Appeared in Geometriae Dedicata (2006) 117:1-9. DOI: 10.1007/s10711-005-9004-5

THE MAPPING CLASS GROUP OF A NONORIENTABLE SURFACE IS GENERATED BY THREE ELEMENTS AND BY FOUR INVOLUTIONS

BŁAŻEJ SZEPIETOWSKI

ABSTRACT. We prove that the mapping class group of a closed nonorientable surface is generated by three elements and by four involutions.

1. INTRODUCTION

Let X be a closed connected nonorientable surface of genus g. The mapping class group $\mathcal{M}(X)$ of X is defined to be the group of isotopy classes of all homeomorphisms $X \to X$. We show in this paper that $\mathcal{M}(X)$ is generated by 3 elements for every $g \geq 3$. We proved in [14] that $\mathcal{M}(X)$ is generated by a set of involutions whose cardinality depends linearly on g. In this paper we prove that $\mathcal{M}(X)$ is generated by 4 involutions for $g \geq 4$. If g = 3, then it follows easily from the work of Birman and Chillingworth [1] that $\mathcal{M}(X)$ is generated by three involutions (see section 4).

Lickorish was the first to consider the problem of finding generators of the group $\mathcal{M}(X)$. He proved in [9] that $\mathcal{M}(X)$ is generated by Dehn twists and the isotopy class of a homeomorphism he called the Y-homeomorphism. Chillingworth [3] determined a finite set of generators for $\mathcal{M}(X)$. The cardinality of this set depends on g. Korkmaz extended Chillingworth's result to the case of punctured surfaces [7] and also computed the first homology group $H_1(\mathcal{M}(X))$ [6, 7].

The mapping class group $\mathcal{M}(X)$ of an orientable surface X is defined to be the group of isotopy classes of all orientation-preserving homeomorphisms $X \to X$. Wajnryb [15] proved that $\mathcal{M}(X)$ is generated by 2 elements, and Korkmaz [8] proved that it is generated by 2 elements of finite order. McCarthy and Papadopoulus [11] proved that $\mathcal{M}(X)$ is generated by involutions. Luo [10] described the first finite set of generating involutions for $\mathcal{M}(X)$. Brendle and Farb [2] provided the first universal upper bound on the minimal number of generating involutions by showing that $\mathcal{M}(X)$ is generated by 6 involutions for every $g \ge 3$. Their result was improved by Kassabov [5] who proved that $\mathcal{M}(X)$ is generated by 4 involutions if g is large enough. Stukow [12] proved that the extended mapping class group, i.e. the group of isotopy classes of all homeomorphisms $X \to X$, is generated by 3 orientation-reversing involutions.

¹⁹⁹¹ Mathematics Subject Classification. Primary 57N05; Secondary 20F38, 20F05.

Key words and phrases. Mapping class group, nonorientable surfaces, involutions, generators. Supported by KBN 1 P03A 024 26.

BŁAŻEJ SZEPIETOWSKI

2. Preliminaries

Mapping class group $\mathcal{M}(X)$ of a closed nonorientable surface X is the group of isotopy classes of all homeomorphisms of X. By abuse of notation we do not distinguish a homeomorphism from its isotopy class. We use the functional notation for the composition of two homeomorphisms; if g and h are two homeomorphisms, then the composition gh means that h is applied first.

By a *circle* in X we mean a simple closed curve. We do not distinguish a circle from its isotopy class. We also identify a circle with its image in X, forgetting its orientation.

If a is a two-sided circle in X with oriented tubular neighborhood, then we can define the (right) Dehn twist A about a.

Recall the following property of Dehn twists. Let c and d be two circles in X with oriented tubular neighborhoods and let f be a homeomorphism of X such that f(c) = d. If C and D are the corresponding Dehn twists, then $fCf^{-1} = D^s$, where $s = \pm 1$ depending on whether f restricted to a neighborhood of c is orientation-preserving or orientation-reversing.

3. MAPPING CLASS GROUP OF A KLEIN BOTTLE WITH A HOLE

Let us consider:

$$\begin{split} D &= \{ z \in \mathbb{C} \mid |z| \leq 4 \}, \\ D_1 &= \{ z \in \mathbb{C} \mid |z-2| < 1 \}, \\ D_2 &= \{ z \in \mathbb{C} \mid |z+2| < 1 \}. \end{split}$$

Let K be the space obtained by removing D_1 and D_2 from D and identifying the antipodal points on the boundary of each of the two removed discs. The space K is a Klein bottle with a hole. Denote by ∂K the boundary of K.

Define a homeomorphism $\tilde{u}: D \to D$ by

$$\tilde{u}(re^{i\theta}) = \begin{cases} re^{i(\theta-\pi)} & \text{if } 0 \le r \le 3, \\ re^{i(\theta-(r-2)\pi)} & \text{if } 3 \le r \le 4. \end{cases}$$

We have then that $\tilde{u}(D_1) = D_2$, $\tilde{u}(D_2) = D_1$. Also \tilde{u} commutes with the identification and thus induces a homeomorphism $u: K \to K$. Note that u is the identity on ∂K . We also remark that u^2 is a Dehn twist about ∂K .

Let $\tilde{\tau}: D \to D$ be the reflection $\tilde{\tau}(z) = -\overline{z}$. We have $\tilde{\tau}\tilde{u}\tilde{\tau} = \tilde{u}^{-1}$. The reflection $\tilde{\tau}$ induces an involution $\tau: K \to K$ and $\tau u\tau = u^{-1}$.

Figure 1 shows the effect of the homeomorphism u on the interval d joining two boundary points of K and separating the removed discs from each other.

Let A be a Dehn twist about the two-sided circle a in Figure 1. With one of the two possible orientations of a neighborhood of a the effect of the homeomorphism y = Au on the interval d is, up to isotopy, as in Figure 1. The homeomorphism y can be described as sliding a Möbius band once along the core of another one and keeping each point of the boundary of K fixed. It is called Yhomeomorphism and was introduced by Lickorish in [9]. We remark that $A^{-1}u$ is also a Y-homeomorphism, so the other choice of the orientation for a neighborhood of a also gives a Y-homoeomorphism. We also note that y^2 is a Dehn twist about ∂K .

If K is embedded in a surface X, we can extend y by the identity to a homeomorphism of X. We will call every such extension a Y-homeomorphism. Lickorish

FIGURE 1. The homeomorphisms u and y = Au.

showed in [9] that the mapping class group of a nonorientable surface is generated by Dehn twists together with one Y-homeomorphism.

Let $\mathcal{M}(K)$ denote the mapping class group of K, i.e. the group of isotopy classes of those homeomorphisms of K which keep each point of ∂K fixed. The isotopies are also required to fix boundary points. The following lemma can be deduced from Theorem 4.9 of [7] (cf. Theorem A.7 of [13]).

Lemma 1. The group
$$\mathcal{M}(K)$$
 is generated by A and y.

Corollary 2. The group $\mathcal{M}(K)$ is generated by A and u.

4. Generators of the mapping class group $\mathcal{M}(X)$

Let X be a closed nonorientable surface of genus g. If g = 1, then $\mathcal{M}(X)$ is trivial. If g = 2, then $\mathcal{M}(X) = \mathbf{Z}_2 \oplus \mathbf{Z}_2$ (cf. [9]). If g = 3, then Birman and Chillingworth [1] proved that $\mathcal{M}(X)$ is generated by three elements a, b, and z which satisfy the relations $zaz^{-1} = a^{-1}$, $zbz^{-1} = b^{-1}$, $z^2 = 1$. It follows that $\mathcal{M}(X)$ is generated by three involutions $c_1 = za$, $c_2 = zb$ and $c_3 = z$.

For the rest of this section let X be a closed nonorientable surface of genus $g \ge 4$. We will prove that $\mathcal{M}(X)$ is generated by three elements and by four involutions.

We will consider two types of standard model for X as follows (see Figures 2 and 3):

(1) (a) If g = 2r + 1, then X is a closed orientable surface of genus r from which the interior of a disc is removed and the antipodal points on the boundary of the disc are identified.

(b) If g = 2r + 2, then X is a closed orientable surface of genus r from which the interiors of 2 disjoint discs are removed and the antipodal points on the boundary of each disc are identified.

(2) X is a 2-sphere from which the interiors of g disjoint discs are removed and the antipodal points on the boundary of each disc are identified.

There is a homeomorphism of X which takes the circles in Figure 2 to the circles with the same labels in Figure 3. For a description of such a homeomorphism see [3].

Until the end of the next subsection, let us fix the model in Figure 2 for X. Let X' be the orientable sub-manifold of X bounded by the circle f and let us fix the orientation of X' induced by the standard orientation of the plane of Figure 2. For even g let us also fix the orientation of a tubular neighborhood of the circle a_{g-1} which agrees with the orientation of X'. Denote by A_i the right Dehn twist about

FIGURE 2. The surface X - model 1.

FIGURE 3. The surface X - model 2.

FIGURE 4. g = 4

the circle a_i for $1 \le i \le g-1$ and by B the right Dehn twist about b. Let S denote the product $A_{g-1}A_{g-2}\ldots A_2A_1$ of g-1 Dehn twists.

The circle e bounds a subspace of X which is homeomorphic to a Klein bottle with a hole. Denote by y a Y-homeomorphism of X such that y^2 is a Dehn twist about e.

Theorem 3. Let X be a closed nonorientable surface of genus $g \ge 4$. The mapping class group $\mathcal{M}(X)$ is generated by the collection \mathcal{C} of homeomorphisms, where:

- $C = \{y, B, A_i \mid 1 \le i \le g 1\}$ if g > 4, $C = \{y, C, A_i \mid 1 \le i \le 3\}$ if g = 4,

where C is a Dehn twist about the circle c in Figure 4.

Proof. Lickorish showed in [9] that $\mathcal{M}(X)$ is generated by Dehn twists together with one Y-homeomorphism. Chillingworth established in [3] a finite collection of generators for $\mathcal{M}(X)$. If g = 4, then Chillingworth's set of generators coincides with C. If g > 4, then Chillingworth's set of generators contains C and some more Dehn twists. However, all of these Dehn twists can be written as a product of Band A_i for $1 \le i \le g - 1$ by using the method of Humphries [4]. Since each of the Chillingworth's generators can be obtained using the elements of C, the collection \mathcal{C} generates $\mathcal{M}(X)$.

FIGURE 5. g = 6

4.1. Generating mapping class group by three elements. Wajnryb proved in [15] that the mapping class group of an orientable surface is generated by two elements. Korkmaz showed in [8] that it is generated by two elements, one of which is a Dehn twist. We will follow the outline of the proof of Theorem 5 of [8] to prove that the mapping class group of a nonorientable surface is generated by three elements.

Theorem 4. Let X be a closed nonorientable surface of genus $g \ge 4$. The mapping class group $\mathcal{M}(X)$ is generated by the collection \mathcal{C}_1 , where:

- $C_1 = \{B, S, \phi\}$ if g is odd, $C_1 = \{B, S, \phi A_4\}$ if g is even and $g \ge 8$, $C_1 = \{B, S, \phi A_2\}$ if g = 6, $C_1 = \{A_1, SC, \phi\}$ if g = 4,

whether $\mathcal{M}(X)$ is generated by two elements.

where ϕ can be taken as any homeomorphism supported in the holed Klein bottle bounded by the circle e and such that y can be written as a product of ϕ and A_{q-1} . In particular we may take $\phi = y$.

Proof. Let ϕ be any homeomorphism supported inside the holed Klein bottle bounded by e and such that y can be written as a product of ϕ and A_{q-1} . Let G denote the subgroup of $\mathcal{M}(X)$ generated by \mathcal{C}_1 . We will prove that $G = \mathcal{M}(X)$ by showing that the collection \mathcal{C} in Theorem 3 is contained in G. It clearly suffices to prove that $A_i \in G$ for $1 \leq i \leq g - 1$.

It can be easily shown that $S(a_i) = a_{i-1}$ for i > 1. Hence $SA_iS^{-1} = A_{i-1}$. Thus, for g > 4, $A_{i-1} \in G$ if and only if $A_i \in G$ and to show that $G = \mathcal{M}(X)$ it suffices to show that $A_i \in G$ for some *i*.

If g is odd, then it follows from Theorem 5 of [8] that each A_i can be written as a product of B and S. Thus $\mathcal{M}(X) = G$.

Suppose that g is even and $g \ge 8$. We can write the braid relation between the Dehn twists B and A_4 as $A_4 = BA_4BA_4^{-1}B^{-1}$. Since ϕ commutes with B and A_4 we have $A_4 = B(\phi A_4)B(\phi A_4)^{-1}B^{-1}$. Hence $A_4 \in G$ and $\mathcal{M}(X) = G$.

Suppose that g = 6. Denote by b_1 the circle $S^{-1}(b)$ and by b_2 the circle $S^{-1}(b_1)$ (Figure 5). The corresponding Dehn twists B_1 and B_2 are in G, since $B_1 = S^{-1}BS$ and $B_2 = S^{-2}BS^2$. It can be checked that the homeomorphism $U = \phi A_2 B_2 B_1 BS$ takes b to a_3 . Since $U \in G$, we have $A_3 \in G$ and $\mathcal{M}(X) = G$.

Finally suppose that q = 4. Note, that C commutes with A_i for each i and so $(SC)A_i(SC)^{-1} = A_{i-1}$. Thus $A_i \in G$ for each *i* and $S \in G$. Thus $G = \mathcal{M}(X)$. \Box **Remark** If g = 4 then the first homology group $H_1(\mathcal{M}(X))$ is elementary abelian of order 8 (cf. [6]) and hence it is not generated by two elements. This means that $\mathcal{M}(X)$ is not generated by two elements. For g > 4 or g = 3 it is not known

FIGURE 6. The circle $S^{-1}(e)$.

FIGURE 7. The orientation of X'.

FIGURE 8. $b_i = S^{-i}(b)$

4.2. Generating mapping class group by four involutions. In this subsection we will use the model in Figure 3 for X. Now X is obtained by removing interiors of g open discs from a 2-sphere and by identifying antipodal points on the boundary of each disk. Let X' be the orientable submanifold of X bounded by the curve f (see Figure 7, the interior of the dashed circle should be replaced with a crosscap if g is even). As before, A_i and B denote the Dehn twists about about the circles a_i and b respectively, right with respect to the orientation of X' indicated in Figure 7. Observe that $SA_iS^{-1} = A_{i-1}$, where S is the product $A_{g-1}A_{g-2} \dots A_1$.

We can assume that the centers of the removed discs are on the equator of the sphere and there is a reflection of the sphere across a plane perpendicular to the plane of the equator which induces an involution $\tau: X \to X$ such that $\tau(a_i) = a_{g-i}$ for $1 \leq i \leq g-1$. We have $\tau A_i \tau = A_{g-i}^{-1}$ and $\tau S \tau = S^{-1}$. Let σ denote the involution $S\tau$.

The circle $S^{-1}(e)$ bounds a Klein bottle with a hole (see Figure 6). We identify this submanifold with K defined in Section 3 in such a way that τ restricts to the involution of K denoted by the same symbol in Section 3. We extend the homeomorphism $u: K \to K$ to a homeomorphism $u: X \to X$ by the identity outside K. We have $\tau u\tau = u^{-1}$. The circle a in Figure 1 is isotopic, by an isotopy which is the identity outside K, to $S^{-1}(a_{g-1})$. By Corollary 2, $\mathcal{M}(K)$ is generated by u and $S^{-1}A_{g-1}S$. In particular, if $\phi = SuS^{-1}$ then y can be written as a product of A_{g-1} and ϕ .

Theorem 5. Let X be a closed nonorientable surface of genus $g \ge 4$. The mapping class group $\mathcal{M}(X)$ is generated by four involutions.

Proof. By Theorem 4, $\mathcal{M}(X)$ is generated by the collection \mathcal{C}_1 with $\phi = SuS^{-1}$. We will express each of the elements of \mathcal{C}_1 as a product of involutions.

By the considerations preceding Theorem 5 it is easy to write S and ϕ as products of involutions: $S = (S\tau)\tau = \sigma\tau$, $\phi = (S\tau)(\tau u)\tau(\tau S^{-1}) = \sigma(\tau u)\tau\sigma$.

Consider the circles $b_i = S^{-i}(b)$. It can be checked that, for $1 \le i \le g - 4$, S^{-i} shifts b by i crosscaps to the right in Figure 8.

Suppose that g = 2r + 1. Then the involution $\sigma = S\tau$ takes the circle b_{r-2} to itself reversing its neighborhood. Thus

$$\sigma(S^{2-r}BS^{r-2})\sigma = (S^{2-r}BS^{r-2})^{-1}.$$

Now we can write B as a product of two involutions:

$$B = (S^{r-2}\sigma S^{2-r})(S^{r-2}\sigma S^{2-r}B).$$

By Theorem 4, $\mathcal{M}(X)$ is generated by four involutions: τ , σ , τu and $S^{r-2}\sigma S^{2-r}B$. Now suppose that g = 2r and $r \geq 4$. Now τ takes b_{r-2} to itself reversing the neighborhood, $S^{r-2}\tau S^{2-r}B$ is an involution, and we have

$$B = (S^{r-2}\tau S^{2-r})(S^{r-2}\tau S^{2-r}B).$$

If $g \neq 10$, then it is clear from the proof of Theorem 4 that the generator ϕA_4 can be replaced with $A_{q-6}\phi A_4$ and hence $\mathcal{M}(X)$ is generated by B, S and V where

$$V = S^{-1}A_{g-6}\phi A_4 S = A_{g-5}uA_5.$$

We have $\tau V \tau = A_5^{-1} u^{-1} A_{g-5}^{-1} = V^{-1}$. Now $\mathcal{M}(X)$ is generated by the involutions τ , σ , $S^{r-2} \tau S^{2-r} B$, and τV . If g = 10 then $\mathcal{M}(X)$ is generated by the involutions τ , σ , $S^3 \tau S^{-3} B$, and $\tau V'$, where $V' = S^{-1} \phi A_4 S = u A_5$.

If g = 6, then it is easy to check that $\tau S^{-1}\phi A_2 S = \tau u A_3$ has order 2 and, by Theorem 4, $\mathcal{M}(X)$ is generated by τ , σ , $S\tau S^{-1}B$, and $\tau u A_3$.

Finally suppose that g = 4. It follows from the proof of Theorem 4 that the generator A_1 can be replaced with any A_i . In particular $\mathcal{M}(X)$ is generated by A_2 , SC and ϕ . Note that $\tau C\tau = C^{-1}$. Now $\mathcal{M}(X)$ is generated by the involutions τ , τSC , τA_2 , and τu .

References

- Birman J.S., Chillingworth D.R.J., On the homeotopy group of a non-orientable surface, Proc. Cambridge Philos. Soc. 71 (1972), 437-448.
- [2] Brendle T.E., Farb B., Every mapping class group is generated by 6 involutions, J. Algebra 278 (2004), 187-198.
- [3] Chillingworth D.R.J., A finite set of generators for the homeotopy group of a non-orientable surface, Proc. Cambridge Philos. Soc. 65 (1969), 409-430.
- [4] Humphries S., Generators of the mapping class group, in: Topology of Low Dimensional Manifolds, Ed. by R. Fenn, Lecture Notes in Math. No. 722, Springer-Verlag, Berlin, 1979, 44-47.

BŁAŻEJ SZEPIETOWSKI

- [5] Kassabov M., Generating mapping class groups by involutions, arXiv:math.GT/0311455, v1 25Nov2003.
- [6] Korkmaz M., First Homology group of mapping class group of nonorientable surfaces, Math. Proc. Camb. Phil. Soc. 123 (1998), 487-499.
- [7] Korkmaz M., Mapping class groups of nonorientable surfaces, Geom. Dedicata 89 (2002), 109-133.
- [8] Korkmaz M., Generating the surface mapping class group by two elements, Transactions of Amer. Math. Soc. 357 (2005), 3299-3310.
- [9] Lickorish W.B.R., Homeomorphisms of non-orientable two-manifolds, Proc. Cambridge Philos. Soc. 59 (1963), 307-317.
- [10] Luo F., Torsion elements in the mapping class group of a surface, arXiv:math.GT/0004048, v1 8Apr2000.
- [11] McCarthy J., Papadopoulus A., Involutions in surface mapping class groups, L'Enseignement Mathématique 33 (1987), 275-290.
- [12] Stukow M., The extended mapping class group is generated by 3 symmetries, C.R. Acad. Sci. Paris, Ser I. (5) 338 (2004), 403-406.
- [13] Stukow M., Dehn twists on nonorientable surfaces, preprint 2004.
- [14] Szepietowski B., Mapping class group of a non-orientable surface and moduli space of Klein surfaces, C.R. Acad. Sci. Paris, Ser. I 335 (2002), 1053-1056.
- [15] Wajnryb B., Mapping class group of a surface is generated by two elements, Topology 35 (1996), 377-383.

INSTITUTE OF MATHEMATICS, GDAŃSK UNIVERSITY, WITA STWOSZA 57, 80-952 GDAŃSK, POLAND *E-mail address*: blaszep@math.univ.gda.pl

8