Blake Mason

Blake Mason
University of Wisconsin–Madison | UW · Department of Electrical and Computer Engineering

About

12
Publications
228
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
52
Citations
Citations since 2017
11 Research Items
44 Citations
2017201820192020202120222023024681012
2017201820192020202120222023024681012
2017201820192020202120222023024681012
2017201820192020202120222023024681012

Publications

Publications (12)
Preprint
This paper investigates simultaneous preference and metric learning from a crowd of respondents. A set of items represented by $d$-dimensional feature vectors and paired comparisons of the form ``item $i$ is preferable to item $j$'' made by each user is given. Our model jointly learns a distance metric that characterizes the crowd's general measure...
Article
In this work we consider the problem of regret minimization for logistic bandits. The main challenge of logistic bandits is reducing the dependence on a potentially large problem dependent constant that can at worst scale exponentially with the norm of the unknown parameter vector. Previous works have applied self-concordance of the logistic functi...
Preprint
In this work we consider the problem of regret minimization for logistic bandits. The main challenge of logistic bandits is reducing the dependence on a potentially large problem dependent constant $\kappa$ that can at worst scale exponentially with the norm of the unknown parameter $\theta_{\ast}$. Abeille et al. (2021) have applied self-concordan...
Preprint
We consider interactive learning in the realizable setting and develop a general framework to handle problems ranging from best arm identification to active classification. We begin our investigation with the observation that agnostic algorithms \emph{cannot} be minimax-optimal in the realizable setting. Hence, we design novel computationally effic...
Preprint
Full-text available
The level set estimation problem seeks to find all points in a domain ${\cal X}$ where the value of an unknown function $f:{\cal X}\rightarrow \mathbb{R}$ exceeds a threshold $\alpha$. The estimation is based on noisy function evaluations that may be acquired at sequentially and adaptively chosen locations in ${\cal X}$. The threshold value $\alpha...
Preprint
Full-text available
Nearest Neighbor Search (NNS) is a central task in knowledge representation, learning, and reasoning. There is vast literature on efficient algorithms for constructing data structures and performing exact and approximate NNS. This paper studies NNS under Uncertainty (NNSU). Specifically, consider the setting in which an NNS algorithm has access onl...
Preprint
The pure-exploration problem in stochastic multi-armed bandits aims to find one or more arms with the largest (or near largest) means. Examples include finding an {\epsilon}-good arm, best-arm identification, top-k arm identification, and finding all arms with means above a specified threshold. However, the problem of finding all {\epsilon}-good ar...
Conference Paper
We consider the problem of learning the nearest neighbor graph of a dataset of n items. The metric is unknown, but we can query an oracle to obtain a noisy estimate of the distance between any pair of items. This framework applies to problem domains where one wants to learn people's preferences from responses commonly modeled as noisy distance judg...
Article
Visual representations are prevalent in STEM instruction. To benefit from visuals, students need representational competencies that enable them to see meaningful information. Most research has focused on explicit conceptual representational competencies, but implicit perceptual competencies might also allow students to efficiently see meaningful in...
Preprint
We consider the problem of learning the nearest neighbor graph of a dataset of n items. The metric is unknown, but we can query an oracle to obtain a noisy estimate of the distance between any pair of items. This framework applies to problem domains where one wants to learn people's preferences from responses commonly modeled as noisy distance judg...
Article
This paper investigates the theoretical foundations of metric learning, focused on three key questions that are not fully addressed in prior work: 1) we consider learning general low-dimensional (low-rank) metrics as well as sparse metrics; 2) we develop upper and lower (minimax)bounds on the generalization error; 3) we quantify the sample complexi...
Article
We report an experimental measurement of the acoustic signal emitted from an individual suspended carbon nanotube (CNT) approximate 2 µm in length, 1 nm in diameter, and 10 zkg in mass. This system represents the smallest thermoacoustic system studied to date. By applying an AC voltage of 1.4 V at 8 kHz to the suspended CNT, we are able to detect t...

Network

Cited By