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THE MAPPING CLASS GROUP OF A NONORIENTABLE

SURFACE IS GENERATED BY THREE ELEMENTS AND BY

FOUR INVOLUTIONS

B LAŻEJ SZEPIETOWSKI

Abstract. We prove that the mapping class group of a closed nonorientable

surface is generated by three elements and by four involutions.

1. Introduction

Let X be a closed connected nonorientable surface of genus g. The mapping
class group M(X) of X is defined to be the group of isotopy classes of all homeo-
morphisms X → X. We show in this paper that M(X) is generated by 3 elements
for every g ≥ 3. We proved in [14] that M(X) is generated by a set of involutions
whose cardinality depends linearly on g. In this paper we prove that M(X) is
generated by 4 involutions for g ≥ 4. If g = 3, then it follows easily from the work
of Birman and Chillingworth [1] that M(X) is generated by three involutions (see
section 4).

Lickorish was the first to consider the problem of finding generators of the group
M(X). He proved in [9] that M(X) is generated by Dehn twists and the isotopy
class of a homeomorphism he called the Y-homeomorphism. Chillingworth [3] de-
termined a finite set of generators for M(X). The cardinality of this set depends
on g. Korkmaz extended Chillingworth’s result to the case of punctured surfaces
[7] and also computed the first homology group H1(M(X)) [6, 7].

The mapping class group M(X) of an orientable surface X is defined to be
the group of isotopy classes of all orientation-preserving homeomorphisms X → X.
Wajnryb [15] proved that M(X) is generated by 2 elements, and Korkmaz [8] proved
that it is generated by 2 elements of finite order. McCarthy and Papadopoulus
[11] proved that M(X) is generated by involutions. Luo [10] described the first
finite set of generating involutions for M(X). Brendle and Farb [2] provided the
first universal upper bound on the minimal number of generating involutions by
showing that M(X) is generated by 6 involutions for every g ≥ 3. Their result was
improved by Kassabov [5] who proved that M(X) is generated by 4 involutions
if g is large enough. Stukow [12] proved that the extended mapping class group,
i.e. the group of isotopy classes of all homeomorphisms X → X, is generated by 3
orientation-reversing involutions.
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2. Preliminaries

Mapping class group M(X) of a closed nonorientable surface X is the group
of isotopy classes of all homeomorphisms of X. By abuse of notation we do not
distinguish a homeomorphism from its isotopy class. We use the functional notation
for the composition of two homeomorphisms; if g and h are two homeomorphisms,
then the composition gh means that h is applied first.

By a circle in X we mean a simple closed curve. We do not distinguish a circle
from its isotopy class. We also identify a circle with its image in X, forgetting its
orientation.

If a is a two-sided circle in X with oriented tubular neighborhood, then we can
define the (right) Dehn twist A about a.

Recall the following property of Dehn twists. Let c and d be two circles in X

with oriented tubular neighborhoods and let f be a homeomorphism of X such that
f(c) = d. If C and D are the corresponding Dehn twists, then fCf−1 = Ds, where
s = ±1 depending on whether f restricted to a neighborhood of c is orientation-
preserving or orientation-reversing.

3. Mapping class group of a Klein bottle with a hole

Let us consider:

D = {z ∈ C | |z| ≤ 4},

D1 = {z ∈ C | |z − 2| < 1},

D2 = {z ∈ C | |z + 2| < 1}.

Let K be the space obtained by removing D1 and D2 from D and identifying
the antipodal points on the boundary of each of the two removed discs. The space
K is a Klein bottle with a hole. Denote by ∂K the boundary of K.

Define a homeomorphism ũ : D → D by

ũ(reiθ) =

{

rei(θ−π) if 0 ≤ r ≤ 3,
rei(θ−(r−2)π) if 3 ≤ r ≤ 4.

We have then that ũ(D1) = D2, ũ(D2) = D1. Also ũ commutes with the identifi-
cation and thus induces a homeomorphism u : K → K. Note that u is the identity
on ∂K. We also remark that u2 is a Dehn twist about ∂K.

Let τ̃ : D → D be the reflection τ̃(z) = −z. We have τ̃ ũτ̃ = ũ−1. The reflection
τ̃ induces an involution τ : K → K and τuτ = u−1.

Figure 1 shows the effect of the homeomorphism u on the interval d joining two
boundary points of K and separating the removed discs from each other.

Let A be a Dehn twist about the two-sided circle a in Figure 1. With one of
the two possible orientations of a neighborhood of a the effect of the homeomor-
phism y = Au on the interval d is, up to isotopy, as in Figure 1. The home-
omorphism y can be described as sliding a Möbius band once along the core of
another one and keeping each point of the boundary of K fixed. It is called Y-
homeomorphism and was introduced by Lickorish in [9]. We remark that A−1u is
also a Y-homeomorphism, so the other choice of the orientation for a neighborhood
of a also gives a Y-homoeomorphism. We also note that y2 is a Dehn twist about
∂K.

If K is embedded in a surface X, we can extend y by the identity to a homeo-
morphism of X. We will call every such extension a Y-homeomorphism. Lickorish
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Figure 1. The homeomorphisms u and y = Au.

showed in [9] that the mapping class group of a nonorientable surface is generated
by Dehn twists together with one Y-homeomorphism.

Let M(K) denote the mapping class group of K, i.e. the group of isotopy classes
of those homeomorphisms of K which keep each point of ∂K fixed. The isotopies
are also required to fix boundary points. The following lemma can be deduced from
Theorem 4.9 of [7] (cf. Theorem A.7 of [13]).

Lemma 1. The group M(K) is generated by A and y. �

Corollary 2. The group M(K) is generated by A and u. �

4. Generators of the mapping class group M(X)

Let X be a closed nonorientable surface of genus g. If g = 1, then M(X) is
trivial. If g = 2, then M(X) = Z2 ⊕ Z2 (cf. [9]). If g = 3, then Birman and
Chillingworth [1] proved that M(X) is generated by three elements a, b, and z

which satisfy the relations zaz−1 = a−1, zbz−1 = b−1, z2 = 1. It follows that
M(X) is generated by three involutions c1 = za, c2 = zb and c3 = z.

For the rest of this section let X be a closed nonorientable surface of genus g ≥ 4.
We will prove that M(X) is generated by three elements and by four involutions.

We will consider two types of standard model for X as follows (see Figures 2 and
3):

(1) (a) If g = 2r + 1, then X is a closed orientable surface of genus r from which
the interior of a disc is removed and the antipodal points on the boundary of the
disc are identified.

(b) If g = 2r +2, then X is a closed orientable surface of genus r from which the
interiors of 2 disjoint discs are removed and the antipodal points on the boundary
of each disc are identified.

(2) X is a 2-sphere from which the interiors of g disjoint discs are removed and
the antipodal points on the boundary of each disc are identified.

There is a homeomorphism of X which takes the circles in Figure 2 to the circles
with the same labels in Figure 3. For a description of such a homeomorphism see
[3].

Until the end of the next subsection, let us fix the model in Figure 2 for X. Let
X ′ be the orientable sub-manifold of X bounded by the circle f and let us fix the
orientation of X ′ induced by the standard orientation of the plane of Figure 2. For
even g let us also fix the orientation of a tubular neighborhood of the circle ag−1

which agrees with the orientation of X ′. Denote by Ai the right Dehn twist about



4 B LAŻEJ SZEPIETOWSKI

(a)

a1
a2

a3
a4

b

a5
a6

f
e

(b)

a1
a2

a3
a4

b

a5
a6 e

f

a2r a2r+1

Figure 2. The surface X — model 1.
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Figure 4. g = 4

the circle ai for 1 ≤ i ≤ g− 1 and by B the right Dehn twist about b. Let S denote
the product Ag−1Ag−2 . . . A2A1 of g − 1 Dehn twists.

The circle e bounds a subspace of X which is homeomorphic to a Klein bottle
with a hole. Denote by y a Y-homeomorphism of X such that y2 is a Dehn twist
about e.

Theorem 3. Let X be a closed nonorientable surface of genus g ≥ 4. The mapping

class group M(X) is generated by the collection C of homeomorphisms, where:

• C = {y,B,Ai | 1 ≤ i ≤ g − 1} if g > 4,
• C = {y, C,Ai | 1 ≤ i ≤ 3} if g = 4,

where C is a Dehn twist about the circle c in Figure 4.

Proof. Lickorish showed in [9] that M(X) is generated by Dehn twists together
with one Y-homeomorphism. Chillingworth established in [3] a finite collection of
generators for M(X). If g = 4, then Chillingworth’s set of generators coincides
with C. If g > 4, then Chillingworth’s set of generators contains C and some more
Dehn twists. However, all of these Dehn twists can be written as a product of B

and Ai for 1 ≤ i ≤ g − 1 by using the method of Humphries [4]. Since each of the
Chillingworth’s generators can be obtained using the elements of C, the collection
C generates M(X). �
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4.1. Generating mapping class group by three elements. Wajnryb proved
in [15] that the mapping class group of an orientable surface is generated by two
elements. Korkmaz showed in [8] that it is generated by two elements, one of which
is a Dehn twist. We will follow the outline of the proof of Theorem 5 of [8] to
prove that the mapping class group of a nonorientable surface is generated by three
elements.

Theorem 4. Let X be a closed nonorientable surface of genus g ≥ 4. The mapping

class group M(X) is generated by the collection C1, where:

• C1 = {B,S, φ} if g is odd,

• C1 = {B,S, φA4} if g is even and g ≥ 8,
• C1 = {B,S, φA2} if g = 6,
• C1 = {A1, SC, φ} if g = 4,

where φ can be taken as any homeomorphism supported in the holed Klein bottle

bounded by the circle e and such that y can be written as a product of φ and Ag−1.

In particular we may take φ = y.

Proof. Let φ be any homeomorphism supported inside the holed Klein bottle bounded
by e and such that y can be written as a product of φ and Ag−1. Let G denote the
subgroup of M(X) generated by C1. We will prove that G = M(X) by showing
that the collection C in Theorem 3 is contained in G. It clearly suffices to prove
that Ai ∈ G for 1 ≤ i ≤ g − 1.

It can be easily shown that S(ai) = ai−1 for i > 1. Hence SAiS
−1 = Ai−1.

Thus, for g > 4, Ai−1 ∈ G if and only if Ai ∈ G and to show that G = M(X) it
suffices to show that Ai ∈ G for some i.

If g is odd, then it follows from Theorem 5 of [8] that each Ai can be written as
a product of B and S. Thus M(X) = G.

Suppose that g is even and g ≥ 8. We can write the braid relation between the
Dehn twists B and A4 as A4 = BA4BA−1

4 B−1. Since φ commutes with B and A4

we have A4 = B(φA4)B(φA4)
−1B−1. Hence A4 ∈ G and M(X) = G.

Suppose that g = 6. Denote by b1 the circle S−1(b) and by b2 the circle S−1(b1)
(Figure 5). The corresponding Dehn twists B1 and B2 are in G, since B1 = S−1BS

and B2 = S−2BS2. It can be checked that the homeomorphism U = φA2B2B1BS

takes b to a3. Since U ∈ G, we have A3 ∈ G and M(X) = G.
Finally suppose that g = 4. Note, that C commutes with Ai for each i and so

(SC)Ai(SC)−1 = Ai−1. Thus Ai ∈ G for each i and S ∈ G. Thus G = M(X). �

Remark If g = 4 then the first homology group H1(M(X)) is elementary abelian
of order 8 (cf. [6]) and hence it is not generated by two elements. This means
that M(X) is not generated by two elements. For g > 4 or g = 3 it is not known
whether M(X) is generated by two elements.
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Figure 8. bi = S−i(b)

4.2. Generating mapping class group by four involutions. In this subsection
we will use the model in Figure 3 for X . Now X is obtained by removing interiors
of g open discs from a 2-sphere and by identifying antipodal points on the boundary
of each disk. Let X ′ be the orientable submanifold of X bounded by the curve f

(see Figure 7, the interior of the dashed circle should be replaced with a crosscap if
g is even). As before, Ai and B denote the Dehn twists about about the circles ai

and b respectively, right with respect to the orientation of X ′ indicated in Figure
7. Observe that SAiS

−1 = Ai−1, where S is the product Ag−1Ag−2 . . . A1.
We can assume that the centers of the removed discs are on the equator of the

sphere and there is a reflection of the sphere across a plane perpendicular to the
plane of the equator which induces an involution τ : X → X such that τ(ai) = ag−i

for 1 ≤ i ≤ g − 1. We have τAiτ = A−1
g−i and τSτ = S−1. Let σ denote the

involution Sτ .
The circle S−1(e) bounds a Klein bottle with a hole (see Figure 6). We identify

this submanifold with K defined in Section 3 in such a way that τ restricts to
the involution of K denoted by the same symbol in Section 3. We extend the
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homeomorphism u : K → K to a homeomorphism u : X → X by the identity
outside K. We have τuτ = u−1. The circle a in Figure 1 is isotopic, by an isotopy
which is the identity outside K, to S−1(ag−1). By Corollary 2, M(K) is generated
by u and S−1Ag−1S. In particular, if φ = SuS−1 then y can be written as a
product of Ag−1 and φ.

Theorem 5. Let X be a closed nonorientable surface of genus g ≥ 4. The mapping

class group M(X) is generated by four involutions.

Proof. By Theorem 4, M(X) is generated by the collection C1 with φ = SuS−1.
We will express each of the elements of C1 as a product of involutions.

By the considerations preceding Theorem 5 it is easy to write S and φ as products
of involutions: S = (Sτ)τ = στ , φ = (Sτ)(τu)τ(τS−1) = σ(τu)τσ.

Consider the circles bi = S−i(b). It can be checked that, for 1 ≤ i ≤ g − 4, S−i

shifts b by i crosscaps to the right in Figure 8.
Suppose that g = 2r + 1. Then the involution σ = Sτ takes the circle br−2 to

itself reversing its neighborhood. Thus

σ(S2−rBSr−2)σ = (S2−rBSr−2)−1.

Now we can write B as a product of two involutions:

B = (Sr−2σS2−r)(Sr−2σS2−rB).

By Theorem 4, M(X) is generated by four involutions: τ , σ, τu and Sr−2σS2−rB.
Now suppose that g = 2r and r ≥ 4. Now τ takes br−2 to itself reversing the

neighborhood, Sr−2τS2−rB is an involution, and we have

B = (Sr−2τS2−r)(Sr−2τS2−rB).

If g 6= 10, then it is clear from the proof of Theorem 4 that the generator φA4

can be replaced with Ag−6φA4 and hence M(X) is generated by B, S and V where

V = S−1Ag−6φA4S = Ag−5uA5.

We have τV τ = A−1
5 u−1A−1

g−5 = V −1. Now M(X) is generated by the involutions

τ , σ, Sr−2τS2−rB, and τV . If g = 10 then M(X) is generated by the involutions
τ , σ, S3τS−3B, and τV ′, where V ′ = S−1φA4S = uA5.

If g = 6, then it is easy to check that τS−1φA2S = τuA3 has order 2 and, by
Theorem 4, M(X) is generated by τ , σ, SτS−1B, and τuA3.

Finally suppose that g = 4. It follows from the proof of Theorem 4 that the
generator A1 can be replaced with any Ai. In particular M(X) is generated by A2,
SC and φ. Note that τCτ = C−1. Now M(X) is generated by the involutions τ ,
τSC, τA2, and τu. �
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