
A. Cecchinato, M. De Marchi, M. Penasa, A. Albera and G. Bittante
in breeding programs for enhanced beef quality

The relevance of near-infrared reflectance spectroscopy predictions as indicator traits

 published online March 31, 2011J ANIM SCI 

http://www.journalofanimalscience.org/content/early/2011/03/31/jas.2010-3740
the World Wide Web at: 

The online version of this article, along with updated information and services, is located on

www.asas.org

 by guest on March 14, 2013www.journalofanimalscience.orgDownloaded from 

http://www.journalofanimalscience.org/


 1

Breeding for beef quality traits using NIRS 

 

The relevance of near-infrared reflectance spectroscopy predictions as indicator traits in 

breeding programs for enhanced beef quality1 

A. Cecchinato*2, M. De Marchi*, M. Penasa*, A. Albera† and G. Bittante* 

 

 

*Department of Animal Science, University of Padova, Viale dell’Università 16, 35020 

Legnaro (PD), Italy 

†Associazione Nazionale Allevatori Bovini di Razza Piemontese, Strada Trinità 32a, 12061 

Carrù, Italy 

 

 

 

 

 

 

1The authors wish to thank MIPAAF for financial support and the National Association of 

Piemontese Breeders (ANABoRaPi, Carrù, Italy)  for supplying pedigree information. 

2Corresponding author: Department of Animal Science, University of Padova, Viale 

dell’Università 16, 35020 Legnaro (PD).  

E-mail address: alessio.cecchinato@unipd.it 

 Published Online First on March 31, 2011 as doi:10.2527/jas.2010-3740 by guest on March 14, 2013www.journalofanimalscience.orgDownloaded from 

http://www.journalofanimalscience.org/


 2

ABSTRACT: The aims of this study were 1) to investigate the potential application of near-

infrared spectroscopy (NIRS) to predict beef quality (BQ) traits, 2) to assess genetic variations of 

BQ measures and their predictions obtained by NIRS, and 3) to infer the genetic relationship 

between measures of BQ and their predictions. Young Piemontese bulls (N = 1,230) were raised 

and fattened on 124 farms, and slaughtered at the same commercial abattoir. Beef quality traits 

were shear force (SF, kg), cooking loss (CL, %), drip loss (DL, %), lightness (L*), redness (a*), 

yellowness (b*), saturation index (SI), and hue angle (H). Near-infrared spectra were collected 

using a Foss NIRSystems 5000 over a spectral range of 1,100 to 2,498 nm every 2 nm, in 

reflectance mode. After editing, prediction models were developed on a calibration subset (N = 

268) using partial least squares (PLS) regressions, followed by application of these models to the 

validation subset (N = 940). Estimation of (co)variance for measures of BQ and NIRS-based 

predictions was obtained through a set of bivariate Bayesian analyses on the validation subset. 

Near-infrared predictions were satisfactory for measurements of L* (R2 = 0.64), a* (R2 = 0.68), H 

(R2 = 0.81), and SI (R2 = 0.59), but not for b*, DL, CL, and SF. The loss of additive genetic 

variance of predicted versus measured L*, a*, DL, CL, and SF was generally high and similar to 

the loss of residual variance, being a function of the calibration parameter R2. As a consequence, 

estimated heritabilities of measures and predictions of BQ were similar for traits with high 

calibration R2 values. Genetic correlations between BQ measures and predictions were high for 

all color traits and DL, and higher than the corresponding phenotypic correlations, whereas both 

the phenotypic and genetic correlations for SF and CL were nil. Results suggest that NIRS-based 

predictions for color features and DL may be used as indicators traits to improve meat quality of 

Piemontese breed. 
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INTRODUCTION 

Beef quality (BQ) traits are important aspects of beef production from the consumer 

viewpoint and with respect to related effects on herd profitability (Dikeman, 1990). As 

exploitable additive genetic variation for BQ exists (Burrow et al., 2001; Johnston et al., 2003; 

Warner et al., 2010), it is expected that such traits may be enhanced through selection strategies. 

However, large-scale recording of individual BQ phenotypes remains a critical issue because the 

available techniques are time-consuming and, as yet, no high-throughput automated measuring 

device has been developed. As opportunities for breeding based on direct measures of BQ 

phenotypes are limited, optimal selection to enhance BQ remains under investigation. 

Alternative methodologies for measuring BQ rely on the use of infrared spectroscopy 

(Prevolnik et al., 2004; Prieto et al., 2009). Because the technique is rapid and accurate, infrared 

spectroscopy has been successfully used in the beef industry for chemical analysis (Mitsumoto et 

al., 1991; Osborne et al., 1993; Hildrum et al., 1995). Conversely, near-infrared spectroscopy 

(NIRS) is less reliable in predicting technological parameters of meat and meat products (Albeni 

and Bergoglio, 2001; Geesink et al., 2003; Hoving-Bolink et al., 2005). 

From a genetic point of view, the relevance of NIRS in programs focusing on selection for 

improved BQ relies on genetic variation of NIRS-based predictions of BQ and on the magnitude 

of genetic correlation between NIRS-based predictions and BQ measured by defined reference 

methods. No estimates of such genetic parameters are currently available for BQ. We therefore 

investigated the ability of NIRS to predict BQ, the genetic variations in BQ measures and their 
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predictions obtained by NIRS and the genetic relationship between measures of BQ and 

predictions.  

 

MATERIALS AND METHODS 

Animals, samples, and data 

The present study was part of a wider project conducted on 1,230 young Piedmontese bulls 

marketed as “Vitellone Piemontese della Coscia” under a Protected Geographical Indication 

(PGI), as defined by the European Union. Animals were fattened on 124 farms and slaughtered 

at the same commercial abattoir from March 2005 to February 2007. The average age at 

slaughter (SD) was 523 d (73 d). Young bulls were progeny of 109 AI purebred sires and 1,170 

dams, all registered in the Italian Piedmontese herdbook. Sire-offspring relationships were 

ascertained using DNA testing based on 19 microsatellites (Budowle et al., 2005). 

Twenty-four hours after slaughter, individual samples (one per animal) of the Longissimus 

thoracis muscle were collected between the fifth and sixth thoracic vertebrae, weighed, 

individually vacuum-packed, and transferred to the meat laboratory of the Department of Animal 

Science of the University of Padova (Legnaro, Italy) using a portable cooler (4°C). Upon arrival, 

samples were stored at 4°C in a chilling room until measurement of BQ traits. 

 

Physical analysis and near-infrared spectroscopy 

After aging for 8 d, BQ of meat samples was assessed by measurement of color, drip loss 

(DL, %), cooking loss (CL, %), and shear force (SF, kg). Drip loss was computed as the 

difference between the weight of the packaged sample and the weight of the sample dried using 

blotting-paper plus the weight of the heat-dried bag, and expressed as a percentage of sample 
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weight. Two slices of meat, each 20-mm thick, were cut from each sample. The first slice was 

exposed to air at 4°C for 1 h (ASPA, 1996), and the color of the exposed surface was determined 

using a Minolta CM-508 spectrophotometer (Konica Minolta, Milan, Italy), equipped with a D65 

light source. The reflectance coordinates (L*, a*, b*) of the Commission International de 

l’Éclairage (CIE, 1976) were measured at five random positions. Saturation index (SI) was 

calculated using the formula 
22 ** baSI  , whereas hue angle (H) was calculated from the 

formula H = tan−1(b*/a*) (AMSA, 1991). The parameters L*, a*, b*, SI, and H were measured 

five times each and the measures were averaged prior to statistical analysis. The second slice was 

weighed, sealed in a polyethylene bag, heated in a water bath at 75°C for 55 min, and weighed 

again for measurement of cooking loss (ASPA, 1996). Cooking loss was computed as the 

amount of weight lost after cooking as a percentage of the weight of the uncooked slice. Shear 

force was measured on five 1-cm2 cross-sectional round cores, taken at approximately the same 

location from each cooked slice and running parallel to the longitudinal axis of the muscle fibers, 

using a TA-HDi Texture Analyzer (Stable Micro System Ltd., Godalming, UK), equipped with a 

Warner-Bratzler shear device (100 kg load cell and crosshead speed of 2 mm/sec). Both CL and 

SF were measured five times each and measures were averaged prior to statistical analysis.  

Near-infrared spectra were collected on fresh minced samples using a Foss NIRSystems 

5000 over a spectral range of 1,100 to 2,498 nm, in reflectance mode, every 2 nm. Duplicate 

spectra were captured for each sample and averaged prior to data analysis. 

 

Statistical analysis 

Validation procedure. The original dataset was edited to discard records with errors (e.g., 

individual identification spectra not matching reference samples). After editing, a total of 1,208 
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records, including measures of BQ and NIRS spectra, were available for statistical analysis. To 

evaluate the predictive ability of NIRS measurements for BQ traits and the magnitude of genetic 

correlations between BQ measurements and predictions from calibration equations based on 

NIRS spectra, a holdout validation procedure was carried out. This method involved the partition 

of data into two subsets, a calibration and a test subset. The former was used to develop a 

calibration equation that could predict individual BQ phenotypes using NIRS spectra, whereas 

the latter was employed to validate the calibration equation and to estimate heritabilities and 

genetic correlations for measured BQ traits and predictions obtained from NIRS spectra and the 

calibration equations. Observations to be included in the calibration subset were randomly 

sampled from the set of available data with the restriction that at least 2 observations per herd 

and week of laboratory analysis were present in the subset (268 records). Records not included in 

the calibration subset were included in the test subset (940 records). 

Multivariate data analysis and predictive ability of NIRS. Partial least squares (PLS) 

regressions (Unscrambler software, v.9.6; Camo A/S, Oslo, Norway) were used to establish 

calibration models (Hubert and Van den Branden, 2003). Partial least squares regressions have 

been used to estimate correlations between reference data and values predicted from spectral 

information in meat (Prieto et al., 2008) and milk (Soyeurt et al., 2006). 

Models were developed using untreated spectral data (absorbance spectra) for CL, DL, and color 

traits, and untreated spectral data plus first derivative spectra for SF. To assess the adequacy of 

the calibration models, we calculated the root mean square error of calibration (RMSEC) and the 

coefficient of determination (R2). To evaluate the practical utility of the models, the range error 

ratio (RER) was calculated as the ratio between the range and the RMSEC of the trait (Williams, 

1987). Models with RER values lower than 3 have little practical utility; RER values between 3 
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and 10 indicate limited to good practical utility; and RER values above 10 indicates high utility 

value of the model (Williams, 1987).  

Estimates of (co)variance components. For test subset (N = 940 records), (co)variance 

components and related parameters were estimated using a Bayesian approach and Markov-chain 

Monte Carlo (MCMC) methods (Sorensen and Gianola, 2002). A Bayesian technique was used 

because this offers some advantages over classical statistical methods (Blasco, 2005); in 

particular, Bayesian inference is based on probabilities, providing great flexibility in the 

construction of all types of confidence intervals. (Co)variance components for measures of BQ 

and predictions by NIRS were estimated using eight separate bivariate Bayesian analyses on the 

test subset. For all traits, the model included the effects of fattening farms (124 levels), week of 

BQ laboratory analysis (92 weeks), and carcass weight (class 1: < 387 kg; class 2: 387 to 410 kg; 

class 3: 411 to 430 kg; class 4: 431 to 450 kg; class 5: 451 to 474 kg; class 6: > 474 kg). All traits 

were continuous variables and the values were assumed to be sampled from the following normal 

multivariate distribution:  
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where BQy is a vector of phenotypic observations on measures of BQ; pBQy  is a vector of 

phenotypic observations on NIRS-based predictions of BQ; X , 1W , 2W , and Z  are incidence 

matrices relating systematic   pBQBQbbb  , fattening herd   pBQBQccc  , week of laboratory 

analysis   pBQBQqqq  , and additive genetic   pBQBQuuu   effects to the vector of 
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observations; I is an identity matrix of appropriate order; and R is a 2 x 2 matrix of residual 

(co)variances. The systematic effect considered in b  is the carcass weight.  

Flat priors were used for systematic effect and dispersion parameters. Prior distributions 

for the additive genetic effects in u, herd effects in c, and weeks of laboratory analysis in q, were 

normal densities. In a Bayesian setting, we assumed: 

   ,0,N~| GAGA,u p  

where G is a 2 x 2 additive genetic (co)variance matrix, and A the numerator relationship matrix 

between individuals. Likewise, herd effects and week of laboratory analysis were assumed to 

follow normal bivariate distributions: 

   ,0,N~| 11 PIPI,c p  

   ,0,N~| 22 PIPI,q p  

where P1 is a 2 x 2 herd (co)variance matrix and P2 is a 2 x 2 week of the laboratory analysis 

(co)variance matrix.  

Gibbs sampler. Marginal posterior distributions of unknown parameters were estimated by 

performing numerical integration using the Gibbs sampler (Gelfand and Smith, 1990), as 

implemented in the TM program (http://snp.toulouse.inra.fr/~alegarra/). This was employed to 

obtain auto-correlated samples from the joint posterior distributions and subsequently from the 

marginal posterior distributions of all unknowns in the model. The lengths of the chain and of the 

burn-in period were assessed by visual inspection of trace plots, as well as by the diagnostic tests 

of Geweke (1992) and Gelman and Rubin (1992). After a preliminary run, we decided to 

construct a single chain consisting of 850,000 iterations and to discard the first 50,000 iterations 

as a very conservative burn-in. Subsequently, one of every 200 successive samples was retained, 

to store draws that were more loosely correlated. Thus, 4,000 samples were used to determine 
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posterior distributions of unknown parameters. The lower and upper bounds of highest 95% 

probability density regions for h2 and additive genetic and residual variances were obtained from 

the estimated marginal densities as well as from a posterior probability for h2 > 0.10. The 

posterior median was used as the point for estimating (co)variance components and related 

parameters. Auto-correlations between samples and estimates of Monte Carlo Standard Error 

(Geyer, 1992) were calculated. 

To facilitate comparisons with previously reported results, we calculated intraherd heritability as: 

2
e

2
a

2
a2

σσ

σ
h


  

where 2
aσ  is the additive genetic variance and 2

eσ  is the residual variance. Genetic correlations 

were computed as: 

a2a1

a2a1,
a σσ

σ
r


  

where a2a1,σ  is the additive genetic covariance between traits 1 and 2, and a1σ  and a2σ  are the 

additive genetic standard deviations of traits 1 and 2, respectively. Phenotypic correlations were 

computed as: 

p2p1

p2p1,
p σσ

σ
r


  

where p2p1,σ  is the phenotypic covariance between traits 1 and 2, and p1σ  and p2σ  are the 

phenotypic standard deviations of traits 1 and 2, respectively. 

 

RESULTS AND DISCUSSION 
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The Piedmontese (Piemontese) is the most important Italian beef cattle breed, 

characterized by muscular hypertrophy (Kambadur et al., 1997), and is actively selected for traits 

such as daily weight gain, live fleshiness (Albera et al., 2001; Mantovani et al., 2010), and direct 

and maternal calving performance (Carnier et al., 2000; Kizilkaya et al., 2002; 2003). Previous 

investigations have assessed phenotypic variation in carcasses (Biagini and Lazzaroni, 2005; Dal 

Maso et al., 2009; Schiavon et al., 2010a) and BQ traits (Destefanis et al., 2003; Schiavon et al., 

2010b) of purebred Piedmontese cattle. Conversely, genetic aspects of BQ traits have been 

studied only in crossbreeding experiments (Wheeler et al., 2001b), thus not at a population level. 

To address this issue, a research project has been established in cooperation with the 

National Association of Piedmontese Breeders (ANABoRaPi, Carrù, Italy), to study the genetics 

of BQ traits in this breed, both quantitatively (Boukha et al., 2007) and at a molecular level 

(Ribeca et al., 2009). The possibility of estimating BQ traits using NIRS forms the topic of the 

present report. The data obtained from BQ analyses (Table 1) were similar to those obtained on 

other hypertrophic breeds (Vincenti et al., 2007), especially Belgian Blue cattle (Fiems et al., 

2003).  

 

Predictions of beef quality traits  

Descriptive statistics for the calibration and test subsets are presented in Table 1. The 

means and coefficients of variation (CVs) of BQ traits in the two subsets were similar. The CVs 

were quite high and ranged from 9.26 (H) to 33.23% (DL), facilitating the development of robust 

calibration equations.  

The coefficients of determination of calibration (R2) varied from 0.44 to 0.81 for color 

indices, but were very low (R2 < 0.25) for DL, CL, and SF (Table 1). The RMSECs varied from 
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1.41 to 2.12 for color indexes and were 1.19%, 3.55%, and 0.48 kg for DL, CL, and SF, 

respectively. The range error ratio (RER) values varied from 5.15 (CL) to 12.18 (H), showing 

limited-to-good practical utility of the prediction models. Except for b*, the R2 values of all color 

indices were quite high (0.59 to 0.81), indicating that NIRS could predict these traits 

satisfactorily (Williams, 2003). NIRS-based predictions were much less accurate for DL, CL, 

and SF (R2 < 0.25). In general, predictions from the present work were less accurate than those 

reported by Leroy et al. (2003), Andrés et al. (2008), and Prieto et al. (2008, 2009), but more 

accurate than values of Hoving-Bolink et al. (2005). The low accuracy of NIRS-based 

predictions for DL and CL is in agreement with data reported previously (Leroy et al., 2003; 

Meulemans et al., 2003; Andrés et al., 2008). The poor accuracy of such reference methods may 

be attributable to heterogeneity of meat samples, variability in spectrum wavelengths, and/or the 

techniques used for spectra acquisition. Such variation can adversely affect the results achievable 

when these traits are studied (Prieto et al., 2009). Good predictions for DL and CL have been 

reported only in one study on pork (R2 = 0.71; Forrest et al., 2000) and one on beef (R2 = 0.86; 

Ripoll et al., 2008) meat. We also found that NIRS was limited in ability to predict SF (R2 = 

0.21), confirming previous findings in beef (Leroy et al., 2003; Andrés et al., 2008), pork (Chan 

et al., 2002), and poultry (Liu et al., 2004). This may be attributable to the use of homogenized 

samples, a sub-optimal spectrum wavelength, and/or limited variation in the available reference 

data for SF.  

 

Variance components and heritability 

Point estimates (medians of the marginal posterior density of each parameter) for the 

additive genetic and residual SD of BQ traits measured by reference methods and predicted by 
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NIRS are shown in Table 2. The additive genetic and residual SDs were always lower for the 

predicted than measured BQ traits, even if the difference varied greatly according to the specific 

trait. 

The median of the marginal posterior density of the difference (loss of variability) between 

the genetic SD for L* measured and predicted by NIRS (ΔσA) was -25%, with a posterior 

probability of being lower than zero (P) close to 100%. A similar result was observed for a*, with 

a ΔσA of -20%, whereas reductions in genetic variability were much less pronounced for b*, H, 

and SI (ΔσA < 10%). The loss of genetic variability caused by NIRS estimation was ≥ 60% for 

SF, DL, and CL. The loss of residual variation (ΔσE) was generally similar to ΔσA, with the 

exception of b* and SI, which showed higher phenotypic losses.  

A study on milk coagulation properties measured using a reference method and predicted by 

infrared spectroscopy showed that both additive genetic and residual SDs were lower when 

estimated from infrared-based predictions, with average ΔσA and ΔσE values being –14% and –

27%, respectively, for rennet coagulation time, and –6% and –37%, respectively, for curd 

firmness (Cecchinato et al., 2009). These findings are similar to those observed for color traits in 

the present work. Considering all traits together, the losses of phenotypic, additive genetic, and 

residual SD caused by NIRS prediction is strictly associated with the R2 values of the calibration 

equations (Figure 1). 

Features of the marginal posterior distributions of heritability of BQ measured and 

predicted by NIRS are shown in Table 3. Point estimates of heritability for BQ measures differed 

principally when color-related traits were examined, ranging from 0.13 to 0.63. The heritabilities 

of L* and a* were moderate, and in agreement with previous estimates (Aass, 1996; Johnston et 

al., 2003). Saturation index and b* showed the lowest estimates of heritability (0.15 and 0.13, 
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respectively), whereas H was the most heritable trait (0.63). Point estimates of heritability were 

low for CL (0.05) and SF (0.10), and moderate to low for DL (0.24). Only a few studies have 

investigated genetic aspects of water-holding capacity, and the results were contradictory, with 

heritability estimates for CL of 0.25 (Riley et al., 2002), 0.15 (Johnston et al., 2003), and 0.01 

(Cecchi et al., 2003). We found that the heritability estimate for SF was 0.10, similar to that 

reported by Riley et al. (2003), but lower than the values obtained by Splan et al. (1998), 

Wheeler et al. (2001a), and Dikeman et al. (2005).  

Heritability estimates for BQ predicted by NIRS were similar to or larger than estimates for 

measured BQ, except for L* and DL. Considering all BQ traits, heritabilities of measured and 

predicted traits showed a correlation of 0.78. When we compared the statistics in Table 1 with 

the estimates in Table 3, we found that neither the absolute value of heritability of predicted BQ 

traits nor the difference between heritabilities of the predicted and measured values was directly 

linked to the R2 value of the NIRS calibration. The largest variations between values of 

heritability estimated using measured and predicted traits were observed for b* (0.13 to 0.29), 

CL (0.05 to 0.17), DL (0.24 to 0.14), and SI (0.15 to 0.23). These traits also exhibited the largest 

differences between ΔσA and ΔσE (Table 2).  

 

Correlations between measured and predicted beef quality traits  

Point estimates (posterior medians) and lower and upper bounds of the 95% highest 

posterior density intervals (HPD95) for additive genetic (rA) and phenotypic (rP) correlations 

between measured and predicted BQ traits are shown in Table 4. The estimates were much 

higher for genetic than for phenotypic correlations, with the exception of CL. The genetic 

correlation for DL was fairly high (0.72), although the phenotypic correlation (0.24) and R2 of 
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the calibration equation (0.17) were low. For all color traits, the estimates between predicted and 

measured traits were very high and ranged from 0.85 (L*) to 0.99 (H). The estimated posterior 

densities of the genetic correlations between measures and predictions of BQ were skewed (data 

not shown), and similar among all color traits. The estimated symmetric 95% posterior density 

regions for color aspects showed that, in the least favorable situation (L*), the genetic correlation 

between measured and predicted values had a 97.5% posterior probability of being > 0.53 (data 

not shown). The lower boundary of the highest 95% posterior density interval was much lower 

for DL than for color values, but the probability of the genetic correlation of being greater than 

zero was 98% (data not shown). 

The additive genetic correlation between predicted and measured BQ traits was the most 

important criterion for using NIRS-based predictions as indicator traits in breeding programs 

(Cecchinato et al., 2009; Rutten et al., 2010). Considering all the BQ traits, the additive genetic 

correlations exhibited a very low relationship with heritabilities of predicted traits (Figure 2). A 

comparison of CL and DL is particularly significant, in that these parameters showed similar 

heritabilities of predicted values (0.17 and 0.14, respectively), but completely different additive 

genetic correlations between predicted and measured values (-0.04 and 0.72, respectively). 

The additive genetic correlations seemed to be positively correlated with the R2 values of 

the calibration equations (R2 = 0.67), but a comparison between CL and DL makes clear the 

range of possible variations. The R2 value of the calibration equation was much more directly 

correlated with the phenotypic correlation between predicted and measured BQ values (R2 = 

0.94) than with the genetic correlation.  

To the best of our knowledge, this study is the first one dealing with the use of NIRS to 

assess indicator traits in a breeding program for enhanced BQ. Our findings indicate that, 
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although the R2 values of some calibration equations were low, the additive genetic correlations 

between predicted and measured values of BQ remained quite high. As the use of NIRS 

calibration equations resulted in losses of additive genetic and phenotypic variability in an 

unpredictable manner, the heritability estimates of predicted values may be higher or lower than 

those of the measured values. Thus, the heritability of predictions alone cannot be considered a 

good indicator of the suitability of a calibration equation. A combination of R2 values of 

calibration, heritability of predicted values, and loss of phenotypic variability, is required to 

determine the utility of the technique used. This is particularly important if the available database 

of predicted and measured values is not large enough to directly estimate additive genetic 

correlations between measures and predictions traits. Our findings support the possibility of 

using NIRS spectra and calibration equations to genetically improve color traits, whereas DL, 

CL, and SF need to be investigated using larger datasets. 
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Table 1. Descriptive statistics of beef quality (BQ) traits for the calibration set (n = 268) and test set (n = 940)a  

 Calibration set  Test set 

Itemb Mean CV, % Minimum Maximun R2c RMSECd RERe  Mean CV, % Minimum Maximun

L* 34.28 10.33 27.36 44.54 0.64 2.12 8.10  34.67 9.76 21.08 37.46 

a* 16.46 15.38 9.45 22.69 0.68 1.41 9.39  16.39 15.77 12.96 27.71 

b* 14.85 14.89 9.39 20.92 0.44 1.65 6.99  15.09 14.60 8.85 20.68 

H  42.21 9.26 32.61 53.19 0.81 1.69 12.18  42.63 8.60 29.79 54.19 

SI 22.28 13.64 15.04 31.03 0.59 1.94 8.24  22.36 13.94 14.51 30.94 

DL, % 3.98 33.23 1.46 8.05 0.17 1.19 5.53  4.28 32.58 1.37 9.04 

CL, % 24.33 14.94 13.72 32.01 0.04 3.55 5.15  24.22 14.38 12.65 33.22 

SF, kg 2.65 20.55 1.57 4.41 0.21 0.48 5.92  2.68 20.84 1.51 4.48 
aCalibration set: samples used to develop a calibration equation to predict BQ phenotypes using NIRS spectra; test set: independent 

sample used to validate the calibration equation and to estimate heritabilities and genetic correlations for measured BQ and their 

predictions obtained from NIRS spectra and calibration equation. 
bSF = shear force; CL = cooking loss; DL = drip loss; L* = lightness; a* = redness; b* = yellowness; H = hue angle [H=tan−1(b*/a*)]; 

SI = saturation index )**( 22 baSI  . 

cCoefficient of determination of calibration. 
dRoot mean square error of calibration. 
eRatio performance deviation. 
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Table 2. Posterior median (SD) for additive genetic (σA) and residual (σE) standard deviation of beef quality (BQ) traits measured and 

predicted by near-infrared spectroscopy (NIRS) 

 σA   σE 

Itema Measures Predictions Δ σA, %b Pc   Measures Predictions Δ σE, %d Pc

L* 1.66 (0.28) 1.25 (0.24) -25 93.7   2.48 (0.17) 2.09 (0.14) -16 98.6 

a* 1.17 (0.20) 0.94 (0.14) -20 94.0   1.70 (0.13) 1.24 (0.09) -27 99.7 

b* 0.64 (0.18) 0.60 (0.12) -6 60.5   1.63 (0.07) 0.94 (0.07) -42 100 

H  2.37 (0.21) 2.16 (0.21) -9 93.7   1.81(0.24) 1.69 (0.24) -7 73.2 

SI 0.95 (0.24) 0.92 (0.20) -3 55.9   2.26 (0.11) 1.68 (0.10) -26 99.9 

DL, % 0.61 (0.15) 0.16 (0.04) -74 99.6   1.07 (0.07) 0.40 (0.02) -62 100 

CL, % 0.65 (0.30) 0.18 (0.05) -72 95.3   2.70 (0.09) 0.40 (0.02) -85 100 

SF, kg 0.15 (0.05) 0.06 (0.02) -60 92.1   0.46 (0.02) 0.18 (0.01) -61 100 
aSF = shear force; CL = cooking loss; DL = drip loss; L* = lightness; a* = redness; b* = yellowness; H = hue angle [H=tan−1(b*/a*)]; 

SI = saturation index )**( 22 baSI  . 

bMedian of the marginal posterior density of the difference between the genetic standard deviations of BQ measured and predicted by 

NIRS. 
cPosterior probability for values of the difference lower than zero. 
dMedian of the marginal posterior density of the difference between the residual standard deviations of BQ measured and predicted by 

NIRS. 
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Table 3. Features of the marginal posterior distributions of heritability of beef quality (BQ) traits 

measured and predicted by near-infrared spectroscopy (NIRS)  

 h2 Measures  h2 Predictions 

Itema Medianb HPD95c P (h2 > 0.10)d  Medianb HPD95c P (h2 > 0.10)d 

L* 0.31 0.06; 0.47 99.9  0.26 0.05; 0.34 99.6 

a* 0.32 0.14; 0.57 99.9  0.36 0.17; 0.43 100 

b* 0.13 0.03; 0.30 67.7  0.29 0.10; 0.52 97.8 

H  0.63 0.45; 0.85 100  0.62 0.43; 0.86 100 

SI 0.15 0.04; 0.33 81.8  0.23 0.08; 0.45 95.7 

DL, % 0.24 0.05; 0.47 93.8  0.14 0.05; 0.32 71.3 

CL, % 0.05 0.01; 0.20 24.2  0.17 0.05; 0.40 83.7 

SF, kg 0.10 0.01; 0.28 49.0  0.10 0.02; 0.24 47.2 
aSF = shear force; CL = cooking loss; DL = drip loss; L* = lightness; a* = redness; b* = 

yellowness; H = hue angle [H=tan−1(b*/a*)]; SI = saturation index )**( 22 baSI  . 

bMedian of the marginal posterior density of the parameter. 
cHighest posterior density region at 95%. 
dPosterior probability for values of h2 greater than 0.10. 
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Table 4. Posterior median and bounds of the 95% high posterior density region (HPD95) for the 

genetic (rA) and phenotypic (rp) correlations between beef quality (BQ) traits measured and 

predicted by near-infrared spectroscopy (NIRS)  

 rA   rp 

Correlationa Medianb HPD95c   Median HPD95 

L* with pL* 0.85 0.53; 0.98   0.60 0.55; 0.65 

a* with pa* 0.98 0.83; 0.99   0.67 0.62; 0.71 

b* with pb* 0.93 0.44; 0.99   0.47 0.38; 0.54 

H with pH 0.99 0.96; 0.99   0.76 0.72; 0.79 

SI with pSI 0.95 0.61; 0.99   0.61 0.55; 0.66 

DL with pDL 0.72 -0.07; 0.98   0.24 0.17; 0.32 

CL with pCL -0.04 -0.83; 0.84   0.04 -0.03; 0.11 

SF with pSF -0.10 -0.85; 0.86   0.02 -0.05; 0.09 
aSF = shear force; pSF = shear force predicted by NIRS; CL = cooking loss; pCL = cooking loss 

predicted by NIRS; DL = drip loss; pDL = drip loss predicted by NIRS; L* = lightness; pL* = 

lightness predicted by NIRS; a* = redness; pa* = redness predicted by NIRS; b* = yellowness; 

pb* = yellowness predicted by NIRS; H = hue angle [H=tan−1(b*/a*)]; pH =hue angle predicted 

by NIRS; SI = saturation index )**( 22 baSI  ; pSI = saturation index predicted by NIRS.  

bMedian of the marginal posterior density of the parameter. 
cHighest posterior density region at 95%. 
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Figure 1 
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Figure 2 
[a] 

y = 1.738x + 0.1886

R2 = 0.3859

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
Heritability

G
en

et
ic

 c
or

re
la

tio
n

 
 
 
 

 by guest on March 14, 2013www.journalofanimalscience.orgDownloaded from 

http://www.journalofanimalscience.org/


 32

[b] 

y = 1.3257x + 0.0667

R2 = 0.646

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
R2 of calibration equation

G
en

et
ic

 c
or

re
la

tio
n

 
 

 

 by guest on March 14, 2013www.journalofanimalscience.orgDownloaded from 

http://www.journalofanimalscience.org/


 33

Figure 1. Relationships between losses of [a] phenotypic, [b] additive genetic, and [c] residual 

standard deviation of beef quality (BQ) traits predicted by near-infrared spectroscopy (NIRS) 

and coefficient of determination (R2) of each calibration equationa. 

a BQ traits: SF = shear force; CL = cooking loss; DL = drip loss; L* = lightness; a* = redness; b* 

= yellowness; H = hue angle [H=tan−1(b*/a*)]; SI = saturation index 

 

Figure 2. Relationships of genetic correlations between measured and predicted BQ traits with 

[a] heritabilities of predicted traits and [b] coefficient of determination (R2) of each calibration 

equation. 
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