GENE ONTOLOGY-BASED SEMANTIC ALIGNMENT OF BIOLOGICAL PATHWAYS BY EVOLUTIONARY SEARCH

JONAS GAMALIELSSON*
Bioinformatics Research Group, University of Skövde, Box 408
Skövde, S-54128, Sweden
jonas.gamalielsson@his.se

BJÖRN OLSSON
Bioinformatics Research Group, University of Skövde, Box 408
Skövde, S-54128, Sweden
bjorn.olsson@his.se

Received (16 October 2007)
Revised (15 January 2008)
Accepted (24 January 2008)

A large number of biological pathways have been elucidated recently, and there is a need for methods to analyse these pathways. One class of methods compares pathways semantically, in order to discover parts that are evolutionarily conserved between species or to discover intra-species similarities. Such methods usually require that the topologies of the pathways being compared are known, i.e. that a query pathway is being aligned to a model pathway. However, sometimes the query only consists of an unordered set of gene products. Previous methods for mapping sets of gene products onto known pathways have not been based on semantic comparison of gene products using ontologies or other abstraction hierarchies.

Therefore, we here propose an approach that uses a similarity function defined over Gene Ontology (GO) terms to find semantic alignments when comparing paths in biological pathways where the nodes are gene products. A known pathway graph is used as a model, and an evolutionary algorithm (EA) is used to evolve putative paths from a set of experimentally determined gene products. The method uses a measure of GO term similarity to calculate a match score between gene products, and the fitness value of each candidate path alignment is derived from these match scores. A statistical test is used to assess the significance of evolved alignments. The performance of the method has been tested using regulatory pathways for *S. cerevisiae* and *M. musculus*.

Keywords: gene ontology; pathways; alignment.

1. Introduction

The number of biological pathways that have been experimentally elucidated or computationally predicted is growing rapidly. Hence, there is a great need for meth-

*corresponding author
ods to compare pathways, so that similarities and differences can be analysed both within and between different species. Just like sequence alignments may help identifying evolutionary changes such as insertions, deletions and substitutions, a pathway alignment may help identifying evolutionary events at the pathway level, such as gene duplication and divergence of function. An alignment of two similar pathways from the same species may for example suggest that the aligned pathways have evolved from a common ancestor pathway by gene duplication followed by divergence\(^1\).

Of particular interest is the class of methods that compare pathways semantically, i.e. using the annotation of the pathway components to discover homologies that are based on similarities regarding functional role, biological process or cellular location. Most previous work on such methods has focused on metabolic pathways, utilizing the EC enzyme hierarchy\(^a\) to calculate match scores\(^1,2,3\). It has also been assumed previously that the comparison is done between pathways with known topologies. However, sometimes only a set of gene products is available on the query-side and the goal is to derive a putative pathway by finding the best possible matching of gene products onto the known model pathway. Some earlier methods\(^4,5,6\) for mapping gene products onto known pathways do this merely for presentation purposes and are not based on approximate matching using abstraction hierarchies or ontologies. We therefore propose EGOSAP, which is an Evolutionary Gene Ontology\(^7\)-based method for finding Semantic Alignments between Paths in biological pathways where the nodes are gene products. EGOSAP uses a known pathway graph, from which a set of model paths are extracted. It then uses an evolutionary algorithm (EA) to derive putative paths, semantically similar to the model paths, from a set of experimentally derived gene products.

1.1. Previous work

Most previous work on pathway alignment has been focused on metabolic pathways and has used the EC enzyme hierarchy to calculate match scores for the enzymes and reactions\(^1,2,3\). Dandekar et al.\(^2\) proposed an approach involving analysis and comparison of biochemical data, pathway analysis using the elementary modes concept, and comparative analysis of a set of completely sequenced genomes. A method for deriving multiple alignments of paths in metabolic pathways was proposed by Tohsoato et al.\(^3\), where the EC hierarchy is used for generalizing about enzymes. Pinter et al.\(^1\) extended this idea in a method for pairwise alignment of metabolic pathway graphs using approximate labeled sub-tree homeomorphism, where the EC hierarchy once again is used for generalization.

An obvious drawback of using the EC hierarchy is that the method becomes limited to metabolic pathways, since all pathway elements must be enzymes. In our earlier work, we therefore proposed GOSAP\(^8\) (Gene Ontology based Semantic Align-

\(^a\)www.expasy.org/enzyme
ment of biological Pathways), a local alignment method for semantic comparison of biological pathways. A semantic similarity function defined over Gene Ontology (GO) was used to derive semantic alignments of paths in biological pathways, with the advantage that pathways can be analysed where nodes are not only enzymes but any kind of gene product. Another novelty was the use of combined alignment scores involving all three sub-ontologies of GO, so that the resulting alignments are based on more detailed information.

The approaches to pathway comparison described so far are based on the assumption that the topology of both the model- and the query graph is known. However, sometimes only a query set of gene products is available, without any knowledge about how the gene products interact. In such cases it is of interest to apply a method capable of deriving putative paths using this query set. Such interactions may be discovered by EGOSAP, by evolving paths connecting the selected gene products to each other. A query set of gene products may for example be the products of genes that are differentially expressed between conditions in a microarray experiment.

There are tools that are capable of mapping groups of gene products onto known pathways, but they do so using only the identity of gene products and for visualization purposes. An example is GenMAPP4, where the genes and their colour-coded expression values are mapped onto known pathways. There is also the GenMAPP accessory software MAPPFinder9 where GO visualization has been added. The Pathway tools software5 is another example where functionality is available for including gene expression data in pathway diagrams in a manner similar to GenMAPP. ArrayXPath6 is a similar tool where gene expression clusters can be mapped onto the best matching pathways in a database.

Since the existing methods for mapping gene products onto known pathways are restricted by relying on exact matching, we here propose a method that uses an EA to search for the best matching by semantic similarity. The new method, EGOSAP, is similar to our earlier proposed GOSAP algorithm, but features the novelty of using an EA to derive putative path alignments based on semantic similarity between gene products. We verify the competence of the EA using benchmark experiments, and derive example alignments in a cross-species experiment.

EGOSAP can for example be used to semantically map differentially expressed genes identified in a microarray experiment onto known regulatory pathways. This is particularly useful if the experiments have been conducted on a species where little is known about its pathways. It would also be possible to use gene products identified using other experimental methods, or to manually add gene products that are known to be important.

2. Method

EGOSAP, which is summarized in figure 1, is similar to the GOSAP method which compares a user-specified query pathway graph with a model pathway graph, using
three procedures. The first two are preparatory procedures used to set up the GO annotation data and the model paths in such a way that semantic alignments can be derived. These two initial procedures are identical for GOSAP and EGOSAP, and are therefore only summarized here for convenience (see Gamalielsson and Olsson for a more detailed description).

1) GO term probability calculation
For every GO annotation term, a probability is calculated using an annotation database for one or several organisms. These probabilities reflect the frequencies with which the annotation terms occur, and are used in the alignment procedure to calculate the semantic similarity of each pair of gene products. This is based on the observation that more specific terms tend to have lower GO term probabilities, when these are calculated using the method proposed by Lord et al.

- For each gene product \(G_i \) in an annotation database \(D \):
 - Increment a counter \(C_j \) for each GO term \(T_j \) appearing in the annotation of \(G_i \), and increment the corresponding counter of each ancestor term of \(T_j \).
- For each term \(T_k \) in GO:
 - Calculate the term probability \(p(T_k) = \frac{C_k}{N} \), where \(N \) is the total number of annotations in \(D \).
In the example in figure 3 (discussed in more detail later), the term probabilities appear as a p value for each GO term.

2) Path extraction
An algorithm involving depth-first search is used to derive all model paths originating from each node in the model pathway graph. Extension of a path ends whenever a leaf node or a previously visited node is encountered (so that cycles are handled). Furthermore, only the super-paths are used in the subsequent path alignment, i.e. the set of paths such that no path is included in its entirety as a sub-path of another path. The purpose is to obtain a minimal set of paths, while still covering the entire pathway graph. Putative paths are evolved for each of the extracted paths in the path alignment optimization procedure.

3) Path alignment optimization
The original GOSAP method aligns pairs of paths using the Smith-Waterman algorithm with match scores calculated by a semantic similarity function over the "alphabet" of Gene Ontology annotation terms. However, this relies on the assumption that the topology of both the query- and model pathway graph is known. As mentioned earlier, sometimes only a query set of gene products is available, and there is no knowledge available about how the gene products interact. Therefore, the purpose of EGOSAP is to suggest putative paths using the query set of gene products. The EA evolves paths that are semantically similar to paths in the model pathway, and it is assumed that paths are permutations of gene products from the query set, i.e. a gene product can only appear once. This is the case in e.g. gene regulatory networks.

The path alignment optimization in EGOSAP is illustrated in figure 2. As input, EGOSAP takes a query set of gene products derived from experimental data (upper left in figure 2) and a model pathway graph obtained from a pathway database, e.g. KEGG (upper right). The extracted paths are submitted one at a time to be aligned (indicated by filled circles). In order to search for an optimal alignment, EGOSAP samples the query set of gene products to generate an initial random population of candidate paths. Each individual is represented as an initially random permutation of gene products from the query set with the same length as the model path. The maximum length of the candidate paths is the same as the length of the model path, and in order to allow gaps, a special symbol is used to signify "no gene product" (indicated by circles with dashed borders). A user-defined number of "no gene product" symbols can be added to the query set. The match score between a specific model gene product (MGP) and a "no gene product" symbol in the evolved path is set to the average semantic similarity between the MGP and all gene products in the query alphabet.

During a number of iterations, the population of candidate paths is replaced by a new population by fitness-based tournament selection of "parent" paths, from which "offspring" paths are generated using recombination and mutation. Binary
tournament selection is used, which means that two random individuals are drawn from the population and the best of these is selected. Selection is done without replacement, i.e. each individual can be selected several times for the next generation. Variation operators used are partially mapped crossover (PMX) and a mutation operator, and are performed with probabilities p_c (crossover) and p_m (mutation). PMX operates on two parents where a one-to-one mapping between the gene products of the two parents is created at a randomly chosen middle segment. This mapping is used during crossover to ensure that feasible offspring are generated, i.e. an ordered set of elements with no duplicates. Mutation is done by a combined operator, which either (with 50% probability) switches the gene products at two random positions in a parent, or replaces the gene product at a randomly chosen position with a random one from the query set, if possible. An elitist strategy is used where the worst individual of the old population is replaced by the best individual in the current population. This enforces a monotonous fitness growth of the population’s best fitness.

The fitness of each alignment is calculated from the semantic similarities of the
aligned pairs of gene products, according to the following equation:

\[F = \frac{\sum_{i=1}^{L} w_f \cdot s_f(M_i, Q_i) + w_p \cdot s_p(M_i, Q_i) + w_c \cdot s_c(M_i, Q_i)}{\sum_{i=1}^{L} w_f \cdot s_f(M_i, M_i) + w_p \cdot s_p(M_i, M_i) + w_c \cdot s_c(M_i, M_i)} \]

(1)

where \(L \) is the alignment length, and the weights \(w_f, w_p \) and \(w_c \) are adjustable with the restriction that \(\sum w_f + w_p + w_c = 1 \).

\(s_f \) is the molecular function semantic similarity between gene products at position \(i \) for the model path \(M \) and query path \(Q \). \(s_p \) and \(s_c \) are the respective measures for the biological process and cellular component ontologies. The denominator part of equation 1 enforces the fitness interval \([0,1]\).

\(s_f \) is calculated according to equation 2, which is similar to the one defined by Lord et al.\(^{10}\) Also \(s_p \) and \(s_c \) are calculated according to equation 2, but using the biological process and cellular component annotations, respectively.

\[s_f(M_i, Q_i) = \max \{ SS(T_k, T_l) : T_k \in t(M_i), T_l \in t(Q_i) \} \]

(2)

\[SS(T_k, T_l) = -\log_2(p_{ms}(T_k, T_l)) \]

(3)

In equation 2, \(t(M_i) \) and \(t(Q_i) \) are the sets of GO annotations for \(M_i \) and \(Q_i \). The fitness function promotes individuals which are semantically similar to the model sequence with respect to all three sub-ontologies. In equation 3 (defined by Resnik\(^{15}\)), \(p_{ms}(T_k, T_l) \) is the probability of the minimum subsumer for GO terms \(T_k \) and \(T_l \). The minimum subsumer \(ms \) is the ancestor term with lowest probability that terms \(T_k \) and \(T_l \) have in common.

The semantic similarity calculation for two example gene products, FUS3 and CDC28, is illustrated in figure 3. FUS3 is annotated with GO term GO:0004707 and CDC28 is annotated with GO:0004693. The minimum subsumer of these two terms is GO:0004674, and the probability of this GO term (reflecting the frequency with which it is used in the annotation database) is 0.011. Hence, the semantic similarity between FUS3 and CDC28 is \(-\log_2(0.011) \approx 6.5\).

In the box to the middle right in figure 2 is shown the alignment between a query path, \(Q \), and a model path, \(M \). Below the alignment is shown a meta-alignment, indicating which GO terms have been used in the calculation of fitness, and below the box is shown the meaning of the annotation terms from the three GO sub-ontologies for molecular function (F), biological process (P) and cellular component (C).

Statistical significance of alignments

The alignment score itself may not be sufficient for judging the quality of an alignment. Therefore, an assessment of the statistical significance of alignments was performed according to the procedure described by Maslov and Sneppen\(^{16}\). In this procedure two edges \(A \rightarrow B \) and \(C \rightarrow D \) are randomly selected in a graph and rewired into \(A \rightarrow D \) and \(C \rightarrow B \). If the resulting edges are already present in the graph, a new pair of edges is selected. Hence, a randomization takes place while preserving the cardinality of each node. A series of random edge switches results in a randomized graph, with the restriction that the randomized graph must be
different from the original graph. In EGOSAP, a query path can be aligned with a large number of randomized versions of the model pathway using the Maslov and Sneppen procedure. The p-value of an alignment is defined as the fraction of randomized graphs that produce an alignment with equal or higher score than the original alignment. Low p-values are therefore desirable.

3. Results

3.1. On the problem complexity

The aim of EGOSAP is to evolve an optimal alignment to a path of length \(L \), by selecting an ordered subset (i.e., a permutation) of gene products from a gene product "alphabet" of size \(N \). For a given permutation, i.e., a candidate solution, the fitness is calculated according to equation 1. The number of possible permutations of length \(L \) that can be generated from a query alphabet of size \(N \) is given by:

\[
P(N, L) = N(N - 1)(N - 2)\ldots(N - L + 1) = \frac{N!}{(N - L)!}
\]

(4)

Figure 4 shows the number of possible permutations for different combinations of \(N \) and \(L \). It can be observed that \(P(N, L) \) increases exponentially relative to \(L \), and that the impact of \(N \) increases for larger values of \(L \). Clearly, exhaustive enumeration of all possible candidate solutions is not feasible for paths of biologically realistic lengths.

3.2. Datasets

We used three different model graphs for \(S. \) cerevisiae. The first is a graph created using the transcriptional regulatory chain motifs described by Lee et al.\(^\text{18}\) This graph
contains experimentally determined interactions between transcriptional elements. In our study we only use gene products which have annotations for all three sub-ontologies of GO. With this restriction the graph contains 64 gene products, 77 edges and 105 super-paths. Path lengths vary from two gene products to five, with an average path length of 3.3. The second model graph is the cell cycle regulatory pathway from KEGG containing 61 gene products, 81 edges and 151 super-paths. Path lengths vary from two to ten gene products, with an average length of 6.7. The third model is the MAPK signalling pathway from the same database containing 48 gene products, 49 edges and 33 super-paths. Here, path lengths vary from three to eight, with an average length of 6.1.

Two query sets were used containing the products of *M. musculus* genes that were found to be differentially expressed in an experiment comparing transgenic and knock-out mice with wild-type mice (for details regarding the experimental protocol, see Nilsson et al.\(^2\)). The transgenic query set contained 460 gene products derived from 531 microarray probes, but since gene product annotation from all three GO sub-ontologies is desired, the number of gene products was reduced to 211. For the knock-out query set, the number of gene products was reduced from 256 (284 probes) to 119. In some of the cross-species experiments in section 3.4, the gene products from the corresponding *M. musculus* cell cycle and MAPK pathways are used in conjunction with the *M. musculus* transgenic and knockout datasets. The *M. musculus* cell cycle dataset contains 75 gene products, of which 59 have annotation from all three GO sub-ontologies. The corresponding figures for the MAPK dataset.
are 121 and 79.

It should be mentioned that EGOSAP works with only one GO sub-ontology, i.e. all three are not required. In our examples we chose to use all three sub-ontologies in order to be able to show as informative alignments as possible in our results. If only the molecular function sub-ontology was used, fewer gene products would typically be disqualified due to lacking GO annotation. The Lee et al.18 graph would contain 67 gene products, the cell cycle pathway 62, the MAPK pathway 49, and the \textit{M. musculus} transgenic and knockout datasets would hold 331 and 192 gene products, respectively. Hence, requiring only one sub-ontology typically leads to inclusion of more genes, and thus potentially more alignments, but also to less reliable results. Conversely, requiring additional sub-ontologies may reduce the quantity of results, while on the other hand increasing their reliability.

3.3. Benchmarking the EA

In order to assess under what conditions EGOSAP is able to evolve semantically optimal alignments, a number of benchmark simulations were performed. This was done by creating model paths from a query set, and evolving paths from the same query set. As an optimal solution is available in this set-up with a fitness $F = 1$, the competence of the EA is being tested. The ideal result would be that the algorithm finds this optimal solution within a small number of generations for problems of biologically realistic size. It is assumed that the EA is equally competent when the gene products in the model and in the query set are different, as in the cross-species experiments in section 3.4. No gaps were allowed in the benchmarking experiments.

In an initial experiment all 64 gene products in the Lee et al. model graph were arranged (in random order) into a linear path consisting of 64 nodes, and the same set of gene products was used as a query set. The following EA parameters were used: population size=100, crossover probability=0.7, mutation probability=0.03. Equal weight was given to the three sub-ontologies in the fitness function, i.e. $w_f = w_p = w_c = \frac{1}{3}$. Since the EA is stochastic, the performance may differ between runs. However, a typical run resulted in perfect fitness, $F = 1$ (see equation 1), after approximately 1000 generations, meaning that 10^5 fitness calculations were done in total. An exhaustive enumeration of permutations, instead of using an EA, would require $\sim 10^{89}$ fitness calculations (see equation 4). This shows that the EA performs very well on this particular dataset, even when using as long paths as 64 gene products, which is likely to include most biologically realistic situations.

An equivalent experiment was performed by using the \textit{M. musculus} transgenic data set containing 211 gene products. The same EA parameters were used as in the initial experiment using the model graph by Lee et al., except for the mutation probability which was set to 0.0095. It turns out that this dataset requires considerably more iterations to find an optimal solution than the Lee et al. dataset. The EA reached $F = 1$ after approximately 15000 generations (1.5 million fitness calculations). An enumeration would require $e^{918} \approx 10^{399}$ fitness calculations, i.e.
the search space is extremely large. This number is too large to handle for most computers, so the Stirling factorial approximation $\ln(n!) \approx n \cdot \ln(n) - n$ was used instead of equation 4. As a contrast, optimizing a path containing a randomly selected subset of 10 gene products would only require approximately 200 generations. It should also be emphasized that the time complexity of the fitness function in equation 1 is $O(L)$, i.e. the execution time increases linearly as a function of alignment length L.

One reason for the quicker EA convergence on the first dataset is probably that it is more semantically homogeneous than the second dataset, i.e. the gene products are more semantically similar to each other because they are all related to transcription. In the second dataset, gene products differ more with respect to their GO annotations, making the EA’s optimization task harder. Furthermore, the query set is more than three times larger in the second case. To sum up, the benchmark results indicate that the GO annotations of gene products in both model graph and query set clearly affect the convergence speed of the EA, but that good performance can be expected for paths of biologically realistic length.

3.4. Cross-species experiments

For the cross-species experiments the same EA parameter settings were used as in the benchmark experiments, and 100 randomized model graphs were used for calculation of statistical significance. In the first experiment, the Lee et al. model and both $M. \text{musculus}$ query sets were used. Figure 5 shows the percentage of paths for which alignments with significant p-value were found, as a function of p-value threshold. This test was performed both for the 105 super-paths of the model graph, and for the complete set of 204 possible paths of all lengths. For both query sets it can be observed that significant alignments were found for only a few of the paths with threshold $p \leq 0.02$. Furthermore, significant alignments are found for a larger proportion of super-paths compared to the case with all possible paths. One reason for this effect is that many of the latter mentioned paths are short and therefore less likely to be significant. Given that this is a cross-species scenario, comparing two distantly related species, and considering the rather small numbers of gene products in the two datasets, we do not find it surprising that significant alignments are found only for a small proportion of the paths.

To illustrate the output of EGOSAP, we here show examples of putative path alignments evolved using the knock-out query set of differentially expressed genes for $M. \text{musculus}$ and the super-paths extracted from the Lee et al. model graph. An example is the query path “NFI→AKAP8→STAT5B”, which resulted in the alignment shown in table 1. This alignment has $F = 0.72$ and $p = 0. Q$ shows the GO molecular function meta-alignment, where each identifier represents the minimum subsumer GO term for the two gene products under comparison. The corresponding information for biological process and cellular component is shown in the rows labelled
Fig. 5. Percentage of paths for which significant alignments are found as a function of p-value threshold for the transgenic dataset (TG) and knock-out dataset (KO). Solid lines represent the case when all possible paths were used and dashed lines represent the case with super-paths.

Table 1. Example alignment obtained when using the transgenic dataset as query set and the Lee et al. graph as model. For explanations, see text.

<table>
<thead>
<tr>
<th>Alignment</th>
<th>Meta-alignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q: NFIX → AKAP8 → STAT5B</td>
<td>F: GO:0003700 → GO:0003682 → GO:0003700</td>
</tr>
<tr>
<td>M: MBP1 → ABF1 → STP1</td>
<td>P: GO:0006260 → GO:0051276 → GO:0045944</td>
</tr>
</tbody>
</table>

by P and C. For example, in the molecular function meta-alignment, gene products NFIX1 and MBP1 have the minimum subsumer ”transcription factor activity” (GO:0003700), and are both involved in DNA replication (GO:0006260) and expressed in the nucleus (GO:0005634). In the second position, both gene products have the function ”chromatin binding” (GO:0003682) and are involved in chromosome organization and biogenesis (GO:0051276) and are expressed in the nuclear chromatin (GO:0000790). In the third position, the two gene products STAT5B and STP1 share the function ”transcription factor activity”, the biological process ”positive regulation of transcription from RNA polymerase” and the cellular localization ”nucleus”. Thus, the alignment clearly indicates that these are homologous
Table 2. Example alignment obtained when using the transgenic data as query set and the Lee et al. graph as model. GO term codes (shown without "GO:" and initial zeros) have the following interpretations: 3713: transcription coactivator activity, 3700: transcription factor activity, 16563: transcriptional activator activity, 8237: metalloprotease activity, 16564: transcriptional repressor activity, 6366: transcription from RNA polymerase II promoter, 7049: cell cycle, 6357: regulation of transcription from RNA polymerase II promoter, 6508: proteolysis, 122: negative regulation of transcription from RNA polymerase II promoter, 5634: nucleus, 16021: integral to membrane, 5694: chromosome.

<table>
<thead>
<tr>
<th>Alignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q: MEF2C → NR2F6 → NRBF2 → AFG3L2 → TRIM28</td>
</tr>
<tr>
<td>M: SWI6 → SWI4 → NDD1 → ACE2 → SFL1</td>
</tr>
<tr>
<td>Meta-alignment</td>
</tr>
<tr>
<td>F: 3713 → 3700 → 16563 → 8237 → 16564</td>
</tr>
<tr>
<td>P: 6366 → 7049 → 6357 → 6508 → 122</td>
</tr>
<tr>
<td>C: 5634 → 5634 → 5634 → 16021 → 5694</td>
</tr>
</tbody>
</table>

paths of transcriptional regulation, which have been preserved between yeast and mouse.

Interestingly, it is unlikely that this similarity would have been found by using a traditional approach based on sequence homology. We found that the average sequence identity between the three pairs of amino acid sequences was only 14.4%. Further, for each one of the three query sequences another match with slightly higher sequence identity (16.1% on average) could be found by BLAST-searching the \textit{M. musculus} subset of RESSEQ21. When studying the annotations of these "closer homologs", we found that their function was much less similar and that their cellular location included cytoplasm and membrane, which clearly indicates that a sequence-based approach would have produced spurious hits for this query path. In the example alignment in table 1, it can also be observed that despite the obviously high similarity between the two paths, they do not have exactly the same annotations throughout the whole alignment. At position two, the shared biological process annotation term is "chromosome organization and biogenesis", since this is the minimum subsumer of the terms found in the annotation of AKAP8 and ABF1. However, looking at the concrete annotation of the gene products, we find that AKAP8 is annotated with "mitotic chromosome condensation" and that ABF1 is annotated with "nucleotide-excision repair / DNA damage recognition". This difference accounts for the fitness score being $F = 0.72$, rather than $F = 1$, but also demonstrates that relatively modest fitness scores may correspond to high quality alignments between closely homologous paths. Another example of a significant alignment ($F = 0.73$, $p = 0.01$), obtained when using the transgenic query set, is shown in table 2.

In the second experiment, we used as models the cell cycle and MAPK pathways for \textit{S. cerevisiae}, both from KEGG. In each case, the \textit{M. musculus} transgenic
Fig. 6. Percentage of paths for which significant alignments are found as a function of \(p\)-value threshold for the cell cycle pathway (CC) and MAPK pathway (MAPK). Solid lines represent the case when all possible paths were used and dashed lines represent the case with super-paths.

dataset was used as query set, but with the addition of all gene products from the corresponding pathway (cell cycle or MAPK) for \textit{M. musculus}. The percentage of significant paths as a function of \(p\)-value is shown in figure 6. This test was performed for both pathways, and also both for the super-paths and the complete set of possible paths. For both model pathways it can be observed that significant alignments were derived for a large proportion of the paths, even for such a conservative significance threshold as \(p = 0\). One reason for this is probably that paths on average are considerably longer for the cell cycle and MAPK pathways than for those from the Lee et al. model. Optimized alignments containing long paths are less likely to appear by chance when using the Maslov and Sneppen graph randomization procedure. Furthermore, the cell cycle and MAPK pathways are less semantically homogeneous compared to the Lee et al. model, which only contains gene products related to transcription. Lower semantic homogeneity would probably yield a larger number of significant paths. Another reason may be that the scores of alignments are generally higher since the transgenic dataset has been "injected" with all the gene products from the corresponding \textit{M. musculus} pathway (cell cycle or MAPK). In fact, all optimized alignments contain query paths where all gene products are from the corresponding \textit{M. musculus} pathway, i.e. no gene products were selected from the original transgenic dataset. Gene products from the corresponding pathway are exclusively selected also if the transgenic dataset is replaced with the knockout dataset.
Table 3. Example alignment obtained when using the *M. musculus* transgenic data as query set, with the cell cycle gene products for the same organism added. The cell cycle pathway for *S. cerevisiae* was used as model. A pipe sign “|” separates GO terms resulting in equal score. GO term codes have the following interpretations: 19210: kinase inhibitor activity, 4674: protein serine/threonine kinase activity, 16563: transcriptional activator activity, 79: regulation of cyclin dependent protein kinase activity, 51320: S phase, 84: S phase of mitotic cell cycle, 6357: regulation of transcription from RNA polymerase II promoter, 5634: nucleus.

| Alignment | M. musculus gene products in the query path are not connected in the KEGG cell cycle pathway for *M. musculus*. It should be emphasized that the cell cycle pathways for *S. cerevisiae* and *M. musculus* have similar regulatory mechanisms, but the pathway topologies are quite different. This may explain why the evolved query path is not part of the *M. musculus* cell cycle pathway, even though close gene product homologs were found. An interesting observation is that SWI5 expresses SIC1 according to KEGG, and the same regulation is present between SMAD4 and CDKN1B in the *M. musculus* cell cycle pathway. Thus, the same relationship between the last and first position in the alignment is present in both paths. Another example of a significant alignment (*F* = 0.86, *p* = 0) is shown in table 3. This alignment was derived using the cell cycle pathway as model. In the model path, SIC1 inhibits the cyclin-dependent protein kinase CDC28. CDC28 in turn phosphorylates and inhibits SWI5, which is a transcriptional activator. The corresponding *M. musculus* gene products in the alignment are not connected in the KEGG cell cycle pathway for *M. musculus*. It should be emphasized that the cell cycle pathways for *S. cerevisiae* and *M. musculus* have similar regulatory mechanisms, but the pathway topologies are quite different. This may explain why the evolved query path is not part of the *M. musculus* cell cycle pathway, even though close gene product homologs were found. An interesting observation is that SWI5 expresses SIC1 according to KEGG, and the same regulation is present between SMAD4 and CDKN1B in the *M. musculus* cell cycle pathway. Thus, the same relationship between the last and first position in the alignment is present in both paths. Another example of a significant alignment (*F* = 0.80, *p* = 0) is shown in table 4. This alignment was derived using the MAPK pathway as model. The model path represents a part of the high osmolarity induced sub-pathway where STE20 is a signal-inducing kinase which phosphorylates STE11, which is a signal-transducing MEK-kinase active during the MAPKK phase of the MAPK pathway. STE11 in turn phosphorylates PBS2, a kinase active in the MAPKK phase. PBS2 finally phosphorylates HOG1, which is a another kinase operating during the MAPK phase. The *M. musculus* gene products in the query path are not connected in the *M. musculus* version of the MAPK pathway, but gene products in positions two through four appear in the correct phases in the pathway (MAPKKK, MAPKK and MAPK). As for the cell cycle pathway, the MAPK pathways for *S. cerevisiae* and *M. musculus* have similar mechanisms, but are rather different in their topologies.

<table>
<thead>
<tr>
<th>Meta-alignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q: CDKN1B → DBF4 → SMAD4</td>
</tr>
<tr>
<td>M: SIC1 → CDC28 → SWI51</td>
</tr>
<tr>
<td>F: 19210 → 4674 → 16563</td>
</tr>
<tr>
<td>P: 79 → 51320</td>
</tr>
<tr>
<td>C: 5634 → 5634 → 5634</td>
</tr>
</tbody>
</table>
Table 4. Example alignment obtained when using the *M. musculus* transgenic data as query set, with the gene products of the MAPK pathway for the same organism added. The MAPK pathway for *S. cerevisiae* was used as model. GO term codes have the following interpretations: 4674: protein serine/threonine kinase activity, 4709: MAP kinase kinase kinase activity, 5076: receptor signaling protein serine/threonine kinase signaling protein activity, 5078: MAP-kinase scaffold activity, 4707: MAP kinase activity, 19953: sexual reproduction, 6468: protein amino acid phosphorylation, 187: activation of MAPK activity, 43406: positive regulation of MAPK activity, 42995: cell projection, 5737: cytoplasm, 5634: nucleus.

<table>
<thead>
<tr>
<th>Alignment</th>
<th>Meta-alignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q: AKT1 → B230120H23RIK → MAPK8IP3 → MAPK1</td>
<td>F: 4674 → 4709 → 5076/5078 → 4707</td>
</tr>
<tr>
<td>M: STE20 → STE11 → PBS2 → HOG1</td>
<td>P: 19953 → 6468 → 187/43406 → 6468</td>
</tr>
<tr>
<td>C: 42995 → 5737 → 5737 → 5634</td>
<td>C: 42995 → 5737 → 5737 → 5634</td>
</tr>
</tbody>
</table>

4. Discussion

We have developed EGOSAP, a method which uses a known pathway graph as a model from which model paths are extracted, and an EA to evolve putative paths that are semantically similar to these model paths using a set of experimentally determined, or by other means derived, gene products. We have tested the performance of the method on example datasets, and shown by examples the output produced by the method.

The execution time of the path optimization procedure in EGOSAP depends on many parameters, e.g. the number of model paths, the model path length and the number of randomized models used in the significance calculation. To optimize the alignment of one path containing a reasonable number of gene products (<10) is done in a matter of seconds or at most one minute on a modern PC with a processor speed of 3 GHz and 1 GB of RAM using the current implementation.

Currently, the optimization procedure has the restriction that a gene product can only appear once in a path. This restriction is reasonable for regulatory pathways, but may not be desirable when metabolic pathways are studied. The method could easily be adapted for this scenario by allowing each gene product to appear at several positions in a path. This modification would also require that some of the EA operators are replaced or modified.

The method allows the user to set different weights for the different GO sub-ontologies, although we have only used $w_f = w_p = w_c = \frac{1}{3}$ in the presented evaluations. Setting different weights for the different types of annotation can be useful since the certainty of different types of annotation can vary a lot for different organisms. If it is found that a large proportion of the annotation in a particular sub-ontology is, for example, inferred by homology, rather than based on experi-
mental evidence, then it may be desirable to give this type of annotation a lower impact in the alignment optimization process.

5. Acknowledgement

This work was supported by project grant number 2003/0215 from the Knowledge Foundation, and by the Information Fusion Research Program (University of Skövde, Sweden) under grant 2003/0104 in partnership with the Knowledge Foundation (URL: http://www.infofusion.se).

References

Jonas Gamalielsson received his BS and MS degrees in computer science from University of Skövde in 2000 and 2001, respectively. Currently he is a senior PhD candidate at the School of Mathematical and Computer Sciences of Heriot-Watt University in Edinburgh, but he is geographically located at and sponsored by University of Skövde. Gamalielsson’s research interests include development of semantic pathway alignment algorithms for systems biology, as well as evolutionary algorithms, data mining algorithms and information fusion applied within the field of bioinformatics. He has so far published five journal articles, two book chapters and ten conference papers.

Björn Olsson received his BS and MS degrees in computer science from University of Skövde in 1992 and 1993, respectively, and his PhD degree in computer science from University of Exeter in 2000. Currently he is associate professor of bioinformatics at University of Skövde. Olsson’s research interests include bio-sequence analysis, gene expression analysis, and other core topics in bioinformatics, as well as evolutionary algorithms and information fusion, with a focus on their application in systems biology and bioinformatics. Since his PhD graduation in 2000, he has published 20 journal articles and 26 conference papers on these topics.