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The recent rise in the quality and availability of remote sensing data has benefitted the geoscience
community by allowing high resolution studies of the geometry of modern clastic depositional elements,
which are analogous to the elements that control fluid flow in subsurface reservoirs. Established
methods used to describe the geometry of these features have been predominantly subjective. We
present a new objective technique to automate the characterization of centerline attributes (CA) of
mapped depositional elements. This technique measures key parameters at a defined sampling interval
along a calculated centerline for each input shape, which are automatically analyzed to define geometric
shape, length, width, sinuosity, adjacency and centerline deviation. To demonstrate the applicability of
the method to a range of depositional environments, mapped sandbodies from two contrasting modern
systems were analyzed: (1) the 520 km? mixed-process Mitchell River Delta, Gulf of Carpentaria, Aus-
tralia; (2) a 1200 km reach of the anabranching Congo River, Democratic Republic of the Congo.

1696 Wave- and fluvial-derived elements from the Mitchell Delta were analyzed using our CA
method and the conventional minimum bounding box (MBB) approach. The MBB results defined the
regression slopes as 1.25-4.47 times wider and 0.31-0.97 times shorter than their CA values. Results
applied to 2221 mid-channel bar elements in the Congo River showed similar CA and MBB relationships,
with linear regression slopes of a MBB as 1.06 times wider and 0.97 times shorter. The inconsistency in
the comparative MBB and CA results for these two datasets is attributed to the very different geometries
of the sandbodies in these contrasting depositional environments. This suggests that caution should be
exercised when applying current methods. A major benefit of the proposed CA method is that it allows
quantitative study at scales and levels of detail typically not practical using manual solutions.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

investigating the relational, geometric and distribution statistics of
depositional environments, with focus on increasingly smaller-

In recent years, research and debate on quantitative global
distributions of depositional environments and their importance
to the preserved sedimentary record has increased within the
scientific community (e.g., Stutz and Pilkey, 2002; Hartley et al.,
2010; Weissmann et al., 2010; Holzweber et al., 2014) , and has
been largely driven by the availability and accessibility of global,
remotely sensed datasets. Google Earth (Lisle, 2006) embodies this
move from isolated analogue maps and photographs to complete
global coverage on a geoscientist’s computer. As the trend for
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scale features, deriving quantitative geometric data using tradi-
tional subjective and manual methods becomes impractical and
inefficient. However, such quantitative measurements are im-
portant for deriving empirical and statistically-valid relationships
on the spatial variability of elements within modern depositional
systems.

Quantitative measures for describing the geometric attributes
of depositional elements are currently limited to standard geo-
graphical information system (GIS) operations, which do not
adequately represent the length, width, sinuosity, adjacency or
orientation of these units beyond basic individual maximum or
minimum values. The problem of automatically and more objec-
tively determining the shape of, and interactions between, such
features has been approached by authors in numerous fields
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Fig.1. (A) Overview of a small portion of a meandering channel traversing the Mitchell River delta with its skeletal lines identified by Voronoi tessellation. Inset: close ups of
the high resolution line (minimum 10 m [vertex] spacing) segment mesh, with the uppermost box identifying a potential branch in channel. (B) Typical result of the pruned
skeletal line (yellow) made by removing excess line segments, including the channel branch, overlain by the proposed double single source-Dijkstra method result (red).
(C) Multiple (three) endpoints identified by first pruning the skeletal line (yellow) and then extending that data to the polygon edge (red). Background imagery© Bing™.(For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. Scenarios that define a centerline of any given feature. (A) Example of a
random seed selection within the skeletal line that is subsequently used to define
the start and end points by the double single-source Dijkstra method.

(B) Centerline created with internal closed loops; (C) expansion of A and B using
multiple endpoint (branch) members.

(Gardoll et al., 2000; van der Werff and van der Meer, 2008; Ta-
fesse et al., 2012; Kroner and Doménech Carbd, 2013). Object
Based Image Analysis (OBIA) exemplifies the movement of com-
bining measures of shape and geometry to improve automated
image classification for the purpose of categorizing remotely
sensed data with similar spectral responses (Benz et al., 2004;
Blaschke, 2010). Describing shapes and geometric attributes typi-
cally relies on the definition of mathematical relationships be-
tween a feature’s geometric parameters to obtain circular, roun-
ded, elongated or rectangular classes, rather than a quantitative
set of measurements to objectively define shape. The minimum
bounding box (MBB) approach (e.g., Freeman and Shapira, 1975)
has previously been used as a means of defining a feature’s axis
lengths, minimum bounding area and perimeter, compactness and
convexity for this purpose.

Pavelsky and Smith (2008) and Fisher et al. (2013) have
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Fig. 3. If the start vertex of an individual centerline is to be correlated to the de-
positional system direction, the cumulative shortest distance along the reference
line to each polygon is used (A). Otherwise each centerline is oriented to its closest
proximity to a single reference line, as shown in (B).

recently shown the potential for obtaining quantitative width
measurements for river channel geomorphology research. Al-
though the methodology to classify the broad spectrum of de-
positional environments, characterization of shape, heterogeneity
and connectivity of elements is not considered that otherwise
have important implications for relating modern analogue studies
for subsurface reservoir modeling (Howell et al., 2008; Nanson
et al,, 2012; Massey et al., 2013). The MBB method remains the
most accessible automated methodology for quantitative data
analysis within standard GIS suites. A final consideration is that an
accurate set of measurements (e.g., Holzweber et al.,, 2014) and
shapes (e.g., Nanson et al., 2012) of modern elements can be
achieved using manual interpretation. This is both time-consum-
ing and subjective and limits the quantification of the large
amounts of global data available today.

In this paper we present a centerline attribute (CA) method for
the quantification of the geometric attributes of shapes that can
aid geomorphologists in interpreting the heterogeneity and spatial
variability of elements within modern clastic depositional systems.
By describing the centerline of a mapped feature and measuring
multiple equally spaced width and centerline deviation (sinuosity)
measurements along that centerline, variability can be quantified
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Fig. 4. (A) A sinuosity threshold determines the degree of sinuosity that may classify an ellipse or rectangular shape; (B) Proportion of the centerline deviation occurring on

each side of the shortest path line defines elements as crescentic or sinuous.
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Fig. 5. Width measurements are calculated based on the line perpendicular to the shortest path, as defined between two endpoints along the centerline, and the intersection
with the element boundary. High quality width measurements result from a good centerline representation and appropriate sample spacing, (A). When the centerline is
poorly defined (B), or sample spacing does not reflect the centerline variation (C), low quality width measurements will result. An unreliable width measurement can be
identified using the proportion of the line that occurs on either side of the centerline (D).

in terms of these centerline attributes. Furthermore these geo-
metric attributes can aid in classifying features into one of nine
geomorphological classes by describing symmetry and centerline
deviation with distance. The spatial occurrence of each feature’s
geometric attributes in the context of a depositional system allows
for further analysis to examine the adjacency of geomorphic ele-
ments, important for understanding potential reservoir con-
nectivity. The aims of the paper are to describe the individual
measurements and calculations using the proposed method and to
demonstrate the applicability of the method for two case studies.

2. Method

The proposed methodologies are implemented as individual

scripts running in the Quantum GIS (QGIS) environment (QGIS
Development Team, 2014) and based on the integrated GRASS GIS
suite (GRASS Development Team, 2014). Depending on the desired
application, these scripts can be combined into automated work-
flows based on a number of predefined parameters, as described
below. The algorithms require a vector dataset as input, provided
in a projected coordinate system that preserves distance mea-
surements (e.g., UTM), representing individual polygon features of
interest. It is not within the scope of this paper to describe map-
ping methods in great detail; instead it is assumed that features of
interest have already been mapped, such as through manual
mapping and interpretation of aerial/satellite imagery (e.g., Google
Earth), automated classification that results in vectorized polygons
based on geometric and radiometric image content (e.g.,
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Fig. 6. (A) Centerline deviation with a normalized graph along distance, whereby a value close to zero indicates no deviation; (B) asymmetry, whereby a combination of
slope and linear regression coefficients determine whether an object is linear, symmetrical or asymmetrical. (C) The geomorphological shape of a feature can be determined

by combining centerline deviation (A) and asymmetry (B).

Maximum Likelihood), or a combination of the two. The proposed
algorithms are described below.

2.1. Centerline

The centerline of an object is used to define the length of an

individual shape within its spatial context. Numerous solutions
have been proposed to define that centerline, particularly within

the fields of computer science, mathematics and the medical sci-
ences (McAllister and Snoeyink, 2000; Bouix et al., 2005; Cornea
et al., 2007; Haunert and Sester, 2008; van der Werff and van der
Meer, 2008; Lakshmi and Punithavalli, 2009; Wang et al., 2011) .
The most common solution is to define a skeletal line re-
presentation of each individual feature using Voronoi tessellation
lines that calculate line segments as the furthest from all input
vertices defining a particular polygon (Fig. 1A). The Voronoi
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Fig. 7. Schematic showing workflow for calculation of the shared perimeter be-
tween two objects, Polygon A and Polygon B. (A) Overlap of two mapped features;
(B) border corrected so that the perimeter is shared; (C) buffers each object by a
given amount to create a new sliver polygon with the shared border length taken as
half the perimeter of this.

(Thiessen) algorithm was selected here, as it is a standardized
procedure available in most GIS suites, although any skeletal line
generation is appropriate.

Typically the centerline of an individual polygon is generated
by “pruning” the skeletal lines (Svensson and Sanniti di Baja, 2003;
Bouix et al., 2005; Palagyi et al., 2006), by continuously removing
peripheral lines at the polygon boundary until only the line seg-
ments in the center remain. However the complexity of modern
depositional elements make it difficult to apply this in reality
without losing information, as the amount required to be pruned
varies according to geometry, shape and size (Fig. 1B). Rather, the
centerline recovered here defines the longest cumulative or mul-
tiple line segment distance between one-to-one (Fig. 1B) or one-

to-many end vertices (Fig. 1C) within a skeletal line graph (Hag-
berg et al., 2008).

Fig. 2A illustrates a simple centerline between two end vertices
(start and end), which describes the centerline as the shortest
distance between these two endpoints. The two endpoints are
selected automatically using a double single-source Dijkstra al-
gorithm (Dijkstra, 1956) to select a random seed within the ske-
letal line graph to determine the start coordinates as those which
are furthest away from the initial seed. A second cumulative dis-
tance from this start point selects the end point and defines the
centerline of the feature as well as the set of vertices that comprise
the shortest path between the selected vertices. Removing all
peripheral lines at the polygon boundary within a skeletal line
graph until only line segments in the center remain, combined
with a simple centerline as defined previously (Fig. 2A), will de-
scribe all potential paths between start and end vertices (Fig. 2B).
Furthermore, the approach can be expanded to centerlines with
multiple endpoints by treating each branch as its own individual
shape.

One assumption for a centerline with multiple endpoints is that
it will have a clearly defined branch that deviates from the main
centerline, depending on a subjective interpretation of the
threshold used to constitute a branch (Figs. 1C and 2C). This can be
calculated by pruning the skeletal line until the minimum desired
number of segments (a function of length) of a branch is reached.
The Dijkstra algorithm calculated from each endpoint of the in-
dividual branches determines the furthest cumulative distance,
ensuring that it does not double back on itself. This allows for
identification of each branch while retaining the full length, rather
than a pruned subsample. In essence, each branch along the cen-
terline is treated as a single centerline feature. In a morphological
context, this is particularly useful in defining the trend of channel
width downstream in a distributive fluvial system (e.g.,Weissmann
et al., 2010).

2.2. Centerline orientation

The automatically-generated centerlines are obtained without
consideration of depositional dip direction (i.e. the start and
endpoints are randomly defined according to the seed used to
initiate the centerline calculation). This would result in undesir-
able consequences when orientation and width along the center-
line is measured in relation to distance along a channel or other
depositional element. In order to properly model the direction of
the centerline, the relationship between the depositional system
orientation and the centerlines of the modeled polygons must be
established. This is achieved by using a semi-automated method
that takes a manual interpretation of the land-/basinward direc-
tion of the depositional system and assigns the start vertex of all
centerlines as the coordinate that is closest to the manually in-
terpreted referenced line (Fig. 3).

By measuring the distance along a depositional system
(Fig. 3A), the start coordinate of each individual feature is defined
as the shortest cumulative distance along the reference line. This
function corrects the orientation of the centerline of a feature and
measures the distance along the fluvial system to each individual
feature (see Congo River case study below). In marine settings, the
start of beach and chenier ridge centerlines can be defined to start
in relation to the closest distance to a channel (Fig. 3B). Once an
appropriate centerline has been obtained for the desired polygon,
the orientation is determined using the endpoint coordinates of
the shortest path by a tan (%) relative to grid north. The shortest
path is defined here as the distance between the start and end
coordinates of the centerline. The orientation serves as an im-
portant component in determining change in geometric attributes
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Table 1

The % of the total perimeter within each category of beach ridges, chenier ridges, channels or channel bars that are connected to one of the six major reservoir or non-
reservoir elements in the Mitchell Delta dataset. Reservoir elements comprise beach ridges, chenier ridges, channels and channel bars (including mouthbars). The two main
non-reservoir elements of swales, and tidal flats and floodplains demonstrates the dominate heterogeneity associated with each reservoir element. See Nanson et al., 2012
for a complete discussion on depositional elements.
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Fig. 8. (A) The Mitchell River Delta; (B) dominant processes of each depositional element (from Nanson et al., 2012). Background imagery© Bing™. Tide elements dominate
the spatial extent of the delta, though potential reservoir elements are comprised of the less extensive fluvial and wave elements.
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within a depositional environment of interest.
2.3. Centerline deviation

The ratio of the centerline length over the shortest path length
yields a feature’s sinuosity; however, sinuosity is of limited value
as it is only a single measurement taken over the entire length of
the element, and does not consider its variation over distance. For
example, multiple sinuosity measurements may be more appro-
priate to describe larger features, such as rivers, though the
granularity must be carefully chosen to be representative of the
actual sinuosity in subdivided regions. This is an issue when in
quantitative analysis of elements that vary significantly in cen-
terline profile and length.

We propose to calculate centerline deviation using the per-
pendicular distance from the shortest path to the centerline
(Fig. 4), calculated at a user-defined sample spacing. This devia-
tion, calculated along the centerline, can be used to establish
parameters such as amplitude and variability as a function of
distance. The advantage over a conventional sinuosity measure-
ment is that features with similar sinuosities but different geo-
morphological characteristics can be differentiated.

2.4. Width

For each centerline deviation, a corresponding width mea-
surement is taken perpendicular to the centerline and bounded by
the polygon’s spatial extent. This measurement is taken perpen-
dicular to the angle between the endpoints of twice the user
specified distance with the measurement being placed at the end
of the first line (Fig. 5). Considering that the midpoint of the
perpendicular line is created at the endpoint of the first line seg-
ment, a measurement of distance versus width can be determined.
The width is calculated from the points where the perpendicular
line intersects the boundary of the original feature on either side
of the centerline, resulting in a line that contains three vertices:
the midpoint and the two intersection points on the boundary.

The reliability of automated width measurements depends on
two main criteria: the closeness of the centerline representation to
the true element centerline, and the sampling distance chosen for
each calculated measurement. As the perpendicular line is taken in
relation to the centerline, a poor centerline representation may
yield an unreliable width measurement (Fig. 5B). The fidelity of
the centerline depends principally on the vertex sampling of the
enclosing polygon, which is defined in the centerline creation
process, and is itself based on the input vector mapping data. Low
sampling frequency may result in an unrepresentative width
measurement, as the perpendicular line is taken at a spacing lower
than the variability present in the dataset (Fig. 5C). Taking a higher
density of measurements at a shorter interval may solve the issue;
however, the sampling must be chosen to be adaptive to elements
from modern deposition systems of variable size. Therefore, to
reduce the computational complexity whilst retaining equal
sample spacing, an optional implementation is suggested to only
take the n™ sample per shape. Although an adaptive sampling
would be beneficial to ensure appropriate point spacing in both
straight and curved sections, in this case equal spacing is preferred
to define geometric shape in the geomorphological classification
(Section 2.5).

After automated width extraction there will undoubtedly be
misrepresentative measurements, owing to the inherent com-
plexity found in nature, and which need to be removed or
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corrected. The true width of any given feature is defined by the
perpendicular lines on each side of the centerline being exactly
equal (Fig. 5D). By providing a threshold factor that determines the
maximum allowed percentage difference between each side,
lower quality width calculations can be removed. Alternatively,
those width measurements flagged as low quality can be inter-
polated from the surrounding width measurements using, for
example, a polynomial function.

2.5. Geometric shape

Once length, centerline deviation and width have been defined
along the centerline at the specified sample spacing, these geo-
metric attributes can be used to make an objective classification of
geomorphological shape. An object is described as belonging to
one of nine classes through a combination of crescentic, sinuous or
ellipse/rectangular shapes (Fig. 6A), with linear, symmetrical or
asymmetrical characteristics (Fig. 6B) which combine to indicate
geomorphological shapes (Fig. 6C). To describe these geometric
shapes, four parameters (sinuosity, crescentiformity, symmetry
and linearity) are combined to segregate the classes mentioned.

The sinuosity threshold determines whether an object is cres-
centic/sinuous or ellipse/rectangular, as defined by the ratio of the
maximum deviated centerline divided by half the maximum
width. A value below one indicates that the shortest path of the
centerline is contained completely within the modeled object,
while a value approaching zero (i.e. no sinuosity) suggests either
an ellipse or rectangular feature (Fig. 4A). In contrast, a value
greater than one would indicate a feature whose amplitude is
greater than width, indicating extreme sinuosity or potentially a
crescent-like shape. By examining the proportion that the cen-
terline deviates to one side or the other from its shortest path, a
crescentic threshold, defined as greater than 80% on one side,
determines that the object is crescentic rather than sinuous

(Fig. 4B).

Each classification of sinuous, crescentic or elliptical/rectan-
gular shape on the X-axis (Figs. 4A, and 6A) is combined with its
linear, symmetrical or asymmetrical geometric planform on the Y-
axis (Fig. 6B). This planform is based on a symmetry threshold
which defines whether a feature is symmetrical or asymmetrical
in terms of an equal distribution of width to distance. For any gi-
ven feature on a linear regression slope, if the width versus dis-
tance is greater than an empirically-defined symmetry threshold
of 0.2, then that characteristic feature is classified as asymmetrical.
Finally, if the feature is not asymmetrical, the linearity threshold
examines the coefficient of determination (r?) of a linear regres-
sion line for each individual object, classifying an object as linear
when 12 is greater than 0.5. Otherwise a feature is assigned as
symmetrical (Fig. 6B).

2.6. Adjacency

The heterogeneity between depositional elements, and sub-
sequent adjacency seen in a depositional system, play an im-
portant factor in determining the relationship between elements,
providing an understanding of the potential fluid flow dynamics in
the subsurface (Howell et al., 2008). The variance in adjacency of
depositional elements in different modern depositional systems
provides a relative and quantitative measurement to compare the
degree and proportion of heterogeneity that may be preserved.
The adjacency of depositional elements can be measured in sev-
eral ways, and two possibilities are considered here: (i) the in-
stances of features sharing a single edge, representing the number
of neighboring sandbodies and the number and distribution of
elements; (ii) the surface area (perimeter) that spatially connects
these elements in the depositional system.

To examine the instances where a polygon shares at least a
single edge with another feature can be achieved by calculating
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Fig.12. (A) Represents wave and fluvial element locations by their centroid coordinates, with node sizes relative to the number of reservoir elements it connects. (B) shows a
random color coded scheme based on the 498 connected individual sandbody groups. The original geometry and attributes of individual elements within each group is
retained by grouping the reservoir elements by their connection in A rather than merging and dissolving their adjacent boundary (see Fig. 5 in Nanson et al., 2012). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

any overlap or intersection between their vertices and registering
that by a unique identifier. This groups all adjacent shapes while
retaining their original shape and attributes, without the need to
merge the complex shapes that would otherwise remove any ad-
ditional attributes of each component polygon.

To examine the shared perimeter between two or more poly-
gons is more complex, and is dependent on the given input vector
data, as adjacency will be disturbed when shared edges do not
have equal vertices. To ensure that the shared part of a polygon’s
border is identical in all surrounding polygons, any given overlap is
removed to create a new set of features, the geometry of which is
revised (Fig. 7A and B). If small gaps are present between the re-
vised polygons, a buffer can be assigned to the operation above to
ensure that overlap will be present. Despite a cleaned input vector
dataset, the vertices that comprise the shared border may still
differ, rendering a perimeter calculation between all polygons in-
valid. One solution to this challenge is achieved by buffering each
polygon by a proportion of its relative scale, and the perimeter of
the resulting sliver polygon is halved to give the shared border

length (Fig. 7C).

3. Case studies

To show the applicability of the described geometric attribute
descriptions two different depositional environments are de-
scribed, which represent a variety of scenarios that may improve
geometric analytical capability. These include a comparison of
geometric attributes and spatial connectivity from the Mitchell
Delta, Gulf of Carpentaria, Australia — a tropical, tide-dominated,
fluvial-influenced, and wave-affected marginal marine system
(Nanson et al., 2013). Secondly, the method was a applied to the
tropical intracratonic fluvial system of the Congo River, Democratic
Republic of the Congo (Kadima et al., 2011), to assess attribute
change analysis over 1200 km of the river’s extent.

The minimum bounding box’s shortest axis (width) and longest
axis (length), hereby referred to as a MBB width and MBB length,
have been used in a geomorphological context in a wide range of
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Fig. 13. The Congo River dataset showing the centerlines of the anabranching river with a colored increase indicating the cumulative distance upstream from O to
~1200 km. A zoomed subsection is shown that also represents the subsection used to illustrate the centerline correction, width and centerline deviation analyses performed

on the mid-channel bars in Fig. 14. Background imagery© Bing™.

fields (e.g., Gardoll et al., 2000; C6té and Burn, 2002; Shugar and
Clague, 2011; Nanson et al., 2012) to facilitate the automated
quantitative geometric attribute and shape characterization. The
case studies below also use a MBB algorithm by width for a direct
comparison of geometric attributes to the proposed CA
methodology.

3.1. Mitchell Delta

The 520 km? northern Mitchell River Delta dataset consists of
1696 potentially preserved reservoir elements (mouthbars, chan-
nel bars, channels, abandoned channels, cheniers and beach rid-
ges), mapped using a combination of high resolution satellite
imagery, ground truthing, augering, digital elevation model (DEM)
analysis, trenching and surface sampling (Nanson et al,, 2012).
Elements were analyzed using the CA method, with centerline
deviation and width measurements taken every 50 m up to a
maximum sampling number of 100 and to an accuracy of 10%.

Using the CA methodology, the geomorphological shapes of
potential reservoir elements in the Mitchell Delta show a wide
distribution, similar to the findings of Nanson et al. (2012) who
used a manual approach. The elements are predominantly ellip-
tical and crescentic in form, excluding the meandering channels.
Beach and chenier ridges are mostly asymmetrical ellipses (30%
and 23%) and asymmetrical crescents (29% and 30%), mouthbars
and pointbars are symmetrical crescents (75%, and 24%) and
asymmetrical crescents (25% and 47%), whilst midbars are mainly
asymmetrical ellipses (61%).

The results from the CA method suggest no discernable trends

of width with length (Fig. 9A) for wave generated processes (beach
ridges and cheniers). This shows a relatively constant mean
around 65 m ( + 32 m). In contrast, the results of MBB width ver-
sus MBB length show a trend that can be represented by a linear
regression line (Fig. 9B). Indeed, a comparison of the two methods
show that MBB overestimates CA width by a linear regression at
1.85x (Fig. 9C) and underestimates CA length at 0.97x (Fig. 9D).
One explanation for this difference is demonstrated by a mea-
surement of maximum centerline deviation versus length in-
dicating a strikingly similar trend to MBB width and MBB length
comparison (Figs. 9B and 10). Datasets with predominantly cres-
centic shapes greatly exaggerate the MBB width given the long
features that are present, a fact emphasized by the maximum
width values present in a MBB compared to a CA width
measurement.

The geometric attributes from fluvial reservoir elements, split
into channels and bars, indicate a similar disparity. While the CA
method (Fig. 11A) and the MBB method (Fig. 11B) both show a
trend of width versus length, the range of values is different where
MBB overestimates widths (Fig. 11C) and underestimates lengths
(Fig. 11D). For example, channel bars show a regression slope of
the MBB measurements at nearly twice that of a CA measurement
(0.38 versus 0.20). The mean MBB width-to-length ratio is 0.42,
falling outside the typical range between 0.15 and 0.35 by previous
manual measurements of mid-channel bar forms (Holzweber
et al,, 2014), compared to 0.24 in this study.

Fig. 12A shows an illustration of all the shared borders between
reservoir elements in the Mitchell Delta (see Fig. 8). These con-
nections are achieved mostly through a shared border with fluvial
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Fig. 14. A subsection of the Congo, see box in Fig. 13, used to show the original image in (A), and centerline generation in (B) with its start vertex corrected upstream along
the river. A rose diagram is used to show the direction of all mid-channel bars in Congo River. This centerline can subsequently be utilized to generated equally spaced width

measurements in (C) and centerline deviation in (D). Background imagery© Bing™.

elements (i.e. channels), with up to 82 neighboring connections.
The majority of single sandbody compartments are isolated che-
nier ridges and a small proportion of beach ridges. The 2D ad-
jacency of the Mitchell Delta (Fig. 12B) is represented by 498 in-
dividual connected sandbodies, where the two largest connected
sandbodies comprise 592 and 320 individual features ( > 50% of
total) and an area of 125 km? ( > 70% of total). The largest con-
nected sandbody by area consists of predominantly fluvial features
(82%), whereas the second largest set of connected sandbodies is
mainly wave-generated (79%).

While these results suggest that fluvial elements provide a
significant degree of adjacency (Fig. 12A and B), the shared border
between fluvial and wave-generated elements is minimal
(Table 1). For channels, the highest connected element type are
channel bars (52.2%) and non-reservoir element of tidal flats and
floodplains (32.1%). Conversely, channel bars are predominantly
connected to those channels whereas midbars are enclosed by the
channel and channel sidebars having at least a 50% non-reservoir
connection. Channel-to-beach and channel-to-chenier ridge con-
nections show low levels of adjacency (2.6% and 0.7% respectively).
Beach and chenier ridges show a high degree of inter-adjacency,
with beach-to-beach ridge connections reaching 32.6% and che-
nier-to-chenier connections at 12.8%, suggesting clustering. The
main heterogeneity with beach ridges are swales (46.1%) and tidal
floodplains (17.0%), compared to tidal floodplains (57.4%) and
swales (26.7%) for chenier ridges.

3.2. Congo River

The Congo River basin data is derived from Landsat 7 Enhanced
Thematic Mapper Plus (ETM + ) imagery available from the Landsat
Global Land Survey 2000 dataset (USGS, 2009) and accessed
through the seamless global coverage available within the Land-
sat-ESRI collaboration (ESRI, 2014). This imagery has a spatial re-
solution of 30 m in 6 spectral bands, as well as one 15 m pan-
chromatic band and one 60 m thermal infrared band. The multi-
spectral data were processed in ArcGIS™, using a supervised
classification to highlight the spectra of water in the dataset to
identify the main river channel (Fig. 13). The internal structures
within the anabranching river were assumed to be the mid-
channel bars (Fig. 14).

The Congo River dataset extends 1200 km, with an average
width of 8.2 km and contains 2221 mid-channel bars. The cen-
terline orientations of the mid-channel bars were corrected ac-
cording to the distance along anabranching river centerlines, with
start vertices assigned upstream along the Congo River (Section
2.2; Fig. 14A and B). Width measurements of the anabranching
river were calculated every kilometer, with an accuracy of 1%. The
width and centerline deviation of the mid-channel bars (Fig. 14C
and D) were taken every 25 m at a maximum sampling interval of
100 and to an accuracy of 10%.

The results show that the geometric shape of the mid-channel
bars in the Congo River basin are split into ellipse (92%), crescentic
(7%) and sinuous (1%) shapes, with the majority being asymme-
trical (71%) as opposed to symmetrical (28%) and linear (1%)
planforms. Ninety percent of the asymmetry within the Congo



202

>

f‘é

:

y = 0.14x + 160.82
R*=0.84

10000

8000 -

6000 -

CA Width (m)

4000 -

2000 +

40000 60000 80000
CA Length (m)

0 20000

O

%”

'y =1.06x + 3.58

L

10000 +
8000 +
6000 +

MBB Width (m)

4000 -
2000 +

(4] 2000 4000 6000 8000 10000 12000 14000

CA Width (m)

MBB Width (m)

MBB Length (m)

B. Nyberg et al. / Computers & Geosciences 82 (2015) 191-204

B

16000 |
oo 1=016c 15740
12000 | .
1] 20000 40000 60000 80000 100000
MBB Length (m)
100000
90000 - y =0.97x + 4227
R*=0.99
80000 - -
70000 -
60000
50000 |
40000
30000 |
20000 |
st I n=2221
a i - = N - =
0 20000 40000 60000 80000 100000
CA Length (m)

Fig. 15. (A) Compares CA width to length features of mid-channel bars in the Congo River. (B) Shows MBB width and MBB length of those same bar forms. A MBB width to CA
width comparison is shown in (C) while (D) shows a MBB length to CA length comparison. The strong correlation between the CA and MBB suggests that both methods
produce reasonable measurements for the predominately ellipse shapes of the mid-channel bars of the Congo River.

>

y= o534 5021
R*=0.85

Channel Width (m)
g

0 200 400

600 800
Binned Distance Upstream (km)

1200

B

Y=-3E-O8x+025
R*=0.66

width:length Ratio
o
¥

1200

B00 BOO
Binned Distance Upstream (km)

1000

Fig. 16. Average channel width and width:length ratio binned into 50 km sections along the Congo River showing that both channel width (A) and width:length ratio

(B) decrease with distance upstream.

20
y = 0.76x + 56.39
80 A
§- 70
Z 60 1
7
=
; 50 4
- =cms  Asymmetrical Ellipse
40 4 = =
g —a Symmetrical Ellipse
5 30 4
ES
20 4
07 y =-0.65x + 33.48
5 R?=0.47

o Qo000 0oQ0
OIDOIOOEOIBOIDQ
=1 P~ o

o o o
28828888888 ¢8§

Binned Distance Upstream (km)
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total with distance upstream along the Congo River binned into 50 km sections.

River basin is oriented upstream. The width-to-length ratio of all
mid-channel bars demonstrates a strong relationship, with an ar-
ithmetic mean of approximately 0.16 (Fig. 15A). The regression
slopes for the MBB width and MBB length method for mid-channel
bars in the Congo River (Fig. 15B) are very similar to those pro-
posed in this paper, 0.16 versus 0.14, respectively. Specifically, a
comparison of width measurements (Fig. 15C) shows a slight
overestimation of MBB geometry with a regression line at 1.06x
and a slight underestimation of MBB length at 0.97x (Fig. 15D). The
mean width-to-length ratio found by the CA method is 0.23,
compared to 0.25 from the MBB approach.

Analysis of mid-channel bar width to length and channel width
binned by distance upstream of the Congo River (Fig. 16) shows a
decrease in both variables. The mean width to length ratio of mid-
channel bars downstream is 0.26, compared to 0.21 upstream.
Channel width changes from a mean of 925-530 m. The change in
geomorphological shape between asymmetrical and symmetrical
ellipse mid-channel bars (the two highest represented proportions
of the mid-bars in the Congo) shows an increase in asymmetry of
mid-channel bars upstream (Fig. 17).
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4. Discussion

The application of MBB to describe shape and geometry of geo-
spatial data has been applied in the past due to its ease of use and
accessibility within standard GIS suites. The width, length and area
from a MBB provide the ability to measure maximum and mini-
mum geometric values and the basis to describe shape, such as
elongation and circularity (e.g., Gardoll et al., 2000; van der Werff
and van der Meer, 2008; Tafesse et al., 2012; Kroner and Domé-
nech Carb6, 2013). However the measurements derived from a
MBB analysis are limited and our proposed method shows po-
tential in describing the complexity of geometric shapes and ele-
ment adjacency of modern depositional systems. The complexity
of shapes and their geometries in subsurface reservoir models are
important to quantify heterogeneities and compartmentalization
(Larue and Legarre, 2004), and studies of modern systems can aid
in differentiating planform geometries that vary by depositional
environments (Tye, 2004; Nanson et al., 2012; Massey et al., 2013;
Vakarelov and Ainsworth, 2013). The tools presented in this paper
demonstrate progress towards achieving that goal in a quantitative
and objective scheme.

The case studies have shown that in comparison to the con-
ventional MBB approach, the present study has significant ad-
vantages for measuring the quantitative internal dimensions of
target elements. The MBB method inherently exaggerates the
width and underestimates the length of the polygon it is used to
describe. As such, the use of these measures in describing the
internal geometries of target elements provides potentially mis-
leading results, as indicated by the Mitchell River Delta dataset.
Conversely, the mid-channel bars of the Congo River were found to
be well-represented by MBB geometry. This discrepancy is at-
tributed to the greater complexity of elements found in the tide-
influenced Mitchell Delta (Nanson et al., 2013), with more cres-
centic and sinuous shapes compared to the predominately ellip-
tical shapes found in the Congo.

Adjacency between potential reservoir elements in the Mitchell
Delta has been shown, with channels indicated as the most con-
nected elements (Fig. 12A). While fluvial channels supply shor-
elines with the sediment needed to construct beach and chenier
ridges (Rhodes, 1982), intervening non-reservoir elements can
form barriers between fluvial and wave elements to reduce con-
nectivity (Howell et al., 2008). This is significant, as of the channels
and ridge forms that are connected, the connection pathways are
often along narrow conduits of beach and chenier ridges (Table 1;
Fig. 12B; Nanson et al., 2013) to considerably reduce the con-
nectivity of the entire reservoir sandbody. If channels in the
Mitchell Delta are mud filled after abandonment, this will further
promote compartmentalization. A quantification of the connected
sandbodies and the perimeter connecting sandbodies as proposed
in the new methodology has allowed for another quantitative
technique to compare the relative heterogeneity and compart-
mentalization between different modern systems.

In addition to the geometric attribute characterization, the
proposed CA method has shown its broader applicability within
geomorphology to study the variability in geometric attributes and
shape with distance along a depositional system. As demonstrated
by the Congo River study, this provides a unique insight into the
change in shape classification and attributes for example, as
channel width and symmetrical ellipse shapes decrease with dis-
tance upstream. This may reflect a transition from an open portion
of the anabranching river to narrower channels and lower width:
length mid-channel-bars upstream. Defining trends within de-
positional environments is an essential component in the frame-
work of any depositional model (e.g., Boyd et al., 1992; Nichols and
Fisher, 2007) and geometric attribute and shape characterization
proposed in the methods here can help to quantify that variability

using modern examples.

The case studies demonstrate the method using modern clastic
depositional systems. However, there is a broader potential ap-
plication to any two-dimensional object including carbonates (e.g.,
Harris, 2010). Another example within the geosciences is appli-
cation to two-dimensional along strike or dip sections of outcrop
analogues (e.g., Rittersbacher et al., 2013), where current methods
to retrieve geometric attributes and describe element shape are
largely performed manually and subjectively (Howell et al., 2014).
Our method may address these limitations by adding automation
and systematic measurement to reduce error.

5. Conclusion

This paper presents a method to calculate the geometric attri-
butes in relation to shape and adjacency of mapped depositional
features for improved empirical analysis in geomorphology. The
method is implemented as a set of scripts for use in a GIS en-
vironment, where in-built capabilities have traditionally been
lacking. By sampling multiple equally-spaced measurements of
two-dimensional objects along their centerlines, a better re-
presentation of width and centerline deviation variability has been
achieved compared to conventional GIS approaches. This sys-
tematic and objective measurement can be used to analyze the
geomorphological shape of features and their distribution within
modern depositional systems.
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