About
11
Publications
3,315
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
566
Citations
Current institution
Publications
Publications (11)
Micro and nanoscale 3D printing has been broadly employed for the manufacturing of biomimetic architectures in the fields of tissue regeneration, personalized medicine, and smart biodevices. The emerging intelligent biomaterials significantly expand the diversity and functionality of printed structures. In this review, the commonly used micro and n...
Electrohydrodynamic (EHD) printing has been considered as a mature strategy to mimic the hierarchical microarchitectures in native extracellular matrix (ECM). Most of the EHD-printed scaffolds possess single-dimensional fibrous structures, which cannot mimic the multi-dimensional architectures for enhanced cellular behaviors. Here we developed a tw...
Three-dimensional (3D) printing has been widely utilized to fabricate free-standing electrodes in energy-related fields. In terms of fabrication, the two most challenging limitations of 3D printed electrodes are the poor printing resolution and simple structural dimension. Here we proposed a novel process to fabricate molybdenum disulfide-polyvinyl...
Carbon nanofiber (CNF) nanocatalyst hybrids hold great promise in fields such as energy storage, synthetic chemistry, and sensors. Current strategies to generate such hybrids are laborious and utterly incompatible with miniaturization and large-scale production. Instead, this work demonstrates that Ni nanoparticles embedded in three-dimensional (3D...
Electrohydrodynamic (EHD) printing is a newly emerging additive manufacturing strategy for the controlled fabrication of three-dimensional micro/nanoscale architectures. This unique superiority makes it particularly suitable for the biofabrication of artificial tissue analogs with biomimetic structural organizations similar to the scales of native...
A solution-based electrohydrodynamic (EHD) printing strategy was developed to fabricate sub-microscale biopolymeric fibres to mimic the tiny architectures of native extracellular matrix (ECM) for enhanced cellular performance. It was found that when the working voltage was significantly reduced to 500 V, sub-microscale fibres as well as user-specif...
Patterning of zinc oxide (ZnO) nanorods has attracted considerable interests to enhance the performance of ZnO-based functional devices. Most of the existing techniques for patterned ZnO nanorods are based on conventional microfabrication methods that commonly require cleanroom environment, high-cost equipment and complicated processes. In this stu...
Electrohydrodynamic (EHD) printing is a promising approach to fabricate high-resolution features with low cost and high efficiency. However, the existing EHD printing explorations based on nanoparticle inks commonly require high post-treatment temperature (>150℃) to achieve desired conductivity, which limited their application in flexible substrate...
Liang Jiankang He Jinke Chang- [...]
Li
Cell printing has found wide applications in biomedical fields due to its unique capability in fabricating living tissue constructs with precise control over cell arrangements. However, it is still challenging to print cell-laden 3D structures simultaneously with high resolution and high cell viability. Here a coaxial nozzle-assisted electrohydrody...
Over the past few decades, there has been an increasing interest in the fabrication of complex high-resolution three-dimensional (3D) architectures at micro/nanoscale. These architectures can be obtained through conventional microfabrication methods including photolithography, electron-beam lithography, femtosecond laser lithography, nanoimprint li...
Electrohydrodynamic printing (EHDP), based on the electrohydrodynamically induced flow of materials, enables the production of micro/nanoscale fibers or droplets and has recently attracted extensive interest to fabricate user-specific patterns in a controlled and high-efficiency manner. However, most of the existing EHDP techniques can only print t...