

Björn Matthias, ABB Corporate Research, 2015-09-28

# New safety standards for collaborative robots, ABB YuMi<sup>®</sup> dual-arm robot

Workshop IROS 2015 – Robotic co-workers – methods, challenges and industrial test cases



## Collaborative Robots Status of Standardization – Example Robot: YuMi<sup>®</sup>



т<sub>еff</sub>

ARR

V<sub>rel</sub>

- Introduction
- Standardization
  - Overview of relevant standards
  - Types of collaborative operation
  - ISO/TS 15066 status of work
  - Risk mitigation in collaborative assembly
- YuMi<sup>®</sup>
  - Collaborative Automation
  - Collaboration & Ergonomics
  - Assembly Processes
  - Material Flow
  - Application Examples
- Open questions
- Summary and outlook







## Trend towards individualization Driver for Human-Machine Collaboration



© ABB 2015-09-27 Slide 3

#### Safety and Human-Robot Collaboration Relevant Standards and Directives



© ABB 2015-09-27 Slide 4

## Types of Collaborative Operation According to ISO 10218, ISO/TS 15066

| ISO<br>10218-1,<br>clause | Type of collaborative operation                                                                                  | Main means of risk reduction                                                          |                                |
|---------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------|
| 5.10.2                    | Safety-rated monitored stop<br>(Example: manual loading-station)                                                 | No robot motion when<br>operator is in collaborative<br>work space                    |                                |
| 5.10.3                    | Hand guiding<br>(Example: operation as assist device)                                                            | Robot motion only through direct input of operator                                    |                                |
| 5.10.4                    | Speed and separation monitoring<br>(Example: replenishing parts<br>containers)                                   | Robot motion only when<br>separation distance above<br>minimum separation<br>distance | $v < v_{max}$<br>$d > d_{min}$ |
| 5.10.5                    | Power and force limiting by inherent design or control (Example: <i>ABB YuMi</i> ® collaborative assembly robot) | In contact events, robot can<br>only impart limited static and<br>dynamics forces     | F < F <sub>max</sub>           |



## Short Introduction to HRC Examples of Collaborative Operation (1)

#### Safety-rated monitored stop (ISO 10218-1, 5.10.2, ISO/TS 15066)

- Reduce risk by ensuring robot standstill whenever a worker is in collaborative workspace
- Achieved by
  - Supervised standstill Category 2 stop (IEC 60204-1)
  - Category 0 stop in case of fault (IEC 60204-1)

#### Hand guiding

(ISO 10218-1, 5.10.3, ISO/TS 15066)

- Reduce risk by providing worker with direct control over robot motion at all times in collaborative workspace
- Achieved by (controls close to end-effector)
  - Emergency stop
  - Enabling device















# Short Introduction to HRC Examples of Collaborative Operation (2)



#### Speed and separation monitoring

(ISO 10218-1, 5.10.4, ISO/TS 15066)

- Reduce risk by maintaining sufficient distance between worker and robot in collaborative workspace
- Achieved by
  - distance supervision, speed supervision
  - protective stop if minimum separation distance or speed limit is violated
  - taking account of the braking distance in minimum separation distance
- Additional requirements on safety-rated periphery
  - for example, safety-rated camera systems

### Power and force limiting by inherent design or control

(ISO 10218-1, 5.10.5, ISO/TS 15066)

- Reduce risk by limiting mechanical loading of humanbody parts by moving parts of robot, end-effector or work piece
- Achieved by low inertia, suitable geometry and material, sensory input, control functions, …
- Applications involving transient and/or quasi-static physical contact









#### ISO/TS 15066 – Present Status ISO Project Overview

- Motivation and Purpose
  - End users waiting for standards document before willing to implement applications
  - Complex nature of protection schemes for collaborative applications
  - Meet the developing interest in collaborative robots with specific guidance
- Objective
  - Generate a TS (technical specification) document, valid for 3 years
  - After 3 years, review options
    - Confirm for 3 more years (if still deemed unsuitable for a standard)
    - Integrated into ISO 10218-2 (this is the preferred outcome)
    - Discard (if it turns out to be without practical relevance)
- Responsible international working group
  - ISO / TC184 (Automation systems) / SC2 (Robots and robotic devices) / WG3 (Industrial safety)
  - Convenor: Pat Davison, Robotic Industries Association (USA)
- Remaining work before first publication
  - Review and process remaining technical and editorial comments from WG3 members

### ISO/TS 15066 – Present Status ISO Project Timeline

- -Concurrent research work on biomechanical criteria at:
- DGUV/IFA (formerly BGIA)
- University of Mainz, Occupational Medicine
- Fraunhofer IFF, Magdeburg



- Project start: 2012
- Project end: 2015-12-05
- Recent meeting schedule
  - SC 2/WG 3 40th Meeting: 2015 June 15-17, at Daimler, Sindelfingen, Germany
  - TC 184/SC 2 22nd Plenary Meeting: 2015 June 18-19, at BGHM, Stuttgart, Germany
  - SC 2/WG 3 41st Meeting: 2015 December 7-9, in Yokohama, Japan
- First publication of ISO/TS 15066: 2015-12-05



## **Biomechanical Limit Criteria**

#### ISO / TS 15066 – clause 5.5.4 "Power and force limiting"

|                                       | Transient Contact                                                                                                  | Quasi-Static Contact                                                                                  |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Description                           | <ul> <li>Contact event is "short" (&lt; 50 ms)</li> <li>Human body part can usually recoil</li> </ul>              | <ul> <li>Contact duration is "extended"</li> <li>Human body part cannot recoil, is trapped</li> </ul> |
| Limit Criteria                        | <ul><li>Peak forces, pressures, stresses</li><li>Energy transfer, power density</li></ul>                          | <ul> <li>Peak forces, pressures, stresses</li> </ul>                                                  |
| Accessible<br>in Design or<br>Control | <ul> <li>Effective mass (robot pose, payload)</li> <li>Speed (relative)</li> <li>Contact area, duration</li> </ul> | <ul> <li>Force (joint torques, pose)</li> <li>Contact area, duration</li> </ul>                       |







# General approach – effective inelastic 2-body collision

- $\mu$  = reduced mass of 2-body system of robot and human body section
- $v_{rel}$  = relative speed between robot and human body section
- $C_R$  = coefficient of restitution
- k = effective spring constant of body area (here assumed constant)
- $x_1 = maximum$  compression of tissue in area of contact
- $A_{avg}$  = average contact area during contact event
- $F_{lim}$ ,  $p_{lim}$  = force, pressure limit values for specific body region

Kinetic energy transfer:Worst-case assumption:Energy stored in "spring" $\Delta W = \frac{1}{2} \mu v_{rel}^2 (1 - C_R^2)$  $C_R = 0 \rightarrow \Delta W = \frac{1}{2} \mu v_{rel}^2$  $\Delta W = \frac{1}{2} k x_1^2 = \frac{F^2}{2k}$ 

Fully deposit kinetic energy into tissue as modeled by spring:

$$\frac{F^2}{2k} = \frac{1}{2} \mu v_{rel}^2 \quad \Rightarrow \quad v_{rel} = \frac{F}{\sqrt{\mu k}} = \frac{pA}{\sqrt{\mu k}} \quad \stackrel{F < F_{lim}}{\Rightarrow} \qquad v_{rel} < \frac{F_{lim} A_{avg}}{\sqrt{\mu k}} \approx \frac{p_{lim} A_{avg}}{\sqrt{\mu k}}$$
$$\mu = \left[\frac{1}{m_R} + \frac{1}{m_H}\right]^{-1}$$



#### Effective mass of robot (1) Proper formulation from complete equation of motion of robot

Equation of motion for stiff robot

 $M(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) = \tau + \tau_c$ 

| q | $\in \mathbb{R}^n$ : | vector of <i>n</i> joint angles |
|---|----------------------|---------------------------------|
|---|----------------------|---------------------------------|

- $M \in \mathbb{R}^{n \times n}$ : mass/inertia matrix
- $\boldsymbol{C} \in \mathbb{R}^{n \times n}$ : centripetal and Coriolis matrix
- $\boldsymbol{g} \in \mathbb{R}^n$ : gravity vector
- $oldsymbol{ au} \in \mathbb{R}^n$  : joint motor torque vector
- $\boldsymbol{\tau_c} \in \mathbb{R}^n$  : external contact torque vector

Effective mass in direction of unit vector  $\boldsymbol{u}$ :  $m_u = [\boldsymbol{u}^T \boldsymbol{\Lambda}_t^{-1}(\boldsymbol{q}) \boldsymbol{u}]^{-1}$ where  $\boldsymbol{\Lambda}(\boldsymbol{q}) = (\boldsymbol{J}(\boldsymbol{q}) (\boldsymbol{M}(\boldsymbol{q}))^{-1} \boldsymbol{J}^T(\boldsymbol{q}))^{-1}$  Kinetic energy  $T = \frac{1}{2} \dot{\boldsymbol{q}}^T \boldsymbol{M}(\boldsymbol{q}) \dot{\boldsymbol{q}}$ 

Jacobian matrix J(q) such that  $\dot{x} = J(q) \dot{q}$ 

Translational and rotational parts  $J(q) = \begin{bmatrix} J_t(q) \\ J_r(q) \end{bmatrix}$ 



## Effective mass of robot (2) Approximate formulation: Lumped parameter model



Example for stiff 3 DOF robot

- Effective moving mass at contact location (reflected inertia)  $m_R$
- Speed of contact location  $\vec{v}_R$
- Material properties of contact location
  - E.g. padding
- Compliance of kinematic chain
  - Can reduce effective mass

$$\vec{p}_R = \sum_i m_i \vec{v}_i \qquad m_R = \frac{\vec{p}_R \cdot \vec{v}_R}{v_R^2}$$



#### ISO/TS 15066 – Present Status Body Model



Figure A.1 — Body Model

#### Table A.1 — Body Model Descriptions

|                             |                    |                         | Front/ |
|-----------------------------|--------------------|-------------------------|--------|
| Body Region                 | Specific Body Area |                         | Rear   |
| Skull and forehead          | 1                  | Middle of forehead      | Front  |
|                             | 2                  | Temple                  | Front  |
| Face                        | 3                  | Masticatory muscle      | Front  |
| Neck                        | 4                  | Neck muscle             | Rear   |
|                             | 5                  | Seventh neck vertebra   | Rear   |
| Back and shoulders          | 6                  | Shoulder joint          | Front  |
|                             | 7                  | Fifth lumbar vertebra   | Rear   |
| Chest                       | 8                  | Sternum                 | Front  |
|                             | 9                  | Pectoral muscle         | Front  |
| Abdomen                     | 10                 | Abdominal muscle        | Front  |
| Pelvis                      | 11                 | Pelvic bone             | Front  |
| Upper arms and elbow        | 12                 | Deltoid muscle          | Rear   |
| joints                      |                    |                         |        |
|                             | 13                 | Humerus                 | Rear   |
|                             | 16                 | Arm nerve               | Front  |
| Lower arms and wrist joints | 14                 | Radial bone             | Rear   |
|                             | 15                 | Forearm muscle          | Rear   |
| Hands and fingers           |                    | Forefinger pad D        | Front  |
|                             | 18                 | Forefinger pad ND       | Front  |
|                             | 19                 | Forefinger end joint D  | Rear   |
|                             | 20                 | Forefinger end joint ND | Rear   |
|                             | 21                 | Thenar eminence         | Front  |
|                             | 22                 | Palm D                  | Front  |
|                             | 23                 | Palm ND                 | Front  |
|                             | 24                 | Back of the hand D      | Rear   |
|                             | 25                 | Back of the hand ND     | Rear   |
| Thighs and knees            |                    | Thigh muscle            | Front  |
|                             | 27                 | Kneecap                 | Front  |
| Lower legs                  | 28                 | Middle of shin          | Front  |
|                             | 29                 | Calf muscle             | Rear   |



#### YuMi<sup>®</sup> - IRB 14000 0.5/0.55 Overview





|                         | IRB 14000 – 0.5/0.55                 |  |
|-------------------------|--------------------------------------|--|
| Payload                 | 0.5 kg per arm                       |  |
| Reach                   | 559 mm                               |  |
| Repeatability           | 0.02 mm                              |  |
| Footprint               | 399 mm x 497 mm                      |  |
| Weight                  | 38 kg                                |  |
| Controller              | IRC5 integrated in torso             |  |
| Programming             | Lead-through or RAPID                |  |
| Gripper                 | Servo, 2x suction, integrated vision |  |
| Application supplies    | Ethernet, 24 V, air to flanges       |  |
| Connections             | Ethernet, digital I/O 8in/8out, air  |  |
| Temperature             | 5 °C – 40 °C                         |  |
| IP Protection           | IP 30                                |  |
| ESD Protection          | Certified                            |  |
| Clean room / food grade | No                                   |  |
| Speed Supervision       | Configurable up to 1.5 m/s           |  |
| Safety Performance      | PL b, cat. B (ISO 13849-1)           |  |



# ABB YuMi<sup>®</sup> Safety Concept Protection Levels

| Measures for risk reduction<br>and ergonomics improvement | Level 6 | Perception-based real-time adjustment to environment        |                       |           | ept      |
|-----------------------------------------------------------|---------|-------------------------------------------------------------|-----------------------|-----------|----------|
|                                                           | Level 5 | Personal protective equipment                               |                       |           | ot conc  |
|                                                           | Level 4 | Software-based collision detection, manual back-drivability |                       | rial rob  |          |
|                                                           | Level 3 | Power and speed limitation                                  | act                   | n-specifi | indust   |
|                                                           | Level 2 | Injury-avoiding mechanical design and soft padding          | t contact             | plication | oorative |
|                                                           | Level 1 | Low payload and low robot inertia                           | Transien<br>Quasi-sta | Other, ap | B collat |
| Robot system – mechanical hazards                         |         |                                                             |                       | AB        |          |



# YuMi<sup>®</sup> Target growth markets



#### **Small Parts Assembly**

- Collaborative Assembly
- Camera-based inspection and assembly
- Accurate and fast assembly
- Testing and packaging

#### **Consumer Products**

- Collaborative Assembly (Plastic parts etc.)
- Packaging of small goods
- Multifunction hand for add components

#### **Toy Industry**

- Collaborative Assembly (toys)
- Use of feeding and vision options



#### Assembly Process Sensing Concepts

Digital sensor for material detection and sequence control

- Photo sensor
- Proximity sensor

Integrated vision system for flexible part detection

- External camera
- Integrated camera





#### Assembly Process Dual-Arm Assembly

#### Independent tasks for cycle time optimization with fixtures in workspace

BJE

Hand-in-hand assembly for flexibility without fixtures in workspace





© ABB 2015-09-27 Slide 19

#### Collaboration & Ergonomics Integration in Assembly Lines

Working side-by-side with humans

- 7 degree-of-freedom manipulator for kinematic redundancy
- Compact motion w/o disturbing the human worker

Task distribution between human and robot

- Sharing tasks for agility
  - Repetitive tasks assigned to the robot
  - Complex tasks assigned to the human worker
- Duplicate capacity for scalable production

SMDSO.





# Status of Standardization – Example Robot: YuMi<sup>®</sup> Open Questions

- Safety
  - Safety-rated sensors for tracking humans in speed-and-separation-monitoring
  - More data on biomechanical limit criteria for human body regions
  - Design rules for safety-related mechanical design of collaborative manipulators
  - Dynamic adaptation of safety-configuration to momentary requirements
- Acceptance
  - Dynamic adaptation of robot behavior to collaborative situation
  - Definition and quantification of ergonomics for collaborative situations
  - Operator controls for collaborative operation
  - Possibility of programming complex assembly tasks without expert knowledge
- Productivity
  - Application concepts for productive collaborative assembly
  - Optimal distribution of tasks to robot or human in mixed environment
  - Economical combinations of lot sizes, variants, application complexity, ...
  - Practical experience with business models



#### Status of Standardization – Example Robot: YuMi<sup>®</sup> Summary and Outlook

- Safety standardization
  - ISO/TS 15066 publication in Dec. 2015
  - Requirements on collaborating robots incl. biomechanical criteria for power-and-force-limiting
  - Eventual integration into ISO 10218-2 is planned
- YuMi® IRB 14000 0.5/0.55
  - Collaborative robot according to power-and-force-limiting
  - Assembly of small lot-size / high-variant orders
  - Humans and robots combine their respective strengths
- Outlook
  - Interdisciplinary research
  - Technological improvements and progress
  - Proving in practice
  - Revisions of standards



# Power and productivity for a better world<sup>™</sup>

