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Abstract 

 In this current study, a hybrid model of wavelet and Artificial Neural Network (WLNN) has been developed to forecast time 
series significant wave height for lead times up to 48 h. The data used in the hybrid model are significant wave heights (Hs) 
belongs to two stations, one near to New Mangalore port, Indian ocean and another near to west of Eureka, Canada in North 
Pacific ocean. The three hourly significant wave height data for a period of one year was first decomposed through discrete 
wavelet transformation in order to obtain frequencies of different bands in the form of wavelet coefficients. Later these 
coefficients are used as inputs into Levenberg Marquardt artificial neural network models to forecast time series significant wave 
heights at multistep lead time. Two different methods WLNN-1 &WLNN-2 employed for the first station data to forecast 
significant wave heights at higher lead times. From the result it is found that the second method (WLNN-2) in wavelet-ANN 
model performed better than first method (WLNN-1).Model results obtained for two stations showed good predictions at lower 
lead times but slight deviation observed at higher lead times. As compared to first station results, the second station results are 
slightly poor because of more statistical variations in the data set. 
© 2015 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Time series modelling is an important research and application area. Many real world tasks are time dependent in 
nature to name a few, Rainfall runoff, ocean waves, river flow, sediment transport, weather forecasting etc. Since the 
last few decades, wavelet transform has emerged as a useful technique for analysing variations, periodicities, and 
trends in time series. Recently Hybridisation of wavelet transformation with other models has been reported in 
different fields to improve the forecasting accuracy; Wang et al. (2003) used Wavelet-ANN combination in 
hydrology to predict hydrological time series. Chen et al. (2007) used the same combination to forecast tides around 
Taiwan and South China Sea, and concluded that the proposed model can prominently improve the prediction 
quality. Zhou et al. (2008) developed a wavelet predictor-corrector model for prediction of monthly discharge time 
series. Recently many authors viz. Krishna (2014), Khandekar and Deka (2013), Deka and Prahlada (2012), Rajee et 
al.(2011), Prahlada and Deka (2011), Ozger (2010), Nourani et al. (2009), Kisi (2009) used hybrid wavelet models 
such as wavelet-ANN and Wavelet-fuzzy to forecast timeseries data in different fields. Study of all these recent 
works showed better performance of hybrid wavelet models over a single prediction models. 

2. Wavelet Analysis 

Wavelet transform is a mathematical tool used in signal analysis. Wavelet transforms decomposes a signal in to 
number of sub signals of different frequency bands. The earlier signal processing techniques such as Fourier 
transform (FT) and Short Time Fourier transform (STFT) have major drawbacks in terms of time information and 
also in high resolution. In wavelet analysis, the use of a fully scalable modulated window solves aforementioned 
problems. As in wavelet analysis the window or mother wavelet is shifted at every position of the signal, hence it is 
possible to calculate the spectrum at each position of signal. Basically there are two types of wavelet transformations 
viz. Continuous wavelet transformation and Discrete wavelet transformation.  

2.1. Continuous Wavelet Transformation (CWT) 

The continuous wavelet transform (CWT) is defined in terms of dilations and translations of a mother wavelet 
function, and it can be expressed as (Zhou, 2008; Kisi, 2009) 

 

As seen in the above equation, the transformed signal is a function of two variables ‘a’ and ‘b’ the scale and 
translation parameter respectively,  denote the complex conjugate of ‘t’ (Mallat,1989), f(t) is the input signal and 

 (t) is the transforming function, and it is called the mother wavelet. 

2.2. Discrete Wavelet Transformation (DWT) 

As CWT produces N2 coefficients from a data set of length N; hence unnecessary information is locked up within 
the coefficients, which may or may not be desirable property (Rajaee T. et al., 2011). Whereas by using DWT it is 
possible to overcome from the above difficulty as DWT calculates wavelet coefficients on discrete dyadic scales and 
positions in time.  

 

Where m and n are integers that control the wavelet dilation and translation, respectively; bo is the location 
parameter and must be greater than zero; ao is a specified fixed dilation step greater 1. The appropriate choices for ao 
and bo depend on the wavelet function. The dyadic wavelet can be written in more compact notation as 
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For a discrete time series x
t
t, where x

t
t, occurs at discrete time, the dyadic wavelet transform becomes 

 

Where Wm,n = wavelet coefficient for the discrete wavelet of scale a = 2
m 

and location b = 2mn. Above equation 
considers a finite time series, x

t
t,t= 0, 1, 2,…, N - 1, and N is an integer power of 2: N = 2M; n is time translation 

parameter. This gives the range of m and n as, respectively, 0 <n < 2
M-m 

- 1 and 1 <m <M. 

3. Study area and Data 

The significant wave height (Hs) data collected at two stations have been used in this current study. At first 3 hourly 
Hs data belong to first station (Id: SW4) collected during the year 2004-2005 was obtained from New Mangalore 
Port Trust (NMPT). The data obtained from station SW4 is a wave rider buoy data, the buoy is located near west 
coast of India having Latitude 12056'31'' and longitude 74043'58'' as shown in Fig.1. 
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Fig.1. Location of the study area of station-1 (Id: SW4) 

The data collected at second station (Id: 46006) during 2004-2005 was downloaded from NOAA’s National Data 
Buoy Center (http://www.ndbc.noaa.gov/ climate.phtml). The buoy station “46006” is located in deep sea of Pacific 
Ocean (Latitude. 40045'16'' and longitude137027'51'') near west of eureka, Canada as shown in Fig.2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2. Location of the study area of station-2 (Id: 46006) 
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The frequency of the data collected at this station is an hourly significant wave height data. The statistical properties 
of the data collected at two stations are given in Table 1. 

Table1. Statistical properties of significant wave height 

Station ID Min (m) Max (m) Mean (m) Skewness Kurtosis Std. deviation (m) 

SW4 0.25 3.09 1.025 0.78 0.4867 0.6289 

46006 0.92 11.05 2.821 1.186 1.93 1.413 

4.  Model development 

4.1 ANN model 

Artificial neural network (ANN) is a data-driven method with flexible mathematical structure having an 
interconnected assembly of simple processing elements or nodes, which emulates the function of neurons in the 
human brain. It possesses the capability of representing the arbitrary complex non-linear relationship between the 
input and output of any system. Mathematically, an ANN can be treated as universal approximators having an 
ability to learn from examples without the need of explicit physics.  

The network used in the present study is multilayer perceptron (MLP) feed forward back propagation network 
and Levenberg Marquardt algorithm as a training algorithm. After selecting network type and training algorithm, the 
network was initially trained by keeping Mean square Error as a performance evaluator to optimize the parameters 
such as number of epochs, number of neurons, learning rate, and momentum coefficient. While in the initial analysis 
observation was also made to identify suitable activation functions for both hidden and output layers. Later it was 
found that the network performance with tangent sigmoid activation function was the best amongst others.  

Once After obtaining optimized network parameters, each MLP was then trained with 1-20 hidden neurons and 
the same network structure followed for different lead predictions and also for combined wavelet-ANN model 
(WLNN). 

4.2 Wavelet neural network model :method-1(WLNN-1) 

After dividing the data in to training set and testing set, these data sets then fed to discrete wavelet transformation 
as inputs to obtain DWT coefficients. To perform wavelet analysis, here db4 and haar wavelets have been selected 
as mother wavelets and various decomposition levels have been tried. The function of discrete wavelet 
transformation is to discretize the non-stationary Hs data in to stationary sub signals to separate the periodic 
properties, non linearity and dependence relationship. These sub signals usually in the form of approximation 
coefficients (A1, A2.., An) and detail coefficients (D1, D2.., Dn). 

After obtaining DWT coefficients, next task was to train the neural network using these coefficients as input and 
target. Once network is trained in this pattern, during simulation or testing stage the network gives output as 
coefficients only but not Hs. In order obtain the Hs, the output coefficients from ANN were reconstructed using 
inverse wavelet function. Figure.3 depicts the procedure for WLNN-1 and WLNN-2 methods. From the analysis 
experience it was found that the method one was laborious and time consuming. 

The analysis for ANN part was performed by using “nntool” MATLAB 2009 and for obtaining DWT coefficients 
a Matlab code was developed. 

4.3 Wavelet neural network model: method-2(WLNN-2) 

In WLNN-2 as represented in the Figure.3 inputs given to ANN as coefficients but maintained direct Hs values in 
target data instead of coefficients like in the previous case.  The output from this method was a direct Hs values and 
not required to do any reconstruction afterwards 
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Fig. 3. Flow chart showing working procedure of WLNN model 

4.4 Model performance indicators 

To evaluate the model performances various performance indices can be used. The conventional performance 
evaluation such as correlation coefficient is seems to be unsuitable for model evaluation (Legates and McCabe, 
1999). But in this study performance indicators such as Mean Relative Error (MRE), Mean Absolute Error (MAE), 
Root Mean Square Error (RMSE) and Coefficient of determination (R2) used to asses model results.  

5. Results and Discussion 

5.1 Results of First station data (SW4) 

In the present work only significant wave height (Hs) of previous time steps were used as predictors. Here, wave 
height values up to previous 12 hours were taken in to consideration as predictor variables to predict Hs(t+n). The 
scenarios formed by various predictor configurations are: (1) Hs(t), (2) Hs(t), Hs(t-1), (3) Hs(t), Hs(t-1), Hs(t-2), and 
(4) Hs(t), Hs(t-1), Hs(t-2), Hs(t-3).   Where, Hs(t) is the current wave height, Hs(t-1), Hs(t-2), Hs(t-3) are previous 
time steps significant wave height, Hs(t + n) is the future significant wave height and ‘n’ denotes the lead time in 
hours. These input scenarios were used for both single ANN model and also for WLNN models. 

In WLNN model the wave data divided as training set (70%) and testing set (30%) were first used in discrete 
wavelet analysis to obtain DWT coefficients at different decomposition levels (up to 6). The sub signals obtained 
after the discrete wavelet transformation is shown in Figure.4. These sub signals later used to ANN as inputs and 
targets in WLNN-1 model. Forecasting was carried up to 48 hour lead times with different input scenarios as 
mentioned above. The best result obtained is from input scenario-3 i.e. three time step previous wave heights.  
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Analysis also carried out for WLLN-2 model up to 48hr lead time by supplying only input coefficients to ANN 
model. For both WLNN-1 & WLLN-2models the optimum decomposition level for different lead time predictions 
worked out to be in the range of level 4 to level 6. For lead times 3hr to12 hrs the optimum decomposition level is 
found to be 4 and 5 and for higher lead time say 24hr and 48hr optimum level found to be 6.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.4. Sub signals after data decomposition through DWT using db4 wavelet at level-6 

 
The optimum decomposition level in DWT is a level at which the model produce higher R2 value and lesser error 
(Deka and Prahlada, 2012).  
 
The adaption of two different methods in WLNN model in the present study is to identify the best method based on 
model performance and to fire the other in further studies. Results presented in Table 2 shows satisfactory 
performance of WLNN-2 model over WLNN-1 model. Hence method-2 is said to be good and suggestible method 
for WLNN models as it takes less time and produces better results. 

Table2. Test results of ANN and WLNN models for station-1 (SW4) 

Lead time 

(hrs) 

ANN WLNN-1 WLNN-2 

MRE % RMSE (m) R2 MRE % RMSE (m) R2 MRE % RMSE(m) R2 

3 8.253 0.058 0.888 6.905 0.046 0.930 6.368 0.045 0.932 

6 13.599 0.084 0.806 8.906 0.060 0.881 8.902 0.058 0.886 

12 16.509 0.104 0.680 11.076 0.071 0.829 10.448 0.071 0.831 

24 20.219 0.120 0.615 14.542 0.094 0.704 13.813 0.093 0.711 

48 32.111 0.177 0.329 20.156 0.119 0.519 16.542 0.113 0.564 
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5.2 Results of Second station data (46006) 

Hourly significant wave height data belong to station-2 (46006) divided in to75:25 ratios as training data and 
testing data respectively. Same input scenarios as motioned early were used in the ANN and WLNN models and the 
best result was obtained from input scenario-4. Here in WLNN model, method-2 is adapted to train the network as 
method-1(WLNN-1) in previous case (First station) was unable produce satisfactory results over WLNN-2. The 
discretization of data is done using haar wavelet up to9 levels. 
Results obtained from WLNN-2 model are presented in Table 3. As we can see from the results that the optimum 
decomposition level for lead time up to 12 hrs is in between 4 to 6, and as lead time increase to 24 and 48 hrs 
optimum levels also surged up to 9. 

Table3. Test results of WLNN model for station -2 (46006) 

Decomposition Levels 

  L-2 L-3 L-4 L-5 L-6 L-7 L-8 L-9 Optimum Level 

      3rd hour        

MRE (%) 7.918 7.697 7.782 7.773         L-4 

R2 0.918 0.925 0.929 0.926          

RMSE(m) 0.397 0.380 0.371 0.376          

       6th hour         

MRE (%) 12.593 11.925 11.597 11.555 11.699       L-5 

R2 0.797 0.823 0.837 0.842 0.828        

RMSE(m) 0.624 0.581 0.559 0.549 0.575        

       12th hour        

MRE (%) 19.270 18.861 17.422 16.998 17.499 17.773     L-6 

R2 0.539 0.561 0.621 0.636 0.644 0.614      

RMSE(m) 0.941 0.915 0.852 0.834 0.830 0.849      

      24th hour        

MRE (%) 28.337 27.692 26.349 24.613 23.363 24.480 24.302 24.149 L-9 

R2 0.156 0.165 0.205 0.298 0.346 0.371 0.419 0.421  

RMSE(m) 1.290 1.289 1.251 1.159 1.112 1.090 1.048 1.044  

      48th hour        

MRE (%) 32.355 33.063 32.462 31.076 28.603 23.036 25.206 24.716 L-9 

R2 0.015 0.013 0.019 0.052 0.198 0.374 0.398 0.403  

RMSE(m) 1.463 1.459 1.439 1.394 1.247 1.097 1.087 1.076  

 

Table.4. Station wise model test results 

Lead 
time 

Station-1 Station-2 

ANN WLNN-2 ANN WLNN-2 

MRE 
% 

RMSE 
(m) R2 MRE 

% 
RMSE 
(m) R2 MRE 

% 
RMSE 
(m) R2 MRE 

% 
RMSE 
(m) R2 

3 8.253 0.058 0.888 6.368 0.045 0.932 8.698 0.423 0.907 7.782 0.371 0.929 

6 13.599 0.084 0.806 8.902 0.058 0.886 13.013 0.631 0.794 11.555 0.549 0.842 

12 16.509 0.104 0.680 10.448 0.071 0.831 19.014 0.934 0.550 17.499 0.830 0.644 

24 20.219 0.120 0.615 13.813 0.093 0.711 27.836 1.296 0.167 24.149 1.044 0.421 
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48 32.111 0.177 0.329 16.542 0.113 0.564 33.182 1.471 0.013 24.716 1.076 0.403 

From the results presented in Table 4  it is clear that WLNN models performing better than single ANN model both 
at lower lead times as well as at higher lead time predictions. As compared to station -1 results, station -2 results are 
slightly poor and this was expected due to its more statistical variations in the wave data as we can see in table.1. 
More statistical variation in data also demanded more decomposition levels (up to 9) in DWT for making more 
linear inputs to ANN. 

6. Conclusions 

     Main purpose of this study is to carryout wavelet-ANN model for different station data to analyse the model 
performance for different data structure. Also to identify a best methodology in wavelet-ANN model which gives a 
good result amongst other. Two different methods WLNN-1 &WLNN-2 employed for the first station data to 
forecast significant wave heights at higher lead times. From the result it is clear that the second method (WLNN-2) 
in wavelet-ANN model performed better than first method (WLNN-1). Hence method-2 is said to be a good and 
suggestible method for WLNN models as it takes less time and produces better results. 
   Model results obtained for two stations showed good predictions at lower lead times but slight deviations are 
observed at higher lead times. As compared to first station results the second station results are slightly poor because 
of more statistical variations in the data. Also, this statistical variation in data demanded more decomposition levels 
(up to 9) in DWT to make it more linear inputs to ANN. Hence it is clear that more statistical variations in data lead 
to more number of decomposition levels and thus it increases the analysis time. 
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