(t), the corresponding ASC x̂si(t)
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is taken as follows:

Hi(t) = diag{1, 1, 0} ⇒ x̂si(t) =

[
1.5
2.7

]
Hi(t) = diag{1, 0, 1} ⇒ x̂si(t) =

[
1.5
3.6

]
Hi(t) = diag{0, 1, 1} ⇒ x̂si(t) =

[
2.7
3.6

]
Up to now, the problem of the dimensionality reduction and

DoS attacks has been presented, and the process diagram is
shown in Fig.2. Particularly, the proposed CSE model (10) can
describe the following two cases:

• For η(t)ηi(t) = 0, the CSE model reduces to x̂ci (t) =
Hi(t)x̂i(t) + (In −Hi(t))Ax̂

c
i (t− 1), which means that

though the selected x̂si(t) is successfully transmitted
to the FC, the un-transmitted components of x̂i(t) are
compensated based on x̂ci (t− 1).

• For η(t)ηi(t) = 1, the CSE model reduces to x̂ci (t) =
Ax̂ci (t− 1), which means that when the ith communica-
tion channel is jammed by a DoS attack at time t, the
CSE is given by one-step prediction from x̂ci (t− 1).

It is noted that η(t) and ηi(t) in (10) are determined by the
attacker, while Hi(t) in (10) is determined by the defender
that includes the function of sink nodes and the FC.

B. Problem of Interest
Based on the CSEs x̂ci (t) (i = 1, 2, · · · , L) (10), the DKFE

for the addressed CPSs under DoS attacks is given by:

x̂(t) =
∑L

i=1
Wi(t)x̂

c
i (t), (13)

where
∑L

i=1 Wi(t) = In. Since the design of Wi(t) is
dependent on the selection of compression operator Hi(t) and
attack decision variable ηi(t), the key issue for the defender is
how to design Hi(t) satisfying (12), while it is a key issue for
the attacker to design ηi(t) satisfying (8). These are trade-off
parameters between the attacker and defender in the proposed
model. According to the CSE (10), the estimation precision of
x̂ci (t) is dependent on that of x̂ci (t−1). Under this case, when
there are feedback channels from the FC to sink nodes in Fig.1,
the order information on the optimal x̂si(t) can be determined
at the FC side and fed back to the corresponding sink node. On
the other hand, when the attacker decides how to determine
κ (1 ≤ κ < L) communication channels to jam, it is difficult
for the attacker to know the system completely, but the attacker
could eavesdrop on the system information with certain errors.
Under this case, when the adversary launches a DoS attack at
time t, for the attacker, the eavesdropped information can be
expressed as:{

zx(t) = Bx(t)x(t− 1) + ς(t− 1)
zic(t) = Bi

c(t)x̂
c
i (t− 1) + εi(t− 1)

, (14)

where zx(t) and zic(t), respectively, represent the eavesdropped
information from system dynamics and the CSE, while Bx(t)
and Bi

c(t) are the observation matrices. ς(t) and εi(t) are zero-
mean Gaussian white noises, and they may result from active
disturbances of the defender or external disturbances.

Consequently, the problems to be solved in this paper are
described as follows:

P.I) Assume that ηi(t) and Hi(t) (i = 1, 2, · · · , L) are
known in priori, and then the aim is to design the optimal
weighting matrices W1(t), · · · ,WL(t) such that the MSE of
DKFE x̂(t) is minimal at each time step, i.e.,

x̂(t) = arg min
x̂∗(t)

E{[x(t)− x̂∗(t)]
T[x(t)− x̂∗(t)]}, (15)

where x̂∗(t) denotes an arbitrary group of convex linear com-
bination with respective to the CSEs x̂ci (t)(i = 1, 2, · · · , L).

P.II) Utilizing the eavesdropped information (14) and the
desired fusion estimation algorithm (15), design an online
scheduling strategy for determining Hi(t)(i = 1, 2, · · · , L)
and an attack strategy for determining ηi(t)(i = 1, 2, · · · , L)
by solving the following optimization problem:{

min
{H1(t),··· ,HL(t)}

max
{η1(t),··· ,ηL(t)}

E{x̃T(t)x̃(t)}

s.t. : (8) and (12)
, (16)

P.III) Find a stability condition, which is dependent on the
attack schedule and dimensionality reduction strategy, such
that the MSE of DKFE x̂(t) is bounded, i.e.,

lim
t→∞

E{x̃T(t)x̃(t)} = lim
t→∞

Tr(P (t)) < p, (17)

where p is a positive scalar.

III. MAIN RESULTS

In this section, the recursive fusion estimator will be first de-
signed in Subsection A, and then Subsection B will design the
defender’s dimensionality reduction strategy and the attacker’s
attack strategy. Finally, the stability of the designed fusion
estimator will be discussed under the effects of dimensionality
reduction and DoS attacks.

A. DKFE Design

According to the fusion criterion in [12], the optimal
weighting matrices W1(t), · · · ,WL(t) are calculated by:

[W1(t), · · · ,WL(t)] = (ITΣ−1(t)I)−1ITΣ−1(t), (18)

where I = [ITn , · · · , ITn ]T ∈ RnL×n, and

Σ(t) = E{[(x̃c1(t))T · · · (x̃cL(t))T]T
×[(x̃c1(t))

T · · · (x̃cL(t))T]}
. (19)

Then, the estimation error covariance matrix P (t) is given by:

P (t) = (ITΣ−1(t)I)−1. (20)

Therefore, it can be concluded from (13) and (18) that if the
computation procedures of Σ(t) is obtained, then the design of
the DKFE will be completed. Before deriving the main result,
we introduce the following Lemma.

Lemma 1: [22] For stochastic matrices U , Q, G, where

U
∆
= diag{u1, · · · ,un}, Q

∆
= diag{q1, · · · , qn}

G
∆
=

 g11 · · · g1n
...

. . .
...

gn1 · · · gnn


If each random variable gij in G is independent of any random
variables of uk and qk(k = 1, 2, · · · , n), then

E{UGQ} = E{U ⊙Q} ⊗ E{G}
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where “⊗” is defined as [G1 ⊗G2]ij = G1
ijG

2
ij , and the

product “⊙” for the matrices U and B is defined by

U ⊙Q =

 u1q1 · · · u1qn
...

. . .
...

unq1 · · · unqn


Based on Lemma 1, the recursive form of Σ(t) is given in

Theorem 1.
Theorem 1: Define

Λij(t)
∆
= Hi(t)⊙Hj(t)

Mij(t)
∆
= [In −Hi(t)]⊙ [In −Hj(t)]

Vij(t)
∆
= Hi(t)⊙ [In −Hj(t)]

, (21)

where the operators “⊙” and “⊗” are defined in Lemma
1. Then, the estimation error covariance matrix Σij(t) is
calculated by:

Σij(t) = (1− η(t)ηi(t))(1− η(t)ηj(t))Σ
11
ij (t)

+[1− η(t)ηi(t)]η(t)ηj(t)Σ
12
ij (t)

+[1− η(t)ηj(t)]η(t)ηi(t)Σ
21
ij (t)

+η(t)ηi(t)ηj(t)Σ
22
ij (t)

Σ11
ij (t) = Λij(t)⊗ Pij(t) +Mij(t)⊗ Σ22

ij (t)
+Vij(t)⊗ [ΦKi(t)Ωij(t− 1)AT +GKi(t)Qw]

+VT
ji(t)⊗ [AΩT

ji(t− 1)ΦT
Kj

(t) +QwG
T
Kj

(t)]

Σ12
ij (t) = (In −Hi(t))Σ

22
ij (t)

+Hi(t)[ΦKi(t)Ωij(t− 1)AT +GKi(t)Qw]
Σ21

ij (t) = Σ22
ij (t)(In −Hj(t))

+[AΩT
ji(t− 1)ΦT

Kj
(t) +QwG

T
Kj

(t)]Hj(t)

Σ22
ij (t) = AΣij(t− 1)AT +Qw

, (22)

where the statistical correlation between the estimations x̃i(t)

and x̃cj(t), denoted as Ωij(t)
∆
= E{x̃i(t)[x̃cj(t)]T}, is computed

by:

Ωij(t) = (1− ηj(t)η(t))Pij(t)Hj(t) + GKi(t)Qw

+ΦKi
(t)Ωij(t− 1)AT − (1− ηj(t))η(t)ΦKi

(t)
×Ωij(t− 1)ATHj(t)− (1− ηj(t))η(t)GKi(t)QwHj(t)

(23)

where GKi(t) and ΦKi(t) are determined by (4), while Pij(t)
is calculated by (5–6). Moreover, the relationship between
DKFE (10) and each local CSE (13) is given by:

Tr{P (t)} ≤ Tr{Σii(t)}. (24)

Proof: See A.1 in Appendix.
From Theorem 1, when Σ(t) is computed by (22), the

optimal weighting matrices W1(t), · · · ,WL(t) in (15) is cal-
culated by (18).

Remark 1. At time t, an attack schedule is determined by
the attacker, and the selected ASC x̂si(t) is determined by the
sink node. However, the FC can know the variables η(t), ηi(t)
and Hi(t) according to the signal x̄si(t) (9). Moreover, it is
concluded from (22) that the computation procedure for the
Σij(t) is independent of the sensor measurements, and thus
Σij(t) can be separately computed in the FC. Notice that this
subsection does not concern the determining process of η(t),
ηi(t) and Hi(t). Since the binary variable η(t) obeying the
Bernoulli distribution is randomly generated from the attacker,
how to design the attacker’s decision variable ηi(t) and the
defender’s compression matrix Hi(t) to achieve the opposite
goals will be solved in Subsection B.

B. Design of Dimensionality Reduction Strategy and Attack
Strategy

First, we consider the following two facts:
• (F1): For each sink node, it is unable to know whether the

signal x̂si(t) is dropped by attacks or not at time t, and
thus the optimal dimensionality reduction strategy at time
t is only designed based on the the CSEs x̂ci (t− 1)(i =
1, 2, · · · , L).

• (F2): For the attacker, it is unable to know x̂si(t) at time
t, and thus the optimal attack strategy at time t is only
designed based on the CSEs x̂ci (t− 1)(i = 1, 2, · · · , L).

Therefore, the design of dimensionality reduction strategy is
independent of attack strategy at time t, which means that the
optimization problem (16) is equivalent to two problems:

min
{H1(t),··· ,HL(t),∀ηi(t)}

Tr{P (t)} s.t. : (12) (25)

max
{η1(t),··· ,ηL(t),∀Hi(t)}

Tr{P (t)} s.t. : (8) (26)

Notice that the optimal solutions to (25–26) are diffi-
cult to be obtained because: i) The objection function
Tr{P (t)} is nonlinear with respective to H1(t), · · · ,HL(t)
and η1(t), · · · , ηL(t); ii) For the attacker, the covariance
matrix P (t) is unknown, and each decision variable ηi(t) in
(26) is only designed by the eavesdropped information (14).
In this case, under certain relaxation conditions, suboptimal
solutions to (25–26) will be given in Theorem 2.

Theorem 2: From the persecutive of the attacker, let x̂A(t)
and x̂iAC(t) denote state estimates of x(t) and x̂ci (t) based on
the eavesdropped information. Then, one has{

x̂A(t− 1) = (BT
x (t)Bx(t))

−1BT
x (t)zx(t)

x̂iAC(t− 1) = ((Bi
c(t))

TBi
c(t))

−1(Bi
c(t))

Tzic(t)
, (27)

where zx(t) and zic(t) are given by (14). Define

Σ̃ii(t− 1) = [x̂A(t− 1)− x̂iAC(t− 1)]
×[x̂A(t− 1)− x̂iAC(t− 1)]T

cij(t) = Pii(t)(j, j)− Σ22
ii (t)(j, j)

di(t) = Tr{AΣ̃ii(t− 1)AT}
Θs

i (t) = {ci1(t), · · · , cin(t)}
Θa(t) = {d1(t), · · · ,dL(t)}

, (28)

where Σ22
ii (t) is computed by (22). Then, the elements of the

set Θs
i (t) are listed from the minimum to maximum as follows:

ciχ1
(t) ≤ · · · ≤ ciχri

(t) ≤ ciχ(ri+1)
(t) ≤ · · · ≤ ciχn

(t), (29)

while the elements of the set Θa(t) are listed from the
maximum to minimum as follows:

dµ1(t) ≥ · · · ≥ dµκ(t) ≥ dµ(κ+1)
(t) ≥ · · · ≥ dµL

(t). (30)

Under this case, for the defender, a suboptimal solution to the
problem (25) is given by:{

γiχ1
(t) = γiχ2

(t) = · · · = γiχri
(t) = 1

γiχ(ri+1)
(t) = γiχ(ri+2)

(t) = · · · = γiχn(t) = 0
, (31)

where i = 1, 2, · · · , L. For the attacker, a group of suboptimal
decision variables in (26) are given by:{

ηµ1(t) = · · · = ηµκ(t) = 1
ηµ(κ+1)

(t) = · · · = ηµL
(t) = 0

. (32)
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Proof: See A.2 in Appendix.
From Theorem 2, it can be concluded that: i) The

χℓith (ℓi ∈ {1, 2, · · · , ri}) component of x̂i(t) is allowed
to be transmitted to the FC at time t, where χℓi represents the
subscript of ciχℓi

(t) in (29); ii) When the attacker launches a
DoS attack at time t, the µith (i ∈ {1, 2, · · · , κ}) communi-
cation channel is jammed by the attacker at time t, where µi

represents the subscript of dµi(t) in (30). On the other hand,
it follows from (5) that Pii(t) can be separately calculated
at the FC, and then the solution (31) can be obtained at the
FC. Therefore, to determine x̂si(t), the order information of
selected components for each local estimate is flagged in the
FC, and then transmitted to the sink node through feedback
channel. At the same time, it is known from (27) that the
decision variables (32) are determined by the eavesdropped
information (14), i.e., the attacker can execute an effective
attack strategy based on the eavesdropped information.

According to Theorems 1–2, the computation procedures
for the DKFE x̂(t) can be summarized by Algorithm 1.

Algorithm 1 DKFE under dimensionality reduction and DoS
attacks

1: Calculate each local estimate x̂i(t) (i ∈ {1, · · · , L}) and
covariance matrix Pij(t) (i ∈ {i, · · · , L}) by (4–6);

2: Dimensionality Reduction Strategy at time t:
3: for i := 1 to L do
4: Calculate Pii(t) and Σ22

ii (t) in the FC by (5) and (22);
5: Sort the elements of the Θs

i (t) in the FC by (29);
6: Determine ηij(t) in the FC by (31);
7: The order information of selected components is trans-

mitted to the sink node through feedback channel;
8: Determine the selected ASC x̂si(t) at the sink node.
9: end for

10: Attack Strategy at time t:
11: if η(t) = 0 then
12: Go to Step 19;
13: end if
14: if η(t) = 1 then
15: Calculate x̂A(t−1) and x̂iAC(t−1) by the attacker using

(27);
16: Sort the elements of the Θa

i (t) by the attacker using
(30);

17: Determine η1(t), · · · , ηL(t) by the attacker using (32);
18: end if
19: Calculate each CSE x̂ci (t) (i ∈ {1, · · · , L}) by (10);
20: Calculate each covariance matrix Σij(t) by (22);
21: Calculate each weighting matrix Wi(t) by (18);
22: Calculate the DKFE x̂(t) by (13).

Remark 2. For the defender, since the covariance matrix
Σii(t − 1) is calculated by a recursive form, the attack
information η(t1) and ηi(t1) (t1 < t) has been used to design
each decision variable γij(t) at the FC. This means that the
design of Hi(t) resorting to the feedback channel utilizes more
available information, and thus can reduce the influence of the
attack to the maximum extent. In contrast, for the attacker,
only when the adversary plans to launch an attack at time t, the
attacker will eavesdrop on zx(t) and zic(t) to design Σ̃ii(t−1).

According to Theorem 2, each attack decision variable ηi(t)
is dependent on the accuracy of Σ̃ii(t−1), which implies that
the accurate defender’s information is very important for the
attacker to design an efficient attack schedule.

C. Stability Analysis

The problem (P.III) will be discussed in this subsection.
When considering the fusion estimation performance of the
DKFE, the statistical information of η(t) is taken into ac-
count. Define Ωη

ii(t)
∆
= E{x̃i(t)[x̃ci (t)]T|η(t)} and Ση

ii(t)
∆
=

E{x̃ci (t)[x̃ci (t)]T|η(t)}. Then, it is derived from (22) that

Ωη
ii(t) = (1− ηηi(t))[Pii(t)−GKi(t)Qw]Hi(t)

+GKi(t)Qw +ΦKi(t)Ω
η
ii(t− 1)AT

×[In −Hi(t) + ηηi(t)Hi(t)]
(33)

Ση
ii(t) = JHi(t)diag{Σ

η
ii(t− 1),Ση

ii(t− 1)}JTHi
(t)

+(1− ηηi(t))Vii(t)⊗ [ΦKi(t)Ω
η
ii(t− 1)AT

+GKi(t)Qw] + (1− ηηi(t))V
T
ii(t)

⊗[A(Ωη
ii(t− 1))TΦT

Ki
(t) +QwG

T
Ki
(t)]

, (34)

where η is the rate of attack that has been defined in Section
II, and

JHi(t)
∆
= [

√
1− ηηi(t)(In −Hi(t))A

√
ηηi(t)A]. (35)

According to (33) and (34), the estimation performance of
each CSE is dependent on the rate of attack η, decision
variable ηi(t) and compression matrix Hi(t). Meanwhile, as
mentioned in Section II, the ASC of x̂i(t) has ∆i possible
case, and thus Hi(t) given by (11) only takes one value at
arbitrary time from the following set:

SHi

∆
= {Hi

1, · · · ,Hi
si , · · · ,H

i
∆i

} (36)

i.e., Hi(t) ∈ SHi , where ∆i is determined by (7), and each
Hi

si(si ∈ {1, 2, · · · ,∆i}) denotes a diagonal matrix that
contains ri diagonal elements “1” and n−ri diagonal elements
“0”. Based on the above analysis, a stability condition for the
DKFE will be given in Theorem 3.

Theorem 3: For a given rate of attack η > 0, if there exist
a set SHi and a measurement matrix Ci such that{

rank{[
√
Qw,A

√
Qw, · · · , An−1

√
Qw]} = n

rank{col{Ci, CiA, · · · , CiA
n−1}} = n

(37)

(gηi

∆
= max{||ΦKi ||2||AT[In −Hi

si + ηziH
i
si ]||2

|si = 1, 2, · · · ,∆i; zi = 0, 1}) < 1
(38)

(gHi

∆
= max{||[

√
1− ηzi(In −Hi

si)A
√
ηziA]||2

|si = 1, 2, · · · ,∆i; zi = 0, 1}) < 1
, (39)

where Hi
si is determined by (36), and ΦKi = lim

t→∞
ΦKi(t).

Then, the MSE of the DKFE x̂(t) will be bounded, i.e., there
must exist a positive scalar p > 0 such that

lim
t→∞

Tr{P (t)} ≤ p (40)

Proof: See A.3 in Appendix.
Remark 3. Since the stability condition in Theorem 3 is de-

pendent on the adversary’s rate of attack η and the defender’s
dimensionality reduction parameter Hi

si , the maximum rate
of attack η̂ can be obtained from this condition when the
parameter ri of dimensionality reduction is known a priori.
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This can help to set the threshold of the rate of attack for
the defender, i.e., once the defender finds η > η̂, it will
immediately adopt effective defense strategy to decrease the
rate of attack to satisfy the stability condition in Theorem 3.
On the other hand, the DKFE will be stable only if there exists
a set SHi satisfying (38–39) (i.e., there exists a stable CSE).
However, for the attacker, to completely destroy the stability
of the DKFE, each CSE is required to become unstable at
the same time under attacks. Thus, the adversary may pay
a high price to completely destroy the DKFE. In this sense,
the DKFE can effectively enhance reliability and robustness
against attacks.

Remark 4. It should be pointed out that there are many
other attacks that can affect the system in different ways,
and how to design the dimensionality reduction strategy under
other types of attacks is an interesting problem. Since different
attack models have their own characteristic and the dimension-
ality reduction strategy is dependent on the characteristics of
attacks, the proposed fusion estimation method against DoS
attacks in this paper cannot be applicable to other types of
attacks. At the moment, it is difficult to find a general fusion
estimation algorithm based on a unified attack model. Our
contribution in this paper takes a step further to handel DoS
model. More research effort is needed to solve this problem.

IV. SIMULATION EXAMPLES

In this section, two illustrative examples will be given to
show the effectiveness of the proposed methods.

A. Example 1

Consider the CPSs (1–2) with the following system param-
eters:

A =



0.9 0.26 0 0 0 0 0 0
0.2 0.3 0.2 0 0 0 0 0
0 0.2 0.2 0.1 0 0 0 0
0 0 0.3 0.9 0 0 0 0
0 0 0 0 0.8 0.3 0 0
0 0 0 0 0.1 0.5 0.2 0.1
0 0 0 0 0 0.3 0.3 0.6
0 0 0 0 0 0 0.1 0.8



C1 =


0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0

 , C2 =


0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 1



(41)

where the covariances of w(t), v1(t) and v2(t) are
taken as Qw = diag{1.0, 0.8, 0.8, 0.7, 1.2, 0.9, 0.7, 1.0},
Qv1 = diag{0.9, 0.5, 0.7, 1.0, 0.8, 0.5} and Qv2 =
diag{0.5, 0.9, 0.3, 0.9, 1.2, 0.9}, respectively. It is known from
(41) that the first and the eighth components of “x(t)” cannot
be obtained by the first sink node, while the first, the fourth
and the fifth components of “x(t)” cannot be obtained by the

second sink node. Moreover, from (41), one has
rank{[

√
Qw, A

√
Qw, A

2
√
Qw, A

3
√
Qw, A

4
√
Qw,

A5
√
Qw, A

6
√
Qw, A

7
√
Qw]} = 8

rank{col{Ci,CiA,CiA
2, CiA

3,CiA
4, CiA

5,
CiA

6, CiA
7}} = 8 (i = 1, 2)

,

i.e., the condition (37) holds. Thus, one has ||ΦK1 ||2 =
0.8341 < 1 and ||ΦK2 ||2 = 0.9103 < 1.
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Fig. 3. Trajectories of the state x(t) and the DKFE x̂(t).
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Fig. 4. Comparison of estimation performance for the ODKFE, DKFE and
CSEs.

According to the dimensionality reduction strategy, it is
considered in this example that only four components of x̂i(t)
are allowed to be transmitted to the FC at each time step, i.e.,
r1 = r2 = 4, and then x̂si(t) can be determined by (31).
Moreover, from (7) and (36), one has ∆1 = ∆2 = 70. On the
other hand, when each sink node sends the selected ASC x̂si(t)
to the FC, the attacker may launch a DoS attack to degrade the
fusion estimation performance. Due to the energy constraints
the attacker can only intermittently execute DoS attacks. In
fact, only one communication channel can be jammed in
this example under a DoS attack launched at a particular
time, and the optimal decision variables ηi(t) (i = 1, 2) can
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Fig. 5. Comparison of estimation performance under different attack
strategies with accurate and inaccurate covariances.

be determined by (32). Then, the rate of attack η for the
attacker is assumed to be η = 0.3, and it is calculated that
gη1 < 1, gH1 < 1 and gη2 < 1, gH2 < 1. This means that the
conditions (38) and (39) hold, and thus it is concluded from
Theorem 3 that the MSE of the DKFE x̂(t) for this example
is bounded.

As pointed out in Section III, it is difficult for the attacker
to obtain the accurate covariances Σii(t−1)(i = 1, 2), but the
attacker can eavesdrop on x(t) and x̂ci (t) modeled by (14),
where the observation matrices in (14) are given by:

Bx(t) = Bc1(t) =


1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1


Bc2(t) =


1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1


(42)

and the disturbances ς(t), ε1(t), ε2(t) in (14) are Gaussian
white noises with covariances Qς = 0.12I4, Qε1 = 0.18I4
and Qε2 = 0.19I4. Then, the least square estimates of x(t)
and x̂ci (t) are obtained by (27) at the attacker. In this case,
the inaccurate covariance Σ̃ii(t− 1) is calculated by (28). By
using Algorithm I, the trajectories of the DKFE “x̂(t)” and the
state “x(t)” are plotted in Fig.3, which shows that the designed
DKFE is able to estimate the state “x(t)” well. Let PO(t)
denote the original DKFE (ODKFE) without dimensionality
reduction and DoS attacks. Then, the estimation performance
(assessed by the trace of estimation error covariance matrix)
of the CSEs, DKFE and ODKFE are shown in Fig.4. It can
be seen from this figure that the estimation performance of
the DKFE is better than that of each CSE at each time step,
which is in line with the result (24). However, the estima-
tion precision of the DKFE is worse than that of ODKFE,
which implies that the bandwidth constraints and DoS attacks
can affect the fusion estimation performance. Moreover, it
is known from this figure that the MSE of the DKFE is
bounded, which accords with the result in Theorem 3. When
the rate of attack is taken as η = 0.3, the practical MSEs

(PMSEs) of the DKFE under different cases with the accurate
covariances Σii(t−1) (i = 1, 2) or the inaccurate covariances
Σ̃ii(t − 1) (i = 1, 2), which are calculated by Monte Carlo
method (ch.1, [11]) with an average of 5000 runs, are plotted in
Fig.5. It can be seen from this figure that the attack effect with
the accurate covariances Σii(t − 1) (i = 1, 2) is better than
that with the inaccurate covariances Σ̃ii(t−1) (i = 1, 2). This
implies that the accuracy of the eavesdropped information is
very important for the attacker to determine the attack strategy.

Infinite bus

Bus bar 1 Bus bar 2 Bus bar 3 Bus bar 4

2000ft 2500ft

Load

Fig. 6. An illustration of the IEEE 4-bus distribution system [21].
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Fig. 7. An illustration of the model of four DEGs connecting to the power
network [21].

B. Example 2

Consider the distributed fusion estimation problem for a
power grid example with IEEE 4-bus distribution line as shown
in Fig.6 (see [21]). We adopt the model of interconnected
distributed energy generators (DEGs) from [21] as shown
in Fig.7, and four DEGs are modeled as voltage sources
whose input voltages are denoted by vp

∆
= (vp1, vp2, vp3, vp4),

where vpi is the ith DEG input voltage. The four DEGs are
connected to the main power network at the corresponding
Point of Common Coupling (PCC) whose voltages are denoted
by vs

∆
= (v1, v2, v3, v4), where vi is the ith PCC voltages.

In order to maintain the proper operation of DEGs, these
PCC voltages need to be kept at their reference values. A
coupling inductor exists between each DEG and the rest of the
electricity network. Next, applying the Laplace transformation,
the nodal voltage equation is given by [21]:

Y(s)vs(s) =
1

s
L−1
c vp(s), (44)

where Lc
∆
= diag{Lc1,Lc2,Lc3,Lc4}, and the admittance

matrix Y(s) is defined by (43). The Laplace transform in
(44) can be converted into the following linear state space
dynamical model (see [21]):

ẋ(t) = Acx(t) + Bcu(t), (45)
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Y(s) =


1

0.1750+0.0005s
−1

0.1750+0.0005s 0 0
−1

0.1750+0.0005s
1

0.1750+0.0005s + 1
0.1667+0.0004s

−1
0.1667+0.0004s 0

0 −1
0.1667+0.0004s

1
0.1667+0.0004s + 1

0.2178+0.0006s
−1

0.2178+0.0006s

0 0 −1
0.2178+0.0006s

1
0.2178+0.0006s + 1

12.3413+0.0148s


+(Lcs)

−1

(43)

where x(t)
∆
= vs − vref is the PCC state voltage deviation,

vref is the PCC reference voltage, u(t) ∆
= vp − vpref is the

DEG control input deviation, vpref is the reference control
effort. Meanwhile, the system matrices Ac, Bc are given by:

Ac =


175.9 176.8 511 103.6
−350 0 0 0
−544.2 −474.8 −408.8 −828.8
−119.7 −554.6 −968.8 −1077.5


Bc =


0.8 334.2 525.1 −1036
−350 0 0 0
−69.3 −66.1 −420.1 −828.8
−434.9 −414.2 −108.7 1077.5


. (46)

Notice that not all eigenvalues of Ac are negative, and thus the
system (45) is unstable when there is no feedback control. In
this case, we design the controller u(t) ∆

= Kcx(t) such that this
system is stable, i.e., all eigenvalues of As

∆
= Ac +BcKc are

negative. Here, we choose the controller gain Kc as follows:

Kc =


−1.0057 0 0 0
1.2883 −0.2003 −1.4687 −1.4687
−1.1696 −0.2936 − 0.1024 − 1.1021
−0.0824 −0.4081 −0.3242 −0.3242

 .

Under this condition, the system (45) can be rewritten as:

ẋ(t) = Asx(t). (47)

To monitor the work status of this power grid example
(i.e., (47)), there are two sink nodes collecting their sensor
measurements, and the local estimates computed by the sink
node are sent to the FC. However, when the local estimation
signals with dimensionality reduction are transmitted to the FC
through the bandwidth-constrained communication channels,
they will encounter with DoS attacks. Meanwhile, the system
noises are not considered when designing the controller for
the system (45), however, these noises may be unavoidable
due to the imperfect external environment. Therefore, setting
the sampling period T0 = 5s, the discretized form of (47) can
be transformed to the same form of (1), where

A =


−0.837 0.5427 0 0
−0.5427 −0.837 0 0

0 0 0.9851 0
0 0 0 0.9556

 , (48)

and the covariance matrix of the system noise w(t) is taken
as Qw = diag{0.1, 0.2, 0.2, 0.1}. Then, the measurement
matrices C1 and C2 in (2) are taken as:

C1 =


0 1 0 0
0 0 1 0
0 1 0 1
0 0 0 1

 , C2 =


0 0 0 0
0 1 0 0
0 0 1 0
0 1 1 0

 , (49)

and the covariance matrices of the measurement noises
are taken as Qv1 = diag{0.5, 0.6, 0.3, 0.2} and Qv2 =
diag{0.8, 0.3, 0.5, 0.9}. Due to the bandwidth constraints,
only two components of x̂i(t) are allowed to be transmitted
to the FC at each time step, while the attacker can only
intermittently execute DoS attacks. Particularly, only one
communication channel can be jammed under a DoS attack.
When the rate of attack is taken as η = 0.3, it can be easily
verified that rank{[

√
Qw, A

√
Qw, A

2
√
Qw, A

3
√
Qw]} = 4,

rank{col{Ci,CiA,CiA
2, CiA

3}} = 4, gηi < 1 and gHi <
1 (i = 1, 2), i.e., the conditions (37–39) hold. Then, it is
concluded from Theorem 3 that the MSE of the DKFE x̂(t)
for this example is bounded.
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Fig. 8. Trajectories of the state x(t) and the DKFE x̂(t).
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Fig. 10. Comparison of estimation performance under different attack
strategies with accurate and inaccurate covariances.

For the adversary, the accurate covariances Σii(t − 1)(i =
1, 2) cannot be obtained. Thus, similar to Example 1, Σii(t−1)
is replaced by Σ̃ii(t− 1) to design the attack strategy, where
the observation matrices Bx(t) and Bci(t)(i = 1, 2) in (14)
are given by

Bx(t) = Bc1(t) =

[
1 1 0 0
0 0 1 1

]
, Bc2(t) =

[
1 0 1 0
0 1 0 1

]
, (50)

and the disturbances ς(t), ε1(t), ε2(t) in (14) are Gaussian
white noises with covariances Qς = 0.52I2, Qε1 = 0.68I2
and Qε2 = 0.15I2. By using Algorithm I, Fig.8 shows that the
DKFE “x̂(t)” can track the state “x(t)” well in the presence
of bandwidth constraints and DoS attacks. Different from the
Fig.4, the PMSE of the ODKFE, DKFE and CSEs, which are
calculated by Monte Carlo method with an average of 5000
runs, are plotted in Fig.9. It can be seen from this figure that
the fusion estimation precision of the DKFE is higher than that
of each CSE, which is as expected for the fusion estimation
systems. It also shows that the fusion estimation precision of
the DKFE is lower than that of the ODKFE, because the di-
mensionality reduction and DoS attacks degrade the estimation
performance. Moreover, the relationship between the different
rates of attack and fusion estimation performance is shown
in Fig.10, where the PMSE for the DKFE is calculated by
Monte Carlo method with an average of 10000 runs. It is
observed from this figure that the larger rate of attack η is,
the lower the fusion estimation precision is. In this sense, the
DoS attack existing in CPSs is an important factor causing the
deterioration of the fusion estimation performance.

V. CONCLUSIONS AND DISCUSSION
In this paper, the distributed dimensionality reduction fusion

estimation problem has been investigated for a class of CPSs
under DoS attacks. The dimensionality reduction and DoS at-
tacks were characterized by a unified mathematical model with
compensation strategy, and the optimal DKFE was designed
in the linear minimum variance sense. By simultaneously
considering decision processes of the defender and attacker, an
effective dimensionality reduction and information compensa-
tion strategy for the defender has been obtained according to

a simple judgement criterion, and a suboptimal attack strategy
to maximize the MSE of the DKFE has been designed for
the attacker based on the eavesdropped information. Then, the
attack-dependent condition was derived such that the MSE
of the DKFE was bounded. Finally, two illustrative examples
were given to show the effectiveness of the proposed methods.

On the other hand, when considering the time-delay attack
at time t, the compressed signal x̂si(t) has two different
handling methods: the first method is that the signal x̂si(t)
is directly discarded, and thus the dimensionality reduction
fusion estimation method in this paper can be directly ap-
plicable to this case; The second method is that the signal
x̂si(t) is modeled as a time-delay signal at the FC, and then
the corresponding dimensionality reduction fusion estimation
algorithm shall be designed. Notice that the second method is
difficult to be obtained along the line of this paper, and will
be our future work.

Since multi-sensor fusion (i.e., data fusion) technique can
enhance the reliability by using redundant information be-
tween sensors, it can provide an attractive alternative to study
the problem of attack detection. For example, the anomaly
detection of cyber-attacks has been studied in [32], [45] by
using the data fusion methods. Notice that the attack detection
strategy is not discussed in this paper when considering DoS
attacks in this paper. This is because a DoS attack can be
easily judged by the FC, i.e., according to the function of
DoS attacks, if the FC does not receive information from
the sensors at time t, the FC will know that a DoS attack is
launched at time t; Otherwise, if the FC receives information,
the FC will know that there is no attack at time t. However,
when considering other types of attacks such as false data
injection attacks and collusion attacks, the design of attack
detection is a very important problem in CPSs. In this case,
how to cooperatively design fusion-based detector of attacks
and distributed fusion estimator will be one of our future
works.

APPENDIX

A.1: It follows from (1), (4) and (10) that

x̃ci (t) = (1− ηi(t)η(t)){(In −Hi(t))Ax̃ci (t− 1)
+(In −Hi(t))w(t− 1) +Hi(t)x̃i(t)}
+ηi(t)η(t)[Ax̃ci (t− 1) + w(t− 1)]

(51)

x̃i(t) = ΦKi(t)x̃i(t− 1) + GKi(t)w(t− 1)−Ki(t)vi(t)(52)

From the geometric meaning of x̃i(t), one has by (51–52) that x̃i(t)⊥w(t1)(t1 ≥ t), w(t)⊥vi(t1)(∀t, t1)
x̃i(t)⊥vi(t1)(t1 > t), x̃ci (t)⊥w(t1)(t1 ≥ t)
x̃ci (t)⊥vj(t1)(i = j, t1 > t or i ̸= j,∀t, t1)

(53)

Then combining (51–53) yields that{
E{x̃i(t)(x̃

c
j(t− 1))T} = ΦKi(t)Ωij(t− 1)

E{x̃i(t)w
T(t− 1)} = GKi(t)Qw

(54)

Meanwhile, it is derived from (51) and (52) that

Ωij(t) = (1− ηj(t)η(t))E{x̃i(t)x̃Tj (t)}Hj(t)
+E{x̃i(t)[x̃cj(t− 1)]T}AT + E{x̃i(t)wT(t− 1)}
−(1− ηj(t)η(t))E{x̃i(t)[x̃cj(t− 1)]T}ATHj(t)
−(1− ηj(t)η(t))E{x̃i(t)wT(t− 1)}Hj(t)

(55)



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, 2017 11

Then, (23) can be obtained by substituting (54) into (55).
Define x̃Ai (t)

∆
= Ax̃ci (t − 1) + w(t − 1). Then, (51) can be

rewritten as:
x̃ci (t) = (1− ηi(t)η(t)){(In −Hi(t))x̃

A
i (t)

+Hi(t)x̃i(t)]} + ηi(t)η(t)x̃
A
i (t)

(56)

From (56), one has

Σij(t) = (1− ηi(t)η(t))(1− ηj(t)η(t))
×{[In −Hi(t)]E{x̃Ai (t)[x̃Aj (t)]T}(In −Hj(t))
+[In −Hi(t)]E{x̃Ai (t)x̃Tj (t)}Hj(t) +Hi(t)
×E{x̃i(t)[x̃Aj (t)]T}(In −Hj(t)) +Hi(t)
×E{x̃i(t)x̃Tj (t)}Hj(t)}+ (1− ηi(t)η(t))ηj(t)η(t)
×{[In −Hi(t)]E{x̃Ai (t)[x̃Aj (t)]T}+Hi(t)
×E{x̃i(t)[x̃Aj (t)]T}+ ηi(t)η(t)((1− ηj(t)η(t)))
×{E{x̃Ai (t)[x̃Aj (t)]T}(In −Hj(t)) + E{x̃Ai (t)x̃Tj (t)}
×Hj(t)}+ η(t)ηi(t)ηj(t)E{x̃Ai (t)[x̃Ai (t)]T}

(57)

Moreover, it follows from (53) and (54) that{
E{x̃Ai (t)[x̃Aj (t)]T} = AΣij(t− 1)AT +Qw

E{x̃i(t)[x̃Aj (t)]T} = ΦKi(t)Ωij(t− 1) + GKi(t)Qw
,(58)

where Ωij(t − 1) is calculated by (23). Meanwhile, it is
concluded from Lemma 1 and the definitions of Vij(t) and
Ωij(t) that

Hi(t)XHj(t) = [Hi(t)⊙Hj(t)]⊗X
(In −Hi(t))⊙Hj(t) = VT

ji(t)
E{x̃ci (t)x̃Tj (t)} = ΩT

ji(t)
, (59)

where X ∈ Rn×n is a given matrix. Therefore, (22) is derived
by substituting (58–59) into (57). On the other hand, at each
time step, the optimal fusion estimation error covariance
matrix for the DKFE x̂(t) is calculated by (20), while the
estimation error covariance matrix for each CSE is given
by Σii(t) = (1 − η(t)ηi(t))Σ

11
ii (t) + η(t)ηi(t)Σ

22
ii (t), where

Σ11
ii (t) and Σ22

ii (t) are determined by (22). Hence, (24) is
obtained from the result of [12]. This completes the proof.

A.2: It is concluded from (24) that Tr{P (t)} ≤ PΣ(t),
where PΣ(t)

∆
= min{Tr{Σ11(t)}, · · · ,Tr{ΣLL(t)}}. Under

this relaxation condition, the optimization object in (25) re-
duces to:

min
{H1(t),··· ,HL(t),∀ηi(t)}

PΣ(t) s.t : (12). (60)

According to the (F1), when designing dimensionality reduc-
tion strategy at time t, it is not necessary to consider the
attack parameters. In this case, Tr{Σii(t)}(i ∈ {1, · · · , L})
in the optimization object of (60) should be replaced by
“Tr{Σ11

ii (t)}”. Moreover, it is known from (22) that the com-
putation procedure for Σ11

ii (t) only depends on the variables
Hi(t) and Σii(t−1). From the above analysis, the optimization
problem (60) can be divided into L subproblems with the
following form:{

min
Hi(t)

Tr{Σ11
ii (t)}

s.t. :
∑n

j=1 γij(t) = ri and γij ∈ {0, 1}
, (61)

where Σ11
ii (t) is calculated by (22). According to the property

of “⊙”, all the diagonal elements of Vii(t) are the “0”. Then,
it follows from the properties of “⊗” and “Tr{•}” that

Tr{Vii(t)⊗ [ΦKi(t)Ωii(t− 1)AT +GKi(t)Qw]} = 0

Tr{VT
ii(t)⊗ [AΩT

ii(t− 1)ΦT
Ki
(t) +QwG

T
Ki
(t)]} = 0

(62)

It is derived from (22) and (62) that

Tr{Σ11
ii (t)} = Tr{Λii(t)⊗ Pii(t)+Mii(t)⊗ Σ22

ii (t)}
=
∑n

j=1 {[Pii(t)(j, j)− Σ22
ii (t)(j, j)]γij(t)}

+Tr{Σ22
ii (t)}

(63)

Notice that each γij(t) is a binary variable taking “1” or “0”,
and thus when minimizing the objective function Tr{Σ11

ii (t)}
in (61) subject to (12), (31) is the optimal solution to (61)
from (63). Then, it is concluded from (60) that (31) is the
suboptimal solution of (25).

On the other hand, it is concluded from (40-41) in [23] that,
the optimization problem (26) can reduce to:

max
{η1(t),··· ,ηL(t),∀Hi(t)}

Tr{Σ(t)} =
L∑

i=1

Tr{Σii(t)} s.t. :(8)(64)

According to the (F2), when the attacker launches a DoS
attack at time t, the attack strategy will be designed based on
the estimation information at time t−1, and is independent of
each compression matrix Hi(t). In this case, Tr{Σii(t)}(i ∈
{1, · · · , L}) in the optimization object of (64) should be re-
placed by “ηi(t)Tr{Σ22

ii (t)}”. Since
∑L

i=1 ηi(t)Tr{Σ22
ii (t)} =∑L

i=1 ηi(t)Tr{AΣii(t− 1)AT}+κQw, the optimization prob-
lem (64) is equivalent to:

max
{η1(t),··· ,ηL(t)

∑L

i=1
ηi(t)Tr{AΣii(t− 1)AT} s.t. :(8),(65)

where Σii(t − 1) is the estimation error covariance of the
ith CSE at time t − 1. Though it is difficult for the attacker
to obtain the accurate information Σii(t − 1) at time t, the
attacker can eavesdrop on inaccurate x(t−1) and x̂ci (t−1) by
the monitoring device (see (14)). Then, the optimal estimates
x̂A(t− 1) and x̂iAC(t− 1) (see (27)) can be obtained by using
the least square estimation method. Notice that E{x̂A(t−1)} =
E{x(t− 1)} and E{x̂iAC(t− 1)} = E{x̂ci (t− 1)}. Under this
condition, Σii(t−1) is proposed to be replaced by Σ̃ii(t−1),
where

Σ̃ii(t− 1) = [x̂A(t− 1)− x̂iAC(t− 1)]
×[x̂A(t− 1)− x̂iAC(t− 1)]T

. (66)

Then, the optimization problem (65) is modified as:{
max

{η1(t),··· ,ηL(t)

∑L
i=1 ηi(t)Tr{AΣ̃ii(t− 1)AT}

s.t. :
∑L

i=1 ηi(t) = κ, ηi(t) ∈ {0, 1}
. (67)

Since ηi(t) is a binary variable satisfying the constraint (8),
(32) is the solution to (67). Then, it is concluded from (64)
and (67) that a group of suboptimal decision variables in (26)
can be given by (32). This completes the proof.

A.3: It is concluded from [44] that when the condition (37)
holds, one has{

lim
t→∞

GKi(t) = GKi , limt→∞
ΦKi(t) = ΦKi

lim
t→∞

Pii(t) = Pii
, (68)
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where ΦKi is a stable matrix. Therefore, it follows from (33)
and (68) that there exists an integer Nηi > 0 such that

Ωη
ii(t) = ΦKiΩ

η
ii(t− 1)AT[In −Hi(t)

+ηηi(t)Hi(t)] + ∆Ωη
ii(t)

(69)

for t ≥ Nηi , where ∆Ωη
ii(t)

∆
= (1 − ηηi(t))[Pii −

GKiQw]Hi(t) +GKiQw and ηi(t) ∈ {0, 1}. From the matrix
structure of Hi(t), there must exist a positive scalar ϕηi such
that

||∆Ωη
ii(t)||2 ≤ ϕηi (t ≥ Nηi) (70)

Combining (69) and (70) yields that

||Ωη
ii(t)||2 ≤ ϕηi + gηi ||Ω

η
ii(t− 1)||2

≤ g
t−Nηi
ηi ||Ωη

ii(Nηi)||2 +
∑t−Nηi

+1

ℓ=0 gℓηi
ϕηi

, (71)

where gηi is defined in (38). Notice that

lim
t→∞

g
t−Nηi
ηi = 0, lim

t→∞

∑t−Nηi
+1

ℓ=0
gℓηi

ϕηi =
ϕηi

1− gηi

(72)

Then, when the condition (38) holds, one has by (71-72) that

lim
t→∞

||Ωη
ii(t)||2 ≤ ϕηi

1− gηi

(73)

In this case, it can be concluded from (34), (68) and (73) that
there exists an integer NHi > Nηi such that

Ση
ii(t) = Ξii(t)+JHi(t)

×diag{Ση
ii(t− 1),Ση

ii(t− 1)}JTHi
(t)

(74)

for t ≥ NHi , where Ξii(t)
∆
= (1−ηηi(t)){Vii(t)⊗[ΦKiΩ

η
ii(t−

1)AT+GKiQw]+VT
ii(t)⊗ [A(Ωη

ii(t− 1))TΦT
Ki

+QwG
T
Ki
]}.

Then, similar to (73), there must exist a positive scalar ϕHi

such that

||∆Ση
ii(t)||2 ≤ ϕHi(t ≥ NHi) (75)

From the property of “|| • ||2” and the matrix structure of
“Hi(t)”, one has{

||diag{Ση
ii(t− 1),Ση

ii(t− 1)}||2 = ||Ση
ii(t− 1)||2

||JHi(t)||2 < gHi

, (76)

where JHi(t) is defined by (35), and gHi is defined in (39).
Subsequently, it is derived from (74–76) that

||Ση
ii(t)||2 ≤ ϕHi+gHi ||Σ

η
ii(t− 1)||2

≤ g
t−NHi

Hi
||Ση

ii(NHi)||2 +
∑t−NHi

+1

ℓ=0 gℓHi
ϕHi

(77)

According to (77), when the condition (39) holds, it follows
from the similar derivation of (73) that there must exist a
positive scalar φηi such that lim

t→∞
||Σηi

ii ||2 ≤ φηi . This implies
that lim

t→∞
Tr{Ση

ii(t)} is bounded when the conditions (37–39)
hold. Moreover, it follows from (24) that lim

t→∞
Tr{P (t)} ≤

lim
t→∞

Tr{Ση
ii(t)}(i ∈ {1, 2, · · · , L}), and thus the result (40)

holds. This completes the proof.

REFERENCES

[1] S. Peisert, J. Margulies, D.M. Nicol, H. Khurana, C. Sawall, Designed-
in security for cyber-physical systems, IEEE Security and Privacy, vol.
12, no. 5, 2014, pp. 9-12.

[2] C. Konstantinou, M. Maniatakos, F. Saqib, S. Hu, J. Plusquellic, Y. Jin,
Cyber-physical systems: A security perspective, Proceedings of the 20th
IEEE European Test Symposium (ETS), Cluj-Napoca, Romania, 2015,
pp. 1-8.

[3] A Di Pietro, S Panzieri, A Gasparri, Situational Awareness Using Dis-
tributed Data Fusion with Evidence Discounting, Critical Infrastructure
Protecton IX, Volume 466 of the series IFIP Advances in Information
and Communication Technology, pp. 281-296, 2015.

[4] B. Genge, P. Haller, I. Kiss, Cyber-security-aware network design of
industrial control systems, IEEE System Journal, 2015, Article in press,
Doi:10.1109/JSYST.2015.2462715.

[5] Y.F. Huang, S. Werner, J. Huang, N. Kashyap, V. Gupta, State estimation
in electric power grids: Meeting new challenges presented by the
requirements of the future grid, IEEE Signal Processing Magazine, vol.
29, no. 5, 2012, pp. 33-43.

[6] X. Cao, P. Cheng, J. Chen, S.S. Ge, Y. Cheng, Y. Sun, Cognitive
radio based state estimation in cyber-physical systems, IEEE Journal
on Selected Areas in Communicaiton, vol. 32, no. 3, 2014, pp. 489-502.

[7] S. Deshmukh, B. Natarajan, A. Pahwa, State estimation over a lossy net-
work in spatially distributed cyber-physical systems, IEEE Transactions
on Signal Processing, vol. 62, no. 15, 2014, pp. 3911-3923.

[8] B. Chen, G. Hu, D.W.C. Ho, L. Yu, Distributed covariance intersection
fusion estimation for cyber-physical systems with communication con-
straints. IEEE Transactions on Automatic Control, vol. 61, no. 12, 2016,
pp. 4020–4026.

[9] D. Zhang, H. Song, L. Yu, Robust fuzzy-model-based filtering for
nonlinear cyber-physical systems with multiple stochastic incomplete
measurements. IEEE Transactions on Systems, Man, and Cybernetics:
Systmes, Article in Press, Doi: 10.1109/TSMC.2016.2551200.

[10] X.R. Li, Y.M. Zhu, J. Wang, C.Z. Han, Optimal linear estimation fusion-
part I: unified fusion rules, IEEE Transactions on Information Theory,
vol. 49, no.9, 2003, pp. 2192-2208.

[11] Y. Bar-Shalom, X.R. Li, T. Kirubarajan, Estimation with applications to
tracking and navigation, John Wilely and Sons, Inc., 2001.

[12] S. Sun, Z. Deng, Muti-sensor optimal information fusion Kalman filter,
Automatica, vol. 40, 2004, pp. 1017-1023.

[13] L. Zhang, Z. Ning, Z. Wang, Distributed filtering for fuzzy time-
delay systems with packet dropouts and redundant channels, IEEE
Transactions on Systems, Man, and Cybernetics: Systems, vol. 46, no.
4, 2016, pp. 559-572.

[14] Y. Gao, X.R. Li, E. Song, Robust linear estimation fusion with allowable
unknown cross-covariance, IEEE Transactions on Systems, Man, and
Cybernetics: Systems, vol. 46, no. 9, 2016, pp. 1314-1325.

[15] B. Chen, G. Hu, D.W.C. Ho, W. Zhang, L. Yu. Distributed robust
fusion estimation with application to state monitoring systems, IEEE
Transactions on Systems, Man, and Cybernetics: Systems, 2016, Article
in Press, Doi: 10.1109/TSMC.2016.2558103.

[16] H. Lin, S. Sun. Distributed fusion estimator for multisensor mul-
tirate systems with correlated noises, IEEE Transactions on Sys-
tems, Man, and Cybernetics: Systems, 2017, Article in Press, Doi:
10.1109/TSMC.2016.2645599.

[17] J.A. Roecker, C.D. McGillen, Comparison of two-sensor tracking
methods based on state vector fusion and measurement fusion, IEEE
Transactions on Aerospace and Electronic Systems, vol. 24, no. 4, 1988,
pp. 447-449.

[18] S. Amin, A. Cárdenas, S. Sastry, Safe and secure networked control
systems under denial-of-serivce attacks, Hybrid Systems: Computation
and Control, 2009, pp. 31-45.

[19] G. Carl, G. Kesidis, R.R. Brooks, S. Rai, Denial-of-service attack-
detection techniques, IEEE Internet Computing Magazine, vol. 10, no.
1, 2006, pp. 82-89.

[20] Y. Mo, T.H.-J. Kim, K. Brancik, D. Dickinson, H. Jee, A. Perrig,
B. Sinopoli, Cyber-physical security of a smart grid infrastructure,
Proceedings of the IEEE, vol. 100, no. 1, 2012, pp. 195–209.

[21] H. Li, L. Lai, V. Poor, Multicast routing for decentralized control of
cyber physical systems with an application in smart grid, IEEE Journal
of on Selected Areas in Communicaiton, vol. 30, 2012, pp. 1097–1107.

[22] B. Chen, W.A. Zhang, L. Yu, Distributed finite-horizon fusion Kalman
filtering for bandwidth and energy constrained wireless sensor networks,
IEEE Transactions on Signal Processing, vol.62, no.4, 2014, pp.797-812.



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, 2017 13

[23] B. Chen, W.A. Zhang, L. Yu, G. Hu, H. Song, Distributed fusion esti-
mation with communication bandwidth constraints, IEEE Transactions
on Automatic Control, vol. 60, no. 5, 2015, pp. 1398-1403.

[24] B. Chen, D.W.C. Ho, W.A. Zhang, L. Yu, Networked fusion estimation
with bounded noises, IEEE Transactions on Automatic Control, 2017,
Article in Press, Doi: 10.1109/TAC.2017.2696746.

[25] J. Fang, H. Li, Hyperplane-based vector quantization for distributed es-
timation in wireless sensor networks, IEEE Transactions on Information
Theory, vol. 55, 2009, pp. 5682-5699.

[26] B. Chen, L. Yu, W.A. Zhang, H. Wang, Distributed H∞ fusion filtering
with communication bandwidth constraints, Signal Processing, vol. 96,
2014, pp. 284-289.

[27] A. N.Bishop, A. V.Savkin, On false-data attacks in robust multi-sensor-
based estimation, The 9th IEEE International Conference on Control
and Automation, Santiago, Chile, 2011, pp. 10-17.

[28] H. Fawzi, P. Tabuada, S. Diggavi, Secure estimation and control for
cyber-physical systems under adversarial attacks, IEEE Transactions on
Automatic Control, vol. 59, no. 6, 2014, pp. 1454-1467.

[29] Y. Mo, B. Sinopoli, Secure estimation in the presence of integrity attacks,
IEEE Transactions on Automatic Control, vol. 60, 2015, pp. 1145-1151.

[30] D. Ding, Y. Shen, Y. Song, Y. Wang, Recursive state estimation
for discrete time-varying stochastic nonlinear systems with randomly
occuring deception attacks, International Journal of General Systems,
vol. 45, no. 5, 2015, pp. 548-560.

[31] D. Wang, X. Guan, T. Liu, Y. Gu, C. Shen, Z. Xu, Extended distributed
state estimation: a detection method against tolerable false data injection
in smart grids, Energies, vol. 7, 2014, pp. 1517-1538.

[32] T. Liu, Y. Sun, Y. Liu, Y. Gui, Y. Zhao, D. Wang, C. Shen, Abnormal
traffic-indexed state estimation: a cyber-physical fusion approach for
smart grid attack detection, Future Generation Computer Systems, vol.
49, 2015, pp. 94-103.

[33] J. Zhang, R.S. Blum, X. Lu, D. Conus, Asymptotically optimum
distributed estimation in the presence of attacks, IEEE Transactions on
Signal Processing, vol. 63, no. 5, 2015, pp. 1086-1101.

[34] J. Kim, L. Tong, R. J.Thomas, Subspace methods for data attack on
state estimator: A data driven approach, IEEE Transactions on Signal
Processing, vol. 63, no. 5, 2015, pp. 1102-1114.

[35] Y. Law, M. Palaniswami, L. Hoesel, J. Doumen, P. Hartel, P. Havinga,
Energy-efficient link-layer jamming attacks against wireless sensor net-
work mac protocols, ACM Transactions on Sensor Networks, vol. 5, no.
1, 2009, pp. 1139-1141.

[36] T. Kavitha, D. Sirdharan, Security vulnerabilities in wireless sensor
networks: A survey, Journal of Information Assurance and Security,
vol. 5, no. 1, 2010, pp. 31-44.

[37] H. Zhang, P. Cheng, L. Shi, J. Chen, Optimal denial-of-serivce attack
scheduling with energy constraints, IEEE Transactions on Automatic
Control, vol. 60, no. 11, 2015, pp. 3023-3028.

[38] Y. Li, L. Shi, P. Cheng, J. Chen, D. E.Quevedo, Jamming attacks on
remote state estimation in cyber-physical systems: a game-theoretic
approach, IEEE Transactions on Automatic Control, vol. 60, no. 10,
2015, pp. 2831-2836.

[39] Y. Yuan, F. Sun, H. Liu, Resilient control of cyber-physical systems
against intelligent attacker: a hierarchal stackelberg game approach,
International Journal of Systems Science, vol. 47, 2016, pp. 2067-2077.

[40] Y. Yuan, H. Yuan, L. Guo, H. Yang, S. Sun, Resilient control of
networked control systems under DoS attacks: a unified game approach,
IEEE Transactions on Industrial Informatics, vol. 12, no. 5, 2016, pp.
1786–1794.

[41] D. Ding, Z. Wang, G. Wei, F. E.Alsaadi, Event-based security control for
discrete-time stochastic systems, IET Control Theory and Applications,
2016, vol. 10, no. 15, pp. 1808-1815.

[42] D. Ding, Z. Wang, G. Wei, Security control for discrete-time stochastic
nonlinear systems subject to deception attacks, IEEE Transactions on
Systems, Man, and Cybernetics: Systems, 2016, Article in Press, Doi:
10.1109/TSMC.2016.2616544.

[43] Z. Feng, G. Wen, G. Hu, Distributed secure coordinated control for
multi-agent systems under strategic attacks, IEEE Transactions on
Cybernetics, Article in press, Doi: 10.1109/TCYB.2016.2544062.

[44] A.H. Jazwioski, Stochastic Processes and Filtering Theory, New York:
Academic, 1970.

[45] B. Genge, C. Siaterlis, G. Karopoulos, Data fusion-based anomaly
detection in networked critical infrastructures, 43th IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks (DSN 2013),
Workshop on Reliability and Security Data Analysis (RSDA 2013),
Budapest, Hungary, pp. 1-8, 2013.

Bo Chen (M’17) received the B.S. degree in infor-
mation and computing science from Jiangxi Univer-
sity of Science and Technology, Ganzhou, China,
in 2008, and the Ph.D degree in Control Theory
and Control Engineering from Zhejiang University
of Technology, Hangzhou, China, in 2014.

He is currently a research fellow at school of
electrical and electronic engineering, Nanyang Tech-
nology University, Singapore. He was a postdoctoral
research fellow (Hong Kong Scholar) at college of
science and engineering, City University of Hong

Kong, 2015–2017. He was also a research fellow at school of electrical
and electronic engineering, Nanyang Technology University, 2014–2015. His
current research interests include information fusion estimation, networked
fusion systems and secure estimation of cyber-physical systems.

Daniel W.C. Ho (M’90–SM’05–F’17) received the
B.S., M.S., and Ph.D. degrees in mathematics from
the University of Salford, Greater Manchester, U.K.,
in 1980, 1982, and 1986, respectively.

From 1985 to 1988, he was a Research Fel-
low with the Industrial Control Unit, University
of Strathclyde, Glasgow, U.K. He is currently a
Chair Professor in applied mathematics with the
Department of Mathematics, and the Assistant Dean
(Teaching Innovations) with the College of Science
and Engineering, City University of Hong Kong,

Hong Kong which he joined in 1989. His current research interests include
control and estimation theory, complex dynamical distributed networks, multi-
agent networks, and stochastic systems. He has over 200 publications in
scientific journals.

Prof. Ho is a Fellow of the IEEE. He was honored to be the Chang Jiang
Chair Professor awarded by the Ministry of Education, China, in 2012. He
has been on the editorial board of a number of journals including IEEE
Transactions on Neural Networks and Learning Systems, IET Control Theory
and its Applications, Journal of the Franklin Institute and Asian Journal
of Control. He is named as ISI Highly Cited Researchers (2014-2016) in
Engineering by Thomson Reuters.

Wen-An Zhang (M’13) received the B.Eng. degree
in Automation and the Ph.D. degree in Control
Theory and Control Engineering from Zhejiang Uni-
versity of Technology, China, in 2004 and 2010,
respectively.

He has been with Zhejiang University of Tech-
nology since 2010 where he is now a professor at
Department of Automation. He was a senior research
associate at Department of Manufacturing Engineer-
ing and Engineering Management, City University
of Hong Kong, 2010-2011. He was awarded an

Alexander von Humboldt Fellowship in 2011-2012. His current research
interests include networked control systems, wireless sensor networks and
intelligent mobile robots.

Li Yu (M’09) received the B.S. degree in control
theory from Nankai University, Tianjin, China, in
1982, and the M.S. and Ph.D. degrees from Zhejiang
University, Hangzhou, China.

He is currently a Professor at College of Informa-
tion Engineering, Zhejiang University of Technol-
ogy. He has authored or co-authored three books and
over 200 journal or conference papers. His current
research interests include wireless sensor networks,
networked control systems and motion control.


	I Introduction
	II Problem Formulation
	II-A Modeling of Dimensionality Reduction and DoS Attacks
	II-B Problem of Interest

	III Main Results
	III-A DKFE Design
	III-B Design of Dimensionality Reduction Strategy and Attack Strategy
	III-C Stability Analysis

	IV Simulation Examples
	IV-A Example 1
	IV-B Example 2

	V CONCLUSIONS AND DISCUSSION
	References
	Biographies
	Bo Chen
	Daniel W.C. Ho
	Wen-An Zhang
	Li Yu


