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Quantum machine learning is at the crossroads of two of the most exciting current
areas of research: quantum computing and classical machine learning. It explores the
interaction between quantum computing and machine Learning, investigating how re-
sults and techniques from one field can be used to solve the problems of the other.
With an ever-growing amount of data, current machine learning systems are rapidly
approaching the limits of classical computational models. In this sense, quantum com-
putational power can offer advantage in such machine learning tasks. The field of
quantum machine learning explores how to devise and implement quantum software
that could enable machine learning that is faster than that of classical computers.
Fuelled by increasing computing power and algorithmic advances, machine learning
techniques have become powerful tools for finding patterns in data. Quantum systems
produce atypical patterns that classical systems are thought not to produce efficiently,
so it is reasonable to postulate that quantum computers may outperform classical com-
puters on machine learning tasks. Here, we review the previous literature on quantum
machine learning and provide the current status of it.
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I. INTRODUCTION

Everyday experience in our life makes up our classical
understanding, however it’s not the ultimate underlying
mechanism of the nature. Our surrounding is just the
emergence of the underlying and more basic mechanics
known as quantum mechanics. Quantum phenomenons
doesn’t match with our everyday intuition. In fact, for
a very long time in history of science and human under-
standing this underlying mechanics was hidden from us.
It is only in the last century we came to observe this as-
pect of the nature. As the research progressed, we devel-
oped theories and mathematical tools from our renowned
scientists. Quantum theory being a probabilistic theory
attracts a lot of philosophical debates with it. Many
quantum phenomenon such as collapse of wave function,
quantum tunnelling, quantum superposition etc still fas-
cinate us. The true quantum nature of reality is still
a mystery to our understanding. Quantum technologies
aim to use these physical laws to our technological ad-
vantage. It is in the last 10 to 20 years the applications
based on quantum mechanical laws have improved leaps
and bound with the aim to replace or go parallel to the
classical machines.

Today quantum technologies have three main special-
izations: quantum computing, quantum information and
quantum cryptography. The power of quantum computa-
tion comes from the expansive permutations which make
quantum computers twice as memory-full with the addi-
tion of each qubit. To specify N bits classical bits system
we need to have N bits of binary numbers. Now, we know
in quantum systems the two possible definite states are
|0〉 and |1〉. A general state of a bipartite quantum system
can be represented as Φ = α |00〉+β |01〉+γ |10〉+δ |11〉,
we can easily see that from a two-qubit quantum sys-
tem we get four classical bits of information (α, β, γ,
δ). Similarly, from N-qubit quantum system we can get
2N bits of classical information. A mathematical model
of computation that conceptually defines the aspect of a
machine and is in turn capable of manipulating symbols
on a strip of tape with given set of rules can be defined
as a Turing machine. Quantum computers are univer-
sal Turing machines. Quantum mechanics allows super-
position of quantum states resulting in quantum paral-
lelism which can be exploited to perform probabilistic
tasks much faster than any classical means.

Quantum computers are known to solve problems
which can not be solved using a classical computer. One
such example includes factorization of large numbers us-
ing Shor’s algorithm1. Moreover, if classical and quan-

tum computers are simultaneously utilised for the same
purpose, cases can exist in which quantum algorithms
prove to be more efficient. These algorithms belong to a
particular complexity class called BQP (Bounded-error
Quantum Polynomial time)2. Another difficult prob-
lem in classical computation model, that is solving the
Pell’s equation, is efficiently solvable in quantum com-
putation model. Similarly, the Non-Abelian hidden sub-
group problem can be efficiently solved using quantum
algorithm2. Quantum computers have shown remark-
able improvements in the field of optimization and simu-
lation. It includes computing the properties of partition
functions, performing approximate optimization and sim-
ulating different quantum systems. Quantum simulations
have applications in the field of quantum optics and con-
densed matter physics as well3.

“Give machines the ability to learn without explicitly
programming them” - Arthur Samuel, 1955. The idea
of machine learning can be derived from this statement.
Briefly, an algorithm which holds the capacity to analyze
a huge amount of data, make a pattern out of it and
predict the future outcomes can be termed as a machine
learning algorithm. Machine learning is based on min-
imizing a constrained multivariate function, and these
algorithms are at the core of data mining and data vi-
sualization techniques. The result of the optimization
is a decision function that maps input points to output
points. While this view on machine learning is simplis-
tic, and exceptions are countless, some form of optimiza-
tion is always central to learning theory. Applications of
such algorithms lead to artificial intelligence. Classically,
there are three types of methods in machine learning - 1.
Supervised Machine Learning4 where we teach machines
to work on the basis of data which are already labelled
with some of these’ characteristics, 2. Unsupervised Ma-
chine Learning5 where no labelled data is provided to
machines, they analyse these data on the basis of simi-
larities and dissimilarities of their classes, 3. Reinforce-
ment Learning6 where machines analyse our feedbacks
and learn. In quantum machine learning, the most com-
mon supervised machine learning algorithm is Quantum
Support Vector Machine7 where in higher dimension vec-
tor space optimisation boundary is used to classify the
classes of labelled data, Principal Components Analysis8

is one of the most common algorithm. It makes a pat-
tern of huge not-labelled data and effectively reduce it to
make it easier for further analysis, this is essentially the
quantum counterpart of Unsupervised Machine Learning.

Quantum computing also servers useful for financial
modelling9. The randomness that is inherent to quan-
tum computers is analogous to the stochastic nature of
financial markets10. Today classical computers conduct
high frequency stock exchange worth millions of dollars
every second. The power of quantum computers can be
used to solve such systems. Weather forecasting has been
a long goal for scientists, however predicting weather
conditions requires to take into account an enormously
large number of variables causing classical simulations to
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be unreasonably lengthy. With their parallel computing
power, quantum computers can be used to create better
climate models. Various difficulties arise when we try to
model complex molecules in classical computers. Chem-
ical reactions are quantum in nature as they form highly
entangled quantum superposition states11. Such states
can be modeled accurately with the help of a quantum
computer.

Yet another fascinating specialization in the field of
quantum technologies is quantum cryptography. Quan-
tum cryptography can be defined as utilization of quan-
tum mechanical properties in order to carry out crypto-
graphic tasks. Publication of Wiesner’s paper in 1983
led to the origination of this field. A well known exam-
ple of quantum cryptography is quantum key distribution
(QKD). In 1984, thanks to Bennett and Brassard, it was
possible to obtain a complete protocol of extremely se-
cure quantum key distribution. It is currently known to
be the BB84 protocol12. This protocol drew significant
amount of attention from the cryptographic community
as such security was unattainable by classical means13.

In this paper, we aim to give the brief description of
Quantum Machine Learning and it’s correlation with AI
to unleash the future scope and application of these in
human life. We will see how the quantum counterpart
of machine learning is way faster and more efficient than
the classical machine learning. In the following section,
we describe the basic fundamentals of classical machine
learning and it’s methods. Detailed discussion regard-
ing ways by which a machine can learn has also been
described in this section. In section III, aspects of clas-
sical machine learning which can be understood and ap-
plied to the quantum domain and it’s implementation
have been discussed in detail. Furthermore, sub-section
on quantum neural networks covers general introduction
to neural networks and variants as they stand in deep
learning, background work which has already been pro-
cessed on quantum neural networks, quantum neuron,
and quantum convolutional neural network as a mark
of deep learning’s transition to quantum computers. In
section IV, we discuss in detail about how learning and
renormalization procedures invite the application of ma-
chine learning. Machine learning derives patterns from
data in order to make sense of previously unknown in-
puts. Machine learning techniques become useful when
unknown features yet to be discovered are far too com-
plex for standard numerical modelling methods. In sec-
tion V, we discuss in detail about quantum HHL algo-
rithm’s much needed importance in solving linear sys-
tems. It is known to be a revolutionary algorithm that
attempts to estimate solutions of linear systems of equa-
tions in logarithmic time. It is applicable as a subrou-
tine in several quantum machine learning algorithms. As
we know, data classification is one of the most impor-
tant tools of machine learning today, we discuss in detail
in section VI about quantum support vector machine.
Quantum support vector machines are data classification
algorithms that allow classification of data into one of

two different categories. This can be done by drawing
a hyperplane between our training data. This helps in
identification of data which belongs to a specific cate-
gory. After this, we can enter our data to be classified
and get our result based on it’s position relative to the
hyperplane. Many quantum SVM algorithms exist today
and quantum SVMs have been experimentally tested and
turned out to be successful. In the next section, i.e. sec-
tion VII, we discuss in detail about quantum classifiers
and it’s recent developments. A quantum computing al-
gorithm which analyzes quantum states of existing data
in order to determine or categorize new data to respective
classes is known to be a quantum classifier. Approaches
in quantum classifiers have been discussed in explicit de-
tail in this section. In section VIII, an overview of ap-
plications of quantum machine learning to physics have
been discussed. Machine learning methods can efficiently
be used in vivid quantum information processing prob-
lems which include quantum signal processing, quantum
metrology, quantum control etc. The following section
i.e. IX, we firstly cover basics how machine learning can
be applied to the idea of quantum artificial intelligence.
This section covers two to three AI simulations and ex-
plores whether these simulations can be quantized. It
explores the possibility of relating quantum computing
to artificial intelligence. Lastly, it cites some new de-
velopments in the field of quantum artificial intelligence.
Section X covers some examples on how entangled-state
helps ML to be more accurate, efficient and sensitive.
On the other hand machine learning also can be used to
measure how entangled a state is, so both can be used
to make each other better and more efficient than before.
Section XI describes the motivation of quantum neural
networks through classical neural networks. Background
work in quantum neural networks has also been discussed
in detail. We then put forth the concept of quantum neu-
ron which is then followed by the comprehensive discus-
sion of quantum convolutional neural networks. Section
XII reports the use of artificial neural networks to solve
many body quantum systems. This happens to be the
one of the most challenging area of quantum physics.
Recent use of neural networks for variational representa-
tion of quantum many body states has initiated a huge
attentiveness in this field. Since neural networks assist
in representation of quantum states efficiently, question
of whether or not simulation of various quantum algo-
rithms is possible has been addressed in section XIII.
In the next section, i.e. XIV, we report in detail about
how quantum machine learning algorithms can be imple-
mented on quantum computers with the help of quantum
gates. Recent developments in this area of research have
been discussed as well. The last section narrates the use
of machine learning frameworks, especially RBM (Re-
stricted Boltzmann Machine) networks to represent the
quantum many body wave functions. The possibility of
using neural networks to study quantum algorithms and
the recent developments in this direction are discussed
briefly, thus giving a proper conclusion and a futuristic
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vision.

II. CLASSICAL MACHINE LEARNING

In this section, we would like to discuss basic ma-
chine learning types and models to set context for var-
ious methods by which machines learn. Broadly, a ma-
chine can learn by two methods- learning from data and
learning by interaction. We discuss both the learning
methods in detail in subsection II A. After this, we dis-
cuss most widely used machine learning models that im-
plement the fore mentioned learning types in subsection
II B. Machine learning algorithms were built decades ago,
when fast computation was a difficult task. Nowadays,
with increased computational capabilities, implementing
these algorithms successfully is a fairly achievable task.
A certain characterisation on basis of ease or difficulty in
implementation and computational resources required for
implementation, can be done for ML algorithms. This is
discussed under subsection II C i-e Computational learn-
ing theory.

A. How does a machine learn? - Learning from
data and learning from interaction

Machine learning has mainly 3 canonical categories
of learning- supervised, unsupervised and reinforcement
learning. Fundamentally, supervised and supervised
learning are based on data analysis and data mining
tasks. Whereas reinforcement learning is an interaction
based learning where learning enhances sequentially at
every step. We discuss each learning type in following
sections.

1. Supervised learning

In supervised learning, we are provided with a training
set D which contains a number of input output pairs
(x, t). The input x could be in general an n-dimensional
vector. The primary aim is to infer relationship between
the inputs and outputs and predict the output for yet
unobserved input values. We want to be able to predict
the output t̂(x) for any input x.

A potent example of this is spam classifier. Based on a
training set of emails classified as spam or not-spam, the
classifier labels future emails as either spam or not-spam.

To characterize the quality of the prediction made, a
loss function is used. Depending on the context, a variety
of loss functions can be used which quantify how far the
prediction t̂(x) has been from the actual output t(x). The
goal is to minimize this loss function f(t̂(x), t(x))

Predicting the probability distribution function p(x, t),
is a three step process:

1. Model Selection: We take the probability dis-
tribution function to be from a family of functions

parameterized by some vector Θ. This is also called
inductive bias. There are mainly two ways speci-
fying a particular parametric family of distribution
functions. In generative models what we specify
is the family of point distributions p(x, t|θ) while
for discriminative models, we directly parameterize
the predictive distribution p(t|x, θ

2. Learning: The second step is learning where given
a training set D, we optimize a learning parameter
(here, the loss function f(t̂(x), t(x). Thus we find
out the parameter θ and by extension the distribu-
tion from the family of distribution parameterized
by Θ.

3. Inference: The third and the final step is infer-
ence. Here the learned model is used to predict
the output t̂(x) in line with minimizing the loss
parameter. Had we used generative model in step
1, we would need to use marginalisation to get to
the actual predictive distribution p(t|x) while the
discriminative model would directly yield the pre-
dictive distribution.

2. Unsupervised Learning

Unlike supervised learning, here we do not have la-
belled data points. The training set D contains a set of
inputs {x}. Thus we only have the input data points.
The general goal of the process is to extract useful prop-
erties from this data. We are interested in the following
tasks:

1. Density estimation: Based on the training set,
here we directly try to estimate the probability dis-
tribution p(x).

2. Clustering: We could want to segregate the data
in various clusters based on their similarities and
differences. Here, the notion of what similarity is
and what difference is is dependent on the case
at hand and the particular domain in which you
are working. Thus, even though the input data
set was not endowed with any labels or classifica-
tions, through clustering we readily partition the
data points into groups.

3. Dimensionality Reduction The process involves
representing the data point xn in a different spaces
thus being better able to visualize the correlations
between various factors. This representation is gen-
erally done in a space of lower dimensions that bet-
ter helps in extracting the relationship between the
various components.

4. Generation of new samples: Given the data
set D we could want to generate new samples that
would follow the probability distribution of the
training data approximately. A relevant example
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is how sports scientists predict the actions of ath-
letes using the same.

Just as was the case for supervised learning, here too
it is a three step process: Model selection, learning, and
using the learned model for clustering or generation of
new samples.

3. Reinforcement Learning

Reinforcement Learning includes making sequential
decisions in order to optimize some parameter. It differs
from Supervised learning in that, supervised learning in-
cluded a training set D with input-output pairs where
the output is the “correct” answer or the correct charac-
terization of the input. In case of reinforcement learning,
sub-optimal paths taken by the algorithms need not be
corrected immediately. Reinforcement learning could be
seen as the middle ground between supervised and un-
supervised learning as there does not exist immediate
correct output to the input but there exists some sort of
supervision in terms of if the series of steps taken are in
the right direction or not.

The reinforcement algorithm receives feedback from
the environment in place of a desired output for each in-
put. And, this happens only after the algorithm has cho-
sen an output for the given input. The feedback tells the
algorithm about how well the chosen steps have helped
or harmed in fulfilling the goals. The environment with
which the algorithm interacts is formulated as Markov
Decision Process.

B. Machine learning models

1. Artificial Neural Networks

Artificial Neural Networks are class of models inspired
by the biological neural network. Broadly, they mimic
the workings of the natural neural network. Just as is
required for a certain excitation for a natural neutron to
fire and the series of neurons firing determine the action
that is to be taken, for artificial neural networks too,
the system abides by the same set of rules at a broader
level. Dependent on the particular type of problem we
are facing, different types of neural network models are
used. A general architecture of a neural network could
be understood in terms of layers of neurons which fire
according to the firing of the neurons in the previous
layer.

Feedforward Neural Networks are used as classi-
fiers. If one wanted to map any input x to an output
category y, one could define a function y = f(x; θ) and
learns the value of the parameter θ that results in the
best function approximation. The nomenclature is de-
rived from the fact that the signal flows in only one di-
rection. Given a particular set of input at the first layer

of neurons, the neurons in the subsequent layers fire to
provide the classification.

Convolutional Neural Network is mostly used to
classify images. Here, there is a vector of weights and
biases which determines the output value given the in-
puts. There are multiple hidden layers between the input
and the output layers. There is also an activation func-
tion (commonly taken to be RELU Layer) and is followed
by subsequent pooling layers. The nomenclature derives
from the fact that convolution operation is performed
using a kernel. There could also be back propagation to
optimize how the weights are distributed.

Recurrent Neural Networks are a type of neural
network where the input to the current step is the
output of the previous step. Predictive text is the
one of the most user-known application of these. To
predict the next word, the algorithm needs to store the
previous word. RNNs turn the independent activation
into dependent activation by making the weights and
biases uniform across different layers.

Implementation of the Artificial Neural Net-
work

The neural network design consists of the input layer,
output layer, and the hidden layers. The input dataset
is converted into an array of input to be fed into the net-
work. Each input set comes with label value. Once it is
fed to the network, the network is trained to determine
the output label function of the fed dataset. The devia-
tion from the true label value gives the error. the training
parameter is thus, determined which corresponds to the
minimum error.
The basic neural network operates with the help of three
processes- forward propagation, backward propagation
and updating the weight associated with the neuron. A
neuron in any m layer receives the input from the (m-
1) layer and conveys the output to the (m+1) layer.
The value obtained with multiplying the input param-
eter with the weighted vector is fed to the neurons. In
the input layer, a bias is also given.
Forward Propagation employs the methods of preactiva-
tion and activation. Preactivation involves feeding the
network with weighted inputs. It is the linear transfor-
mation of the inputs which decides on the further pass-
ing of the input through the network. Activation22 is the
non-linear transformation of the weighted inputs.
Backpropagation serves the most important step in the
operation of a neural network. When the deviation of
the obtained label value from the true label value is cal-
culated , backpropagation helps in minimizing the error
value. The training parameter is updated through each
iteration until the error value is minimised. In backprop-
agation , we travel from the output layer to the input
layer. It functions by employing the basic types of gradi-
ent descent algorithms to optimise the function.After for-
ward propagation of any input through a neuron with re-
spect to an assumed weight, the error is calculated. The
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weight with respect to the neuron corresponding to the
error is then updated and the error function is changed.
Similarly, weight of every neuron is updated while back
propagating from output to input layer. Thus, the final
training parameter is obtained. The analysis of the er-
ror value with the corresponding training parameter over
each iteration, presents the method in which the function
of the neural network is implemented for performing dif-
ferent algorithms.Thus, the network is trained.

2. Support Vector Machines for Supervised Learning

Support Vector Machine (SVM) was first coined in
1992, by Boser, Guyon, and Vapnik in COLT-92. Sup-
port Vector Machines (SVMs) are a set of related su-
pervised learning methods used for classification ADN
regression. They belong to a family of generalized linear
classifiers. In layman’s term Support Vector Machine
(SVM) is a classification and regression prediction tool
that uses machine learning theory to maximize predic-
tive accuracy while automatically avoiding over-fit to the
data.Support Vector machines can be defined as systems
which use hypothesis space of a linear functions in a high
dimensional feature space, trained with a learning algo-
rithm from optimization theory that implements a learn-
ing bias derived from statistical learning theory.

A potent example of SVM is handwriting recognition.
Using pixel maps as input; it gives accuracy comparable
to sophisticated neural networks with elaborated features
in a handwriting recognition task . It is also being used
for many applications, such as hand writing analysis, face
analysis and so forth, especially for pattern classification
and regression based applications. It has become popular
due to many promising features such as better empirical
performance.

The formulation uses the Structural Risk Minimiza-
tion (SRM) principle, which has been shown to be supe-
rior, to traditional Empirical Risk Minimization (ERM)
principle, used by conventional neural networks. SRM
minimizes an upper bound on the expected risk, where
as ERM minimizes the error on the training data. It
is this difference which equips SVM with a greater abil-
ity to generalize, which is the goal in statistical learning.
SVMs were developed to solve the classification problem,
but recently they have been extended to solve regression
problems

Why SVM?: Firstly working with neural networks for
supervised and unsupervised learning showed good re-
sults while used for such learning applications. MLP’s
uses feed forward and recurrent networks. Multilayer
perceptron (MLP) properties include universal approx-
imation of continuous nonlinear functions and include
learning with input-output patterns and also involve ad-
vanced network architectures with multiple inputs and
outputs. There can be some issues noticed. Some of
them are having many local minima and also finding how
many neurons might be needed for a task is another is-

sue which determines whether optimality of that NN is
reached. Another thing to note is that even if the neural
network solutions used tends to converge, this may not
result in a unique solution.

C. Computational Learning Theory

Given the number of machine learning algorithms
available, there arises a need to characterise the capabili-
ties of these machine learning algorithms. It is natural to
wonder if we can classify machine learning problems as
inherently difficult or easy14. With this come the obvious
questions about quantifying a ’suitable’ or ’successful’
machine learning algorithm for various classes of prob-
lems. The success of a machine learning algorithm can
depend upon several parameters like sample complexity,
computational complexity, mistake bound etc. Computa-
tional learning theory or COLT is a sub-field of artificial
intelligence devoted to studying the design and analysis
of machine learning algorithms.COLT investigates theo-
retical limits on learning algorithms for various classes of
learning scenarios15. Thus in a typical COLT, one math-
ematically specifies an environment or problem and char-
acterises performance of an optimal learning algorithm14.
To study the aspects of COLT, we consider the probably
approximately correct learning model or more colloqui-
ally called the PAC model.

The basic PAC learning model16 introduced by Valiant
can quantify learnability. We consider the case of learn-
ing Boolean valued concepts from training data. Con-
sider the set of all possible instances over which target
functions can be defined. Let this set be X. Let C be
some set of target concepts our learner L has to learn. C
is essentially a subset of X. The instances in X are gen-
erated at random according to probability distribution
D. The learner L learns from target concepts in C and
considers some set H of possible hypotheses describable
by conjunctions of n attributes that define elements in X.
After learner L learns from a sequence of training exam-
ples of target concept c in C, L outputs some hypothesis
h from H which is L’s estimate of c. Output hypothesis h
is only an approximation of actual target concept c. The
error in approximation or true error of hypothesis h with
respect to concept c, denoted by errorD(h), is the prob-
ability that h will misclassify an instance drawn from D
at random. We aim to identify classes of target concepts
that can be reliably learned from a reasonable number
of training examples. Ideally for a sufficient number of
training examples, we require errorD(h) to be 0. This
assumption is practically impossible owing because mul-
tiple consistent hypotheses may exist for c and there is
always a non-zero finite probability that a training ex-
ample may be misleading for the learner. Therefore, in
practical scenario we focus on minimising errorD(h) and
limiting the number of training examples required.

For some class C of target concepts learned by learner
L using hypothesis space H, let δ be an arbitrarily small



7

constant bounding the probability of failure or the prob-
ability of misclassifying c. Also let ε denote an arbitrar-
ily small constant bounding the upper limit of errorD(h)
such that errorD(h) is less than ε. C is said to be PAC
learnable by L using H if for all c belonging to C, distri-
butions D over X, ε such that 0 < ε < 1

2 and δ such

that 0 < δ < 1
2 , learner L with probability at-least

(1−δ will output a hypothesis h belonging to H such that
errorD(h) is less than ε, in time that is polynomial in 1

ε ,
1
δ , n and size(c)14. Thus, for a PAC learnable concept,
L must learn from a polynomial number of training ex-
amples.Here we defined PAC learnability of conjunctions
of Boolean literals. PAC learnability can be defined for
other concept classes too.

PAC learnability greatly depends upon number of
training examples required by the learner. Sample com-
plexity of the problem is growth in number of training
examples with problem size. Mathematical formulations
for sample complexity for finite and infinite hypotheses
spaces are available.Generally the sample complexity of
infinite hypotheses spaces is illustrated by the Vapnik-
Chervoneniks dimension17. Collectively, PAC learnabil-
ity and bounds of sample complexity relate to compu-
tational complexity. Number of training examples from
which learner learns in polynomial time of PAC learn-
able bounds defines a finite time per training example.
Here comes the need of handling enormous data in least
possible time.

III. QUANTUM MACHINE LEARNING

Training the machine to learn from the algorithms im-
plemented to handle data is the core of machine learn-
ing. This field of computer science and statistics employs
artificial intelligence and computational statistics. The
classical machine learning method, through its subsets
of deep learning (supervised and unsupervised) helps to
classify images, recognise pattern and speech, handle big
data and many more. Due to this reason classical ma-
chine learning received lot of attention and investments
from the industry. Nowadays, due to the huge quantities
of data with which we deal every day, new approaches are
needed to automatically manage, organize and classify
these data. Classical machine learning, which is a flexi-
ble and adaptable procedure, can recognize patterns effi-
ciently, but some of these problems can not be efficiently
solved by these algorithms. The companies whose labour
consists in big databases management are aware of these
limitations, and are very interested in new approaches to
accomplish this. They have found in quantum machine
learning one of these approaches.

However, the interest to implement these techniques
through quantum computation paves the way to quan-
tum machine learning. Quantum machine learning21

aims to implement machine learning algorithms in
quantum systems, by using the quantum properties
such as superposition and entanglement to solve these

problems efficiently. Quantum computers use the several
superposition states |0〉 and |1〉 to allow any computation
procedure at the same time. This gives an edge over the
classical machine learning technique in terms of speed of
functioning and data handling. In the quantum machine
learning techniques we develop quantum algorithms
to operate the classical algorithms with the use of
a quantum computer. Thus, data can be classified,
sorted and analysed using the quantum algorithms of
supervised and unsupervised learning methods. These
methods are again implemented through models of a
quantum neural network or support vector machine.

A. Implementation of quantum machine learning
algorithms

In implementation of algorithms , we broadly discuss
the process of the two major learning processes -
supervised and unsupervised learning18. The pattern is
learned observing the given set of training examples in
case of supervised learning. While finding the structure
from some clustered data set is done in unsupervised
learning.

Quantum clustering technique18 uses the quantum
Lloyd’s algorithm to solve the k-means clustering
problem. It basically uses repetitive procedure to
obtain the distance of centroid of the cluster. The basic
methods involve choosing randomly an initial centroid
and assigning every vector to the cluster with closest
mean. Repetitive calculation and updating the centroid
of the cluster should be done till the stationary value
is obtained. The quantum algorithm speeds up the
process in comparision to the classical algorithm. For an
N-dimensional space, it demands O(Mlog(MN)) time to
run step for quantum algorithm.

Quantum Neural Network19 model is the tech-
nique of deep supervised learning to train the machine
to classify data, recognise patterns or images. It is a
feed forward network. The basic principle is to design
the circuits with qubits and rotation gates to operate
the network analogous to the neurons and weights as
used in a classical neural network. The network learns
from a set of training examples. Every input string
comes with a label value. The function of the network is
to obtain the label value of the data set and minimise
the deviation of the obtained label from the true label.
The focus is to obtain the training parameter that gives
the minimum error. The training parameter is updated
through every iteration. Error minimisation is done
by the backpropagation technique, which is based on
gradient descent principle.

Quantum Decision Tree20 employs quantum states
to create the classifiers in machine learning. Decision
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trees generally consist of one starting node with outgoing
edges but no incoming edges,i.e, the root, which leads
to several other leaves. In these structure he answer to
a question is classified as we move down . The node
contains a decision function which decides the direction
of movement of the input vector along the branches and
leaves. The quantum decision tree learns from a set of
training data. In the quantum decision tree, each node
basically splits the training data set into subsets based
on discrete function. The leaf is assigned to a class
based on the target attribute state. Thus, the quantum
decision tree classifies the data from the root to the final
required leaf.

Quantum machine learning provides huge scope in
computing the techniques done in classical machine
learning on a quantum computer. The entanglement and
superposition of the basic qubit states provides an edge
over classical macjine learning. Apart from neural net-
works, clustering methods , decision trees, quantum ma-
chine algorithms have been proposed for several other ap-
plications of image and pattern classification, and data
handling. Further implications of the algorithms has
been discussed in the paper.

IV. APPLICATION OF MACHINE LEARNING
FOR LEARNING PROCEDURE AND
RENORMALIZATION PROCEDURE

Machine learning derives patterns from data in order to
make sense of previously unknown inputs.Machine learn-
ing techniques become useful when unknown features yet
to be discovered are far too complex for standard numeri-
cal modelling methods.Recent progress in the field of ma-
chine learning has shown significant promise in applying
ML tools like classification or pattern recognition to iden-
tify phases of matter or non-linear approximation of ar-
bitrary functions using neural networks.Machine-learning
technology powers many aspects of modern society: from
web searches to content filtering on social networks to
recommendations on e-commerce websites, and it is in-
creasingly present in consumer products such as cameras
and smartphones. Machine-learning systems are used to
identify objects in images, transcribe speech into text,
match news items, posts or products with users’ interests,
and select relevant results of search.Increasingly, these
applications make use of a class of techniques called deep
learning.

The renormalization group (RG) approach has been
one of the conceptually most profound tools of theoret-
ical physics since its inception. It underlies the seminal
work on critical phenomena, and the discovery of asymp-
totic freedom in quantum chromodynamics, and of the
Kosterlitz–Thouless phase transition. The RG is not a
monolith, but rather a conceptual framework comprising
different techniques: real-space RG, functional RG and
density matrix RG, among others. While all of those

schemes differ quite substantially in their details, style
and applicability, there is an underlying physical intu-
ition that encompasses all of them—the essence of RG
lies in identifying the ‘relevant’ degrees of freedom and
integrating out the ‘irrelevant’ ones iteratively, thereby
arriving at a universal, low-energy effective theory. How-
ever potent the RG idea, those relevant degrees of free-
dom need to be identified first those universal proper-
ties, largely determining their physical characteristics,
are revealed by the powerful renormalization group (RG)
procedure, which systematically retains ‘slow’ degrees of
freedom and integrates out the rest. However, the im-
portant degrees of freedom may be difficult to identify.
Consider a feature map which transforms the any data
X to a different, more coarse grain scale

x→ φλ(x) (1)

The RG theory requires that the Free Energy F(x)
is scaled, to reflect that the free Energy is both Size-
Extensive and Scale Invariant near a Critical Point.The
Fundamental Renormalization Group Equation(RGE) :-

F(x) = g(x) +
1

λ
F(φλ(x)) (2)

V. QUANTUM HHL ALGORITHM

A quantum algorithm for solving linear systems of
equations was put forward by Aram Harrow, Avinatan
Hassidim, and Seth Lloyd in 200923. More specifically,
the algorithm can estimate the result of a scalar measure-
ment on the solution vector b to a given linear system of
equations Ax = b. In this context, A is a N × N Her-
mitian matrix with a spectral norm bounded by 1 and a
finite condition number κ = |λmax/λmin|.

The HHL algorithm can be efficiently implemented
only when the matrix A is sparse (at most poly(logN)
entries per row) and well-conditioned (that is, its singu-
lar values lie between 1/κ and 1). We also emphasize
the term “scalar measurement” here: the solution vec-
tor x produced by the HHL subroutine is actually (ap-
proximately) encoded in a quantum state |x̃〉 of dlog2Ne
qubits and it cannot be directly read out; in one run of
the algorithm we can at most determine some statistical
properties of |x〉 by measuring it in some basis or rather
sampling using some quantum mechanical operator M
i.e. 〈x̃|M |x̃〉. Even determining a specific entry of the
solution vector would take approximately N iterations of
the algorithm.

Furthermore, the HHL requires a quantum RAM (in
theory): that is, a memory which can create the superpo-
sition state |b〉 (encoded b) all at once, from the entries
{bi} of b without using parallel processing elements for
each individual entry. Only if all these conditions are sat-
isfied, the HHL runs in the claimed O(logNs2κ2/ε) time,
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FIG. 1. HHL Algorithm Schematic: (a) Phase estimation (b)

R(λ̃−1) rotation (c) Uncomputation

where s is the sparsity parameter of the matrix A (i.e.
the maximum number of non-zero elements in a row) and
ε is the desired error.24,25

Given all these restrictions, at first sight the algorithm
might not seem to be too useful; however, it is important
to understand the context here. The HHL is primarily
used as a subroutine in other algorithms and not meant
as an independent algorithm for solving systems of linear
equations in logarithmic time. In other words, the HHL
is suitable for application in special circumstances where
|b〉 can be prepared efficiently, the unitary evolution e−iAt

can be applied in a reasonable time frame and when only
some observables of the solution vector x is desired rather
than all its elements. The 2013 paper by Clader et al.26

is a concrete demonstration of such an use case of the
HHL with a very real world application i.e., calculation of
electromagnetic scattering cross-sections of any arbitrary
target faster than any classical algorithm.

The HHL algorithm comprises of three steps: phase
estimation, controlled rotation and uncomputa-
tion27,28.

For the first step of the algorithm, let A =∑
j λj |uj〉 〈uj |. Considering the case when the input

state is one of the eigenvectors of A, |b〉 = |uj〉. Given a
unitary operator U with eigenstates |uj〉 and correspond-
ing complex eigenvalues eiφj , the technique of quantum
phase estimation allows for the following mapping to be
implemented:

|0〉 |uj〉 → |φ̃〉 |uj〉 (3)

Here, φ̃ is the binary representation of φ to a certain
precision. In the case of a Hermitian matrix A, with
eigenstates |uj〉 and corresponding eigenvalues λj , the
matrix eiAt is unitary, with eigenvalues eiλjt and eigen-
states |uj〉. Therefore the technique of phase estimation
can be applied to the matrix eiAt in order to implement
the mapping

|0〉 |uj〉 → |λ̃j〉 |uj〉 (4)

where λj is the binary representation of λj .
In the second step of the algorithm, a controlled rota-

tion conditioned on |λj〉 is implemented. For this pur-
pose, a third ancilla register is added to the system in
state |0〉, and performing the controlled Pauli-Y rotation

produces a normalized state of the form√
1− C2

λ̃2j
|λ̃j〉 |uj〉 |0〉+

C

λ̃j
|λ̃j〉 |uj〉 |1〉 (5)

where C is the normalization constant. This can be done
by applying the operator

e−iθσy =

(
cos θ − sin θ
sin θ cos θ

)
(6)

where θ = tan−1(C/λ̃).
Since by definition A =

∑
j λj |uj〉 〈uj |, therefore

A−1 =
∑
j(1/λj) |uj〉 〈uj |. We assume that we are given

a quantum state |b〉 =
∑
i bi |i〉. This state can be ex-

pressed in the eigen basis |uj〉 of operator A, such that
|b〉 =

∑
j βj |uj〉. Using the above procedure on this su-

perposition state, we get the state

N∑
j=1

βj |λ̃j〉 |uj〉
(√

1− C2

λ̃2j
|0〉+

C

λ̃j
|1〉
)
. (7)

We uncompute the first register, giving us

|0〉 ⊗
N∑
j=1

βj |uj〉
(√

1− C2

λ̃2j
|0〉+

C

λ̃j
|1〉
)
. (8)

It is to be noted that, A−1 |b〉 =
∑N
j=1

βj

λ̃j
|uj〉. Thus, a

quantum state close to |x〉 = A−1 |b〉 can be constructed
in the second register by measuring the third register and
post selecting on the outcome ’1’, modulo the constant
factor of normalization C. Amplitude amplification can
be used at this step instead of simply measuring and
postselecting to boost the success probability.

Notably, Tang’s 2018 thesis titled A quantum-inspired
classical algorithm for recommendation systems29 essen-
tially demonstrated that solutions based on the HHL for
several linear algebra problems, which were earlier be-
lieved to have no equivalent to HHL in terms of time
complexity, can be dequantized and solved with equally
fast classical algorithms. Furthermore, the only caveat
for Tang’s algorithm is the allowance of sample and query
access, and that is far more reasonable than efficient state
preparation as demanded by the HHL. However, this
doesn’t imply the HHL has been rendered obsolete; we
must be careful to note that Tang’s algorithm is specif-
ically aimed at low- dimensional matrices whereas the
original HHL was meant for sparse matrices, albeit quan-
tum machine learning for low-dimensional problems are
the most practical algorithms in the literature as of now.
Nevertheless, generation of arbitrary quantum evolutions
for state preparation remains as hard as ever30–34.

VI. QUANTUM SUPPORT VECTOR MACHINE

Data classification is one of the most important tools
of machine learning today. It can used to identify,
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group and study new data. These Machines learning
Classification tools have been used in Computer Vi-
sion Problems35, medical imaging36,37, drug discovery38,
Handwriting Recognition39, Geostatistics40 and many
other fields. Classification tools have machines idenify
data and therefore know how to react to a particular
data. In machine learning one of the most common meth-
ods of data classification using is using Support Vector
Machines (SVM). A SVM is particularly useful because
it allows us to classify data into one of two categories
by giving in an input set of training data by drawing a
hyperplane between the two categories. Quantum SVM
machines have been recreated both theoretically7 and
experimentally41. These machines use qubits instead of
classical bits to solve our problems. Many such quantum
SVM42–44 and quantum inspired SVM45,46 algorithms
have been developed.

In a support vector machine, in general, we
shall have our training data of n points given as
{~x1, y1},{~x2, y2}.........{~xn, yn} according to the form
{{~xi, yi} : ~xi ∈ RN , yi = ±1}i=1,2,....,n where ~xi indi-
cated the location of the point in the space RN and yi
classifies the data as either +1 or -1 as to indicate the
class to which it belongs. One of the simplest ways to
divide such a data (if it is linearly separable) is by using
any plane that satisfies the equation.

~w.~xi − b = 0 (9)

Here ~w is a vector normal to the hyperplane and b
|~w| is

the offset from the origin. In general it’s sometimes pos-
sible that many planes satisfy this equation so to draw a
hard margin SVM where we try to construct two parallel
hyperplanes with a maximum possible distance of 2

|~w| in

between. The construction of these hyperplanes is done
so that ~w.~xi − b > 1 for yi = 1 and ~w.~xi − b 6 1 for
yi = -1. We can write this as yi(~w.~xi − b) > 1. This
hyperplane clearly discriminates between out two types
of data points.

While data often can be classified into two sets using
the aforementioned method, often the data is nonlinear
and method cannot be used. The common method to
solve such problems is using the kernel trick where the
problem is brought to a higher dimension where a hyper-
plane can be easily used to solve the issue. To do this we
need use Lagrangian multipliers (α = (α1, α2, .......αn))
and solve the dual formulation for optimization. Hence
we can use the formula get our solution

max

(
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiyiαjyjKij

)
(10)

where Kij is the kernel matrix and the dot product of
the space given as Kij = ~xi.~xj subject to the constraints∑n
i=1 αiyi = 0 and αiyi > 0 hence the decision function

of the hyperplane becomes

f(x) = sgn

(
n∑
i=1

αiyiK(xi, x) + b

)
(11)

FIG. 2. Maximum margin hyperplane for a SVM.

where we can write w =
∑n
i=1 αiyi.xi. Hence even

non-linear problem can be solved using a SVM. But
sometimes the number of dimensions needed to solve a
problem inadvertently turn extremely high. This leads
what can be called as the Curse of Dimensionality where
we have increased complexity and over-fitting due to an
increasing sparse matrix defining the location of data
points. This is where the quantum SVMs become impor-
tant. While problems in higher dimensions are extremely
tedious to solve using classical computers the exponen-
tial speedup observed in quantum computers by using
the quantum SVM algorithms very effectively sorts our
data.

But to solve it a quantum computer we need to bring
our solution to a form where it will be easy for a quantum
algorithm to solve it. One of the primary things to do at
this point is provide the algorithm with a certain scope of
misclassification so that we do not have a problem with
over-fitting and have a variable ξi called a slack variable
where ξi > 0 using which we can measure the misclas-
sification. We can now write out following optimization
problem

min

(
1

2
||w||+ C

n∑
i=1

ξi

)
(12)

where C is the cost parameter. Let also take C = γ/2
where γ is also a form of cost parameter. Once we have
set these values we can write our equation as ~w.~xi − b =
1 − ξi. We looking for the saddle points of the above
equation using our given constraints we get equation.

F

(
b
~α

)
=

(
0 1T

1 K + γ−1I

)(
b
~α

)
=

(
0
yi

)
(13)

Now to solve our classical algorithm in our quantum
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computer we need to transform our algorithm into a
quantum one. For this firstly we shall convert our train-
ing instances to quantum states in the form |xi〉. Now
we shall convert our matrix F = J +Kγ where

J =

(
0 1T

1 0

)
Kγ =

(
0 0
0 K + γ−1I

)
(14)

Now we shall normalize F as F̂ = F
tr(F ) = F

tr(Kγ)
and

now using Baker–Campbell-Hausdorff formula we get our
equation as

e−iF̂∆t = e
−iJ∆t
Kγ .e

−iγ−1I∆t
Kγ .e

−iKγ∆t

Kγ (15)

This simplifies our equation to a form where we can
find the eigenvalues and eigenbasis of our equation to find
out desired values of b and α Therefore we can now find
the hyperplane. One of the main advantages of using the
quantum SVM is that the speed of execution is increased
exponentially47. While this method can only be used
for a dense training vector other algorithms have been
proved for sparse training vectors44. We can also create
a circuit diagram41 of this

FIG. 3. Circuit of Quantum SVM

In this circuit we use the matrix inversion to get the
parameters of the hyperplane. Then we enter the training
data. After this is done we enter the data x0 to get what
classification our data belongs to. These can be drawn
as

FIG. 4. Matrix Inversion

FIG. 5. Training Oracle Data and Ux0

where F is the (M+1)×(M+1) matrix which contains
the part of the Kernel K and th1 and th2 are the train-
ing data and th0 is the data of position of Ux0. Hence
we can see that quantum SVMs are one of the most ef-
fective methods of classifying data. These equations are
faster than all other methods to perform data classifi-
cation. They can also be implimented with ease in most
systems. There are some limitations of these of these sys-
tems though. Firstly these systems can often massively
overfit data. That could lead to very data point being a
support vector. This is something that is not desirable
and could lead to issues in large data sets. It can also
make the hyperplane very rigid and would leave very lit-
tle scope for error. We would have to increase the scope
for a soft SVM. Secondly these systems work well with
linear and polynomial kernels but can cause issue in other
kernels. But since most of systems are either polynomial
or linear this is usually not an issue, Non Symmetrical
kernels can also cause issues. These also form one of
the important problems in the future. Solving a general
kernel will especially be an important problem to solve.
These algorithms will allow us to solve more complicated
and specific problems. These would increase the scope of
Quantum SVM into a more general application.

VII. QUANTUM CLASSIFIER

A quantum classifier is a quantum computing algo-
rithm which uses quantum states of the existing data
to determine or categorize new data into their respec-
tive classes. In following sub-section we discuss about
the background work on quantum classifier and how they
have been implemented on a quantum computer.

A. Current work on Quantum Classifiers

In a recent paper by Microsoft48 presented a quantum
framework for supervised learning based on variational
approaches.
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FIG. 7. Generic model circuit architecture for 8 qubits48.

FIG. 6. Idea of the circuit-centric quantum classifier48.

Inference with the model f(x, θ) = y is executed by a
quantum device (the quantum processing unit or QPU)
which consists of a state preparation circuit Sx encoding
the input x into the amplitudes of a quantum system, a
model circuit Uθ, and a single qubit measurement. The
measurement retrieves the probability of the model pre-
dicting 0 or 1, from which in turn the binary prediction
can be inferred. The classification circuit parameters θ
are learnable and can be trained by a variational scheme.
Given an encoded feature vector ψx which is now a ket
vector in the Hilbert space of a n qubit system, the model
circuit maps this ket vector to another ket vector ψ

′
=

Uθψ(x) by a unitary operation Uθ which is parametrized
by a set of variables θ.

The above circuit consists of two code blocks B1 and
B3 with a range of controls of r = 1 and r = 3 respec-
tively. The circuit consists of 17 trainable single-qubit
gates G = G(α, β, γ), as well as 16 trainable controlled
single qubit gates C(G), which have in turn to be de-
composed into the elementary constant gate set used by
the quantum computer on which to implement it. If the
optimisation methods are used to reduce the controlled
gates to a single parameter, we have 3 × 33 + 1 = 100
parameters to learn in total for this model circuit. These
100 parameters are used to classify inputs of

28 = 256

dimensions, which shows that the circuit-centric classifier
is a much more compact model than a conventional feed-
forward neural network.

Later that year Farhi and Neven’s49 paper discussed
about a quantum neural network (QNN), that could rep-
resent labelled data, classical or quantum, and be trained
by supervised learning. Imagine that a data set consists
of strings z = z1z2....zn where each zi is a bit taking
the value +1 or −1 and a binary label l(z) chosen as
+1 or −1. We have a quantum processor that acts on
n + 1 qubits and we ignore the possible need for ancilla
qubits. The last qubit will serve as a readout. The quan-
tum processor implements unitary transformations on in-
put states. The unitaries that we have come from some
toolbox of unitaries, perhaps determined by experimental
considerations50. So we have a set of basic unitaries.

FIG. 8. Schematic proposed of the quantum neural network
on a quantum processor by Farhi and Neven.49

The input state |Ψ, 1〉 is prepared and then trans-
formed via a sequence of few qubit unitaries Ui(Θi) that
depend on parameters Θi. These get adjusted during
learning such that the measurement of Yn+1 on the read-
out qubit tends to produce the desired label for |Ψ〉.

A paper by Grant et al.51 discusse how quantum cir-
cuits with hierarchical structure have been used to per-
form binary classification of classical data encoded in a
quantum state. They demonstrate more expressive cir-
cuits which can be used to classify highly entangled quan-
tum states. The circuits used here are tree-like and can
be parameterized with a simple gate-set that is compat-
ible with currently available quantum computers. The
first of these circuits is known as a tree tensor network
(TTN)52. We then consider a more complex circuit lay-
out known as the multi-scale entanglement renormaliza-
tion ansatz (MERA)53. MERAs are similar to TTNs,
but make use of additional unitary transformations to
effectively capture a broader range of quantum correla-
tions. Both one-dimensional (1D) and two-dimensional
(2D) versions of TTN and MERA circuits have been pro-
posed in the literature54,55.
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FIG. 9. TTN and MERA classifiers for eight qubits.(a) TNN
Classifier, (b) MERA classifier51.

Earlier this year, Turkpençe et al.’s56 paper on steady
state quantum classifier, he exploits the additivity and
the divisibility properties of the completely positive (CP)
quantum dynamical maps in order to obtain and open
system classifier. He also numerically demonstrates that
a steady state of a quantum unit subjected to differ-
ent information environment acts a quantum data clas-
sifier. The influence of a dissipative environment on the
reduced system dynamics is that the evolution of pure
states into mixed steady states57. Mixed quantum states
are mixture of classical probability distributions carry
no quantum signature. The theoretical modelling of the
proposed classifier without accounting for the imperfec-
tions or physical decay mechanisms. The objective of this
model was to demonstrate that a small quantum system
weakly in contact with different quantum environments
can be used for classifying the data in which the environ-
ments contain.

FIG. 10. A general view of the proposed model.(a) A classical
perceptron with N inputs. (b) A few of the activation func-
tions for the perceptron, (c) The scheme of the proposed quan-
tum classifier. (d) Collision model to simulate quantum dy-
namic systems. (e) Time evolution of the single spin magne-
tization depending on the number of collisions. (f) The Bloch
ball vector trajectory of the single spin during the evolution56.

Fig. 10(b) depicts a few commonly used activation
functions. For instance, a step function yields f(y) = 1
if y = Σixiwi > 0 and yields f(y) = −1 else. After these
results, if a line correctly separates the data instances,
this corresponds to a properly functioning perceptron.

As a benchmark calculation, they contact the single
spin to a data reservoir in the ρπ =|↓〉〈↓| fixed quan-
tum state and apply information as in FIG.10.(d). It is
observed that the time evolution of spin magnetization
converges to (σz(t)) = −1 as the spin density matrix
approaches to the unit fidelity

z(t) = Tr

√√
ρπσS(t)

√
ρπ = 1 (16)

with the fixed reservoir state monotonically.

VIII. APPLICATION OF QUANTUM MACHINE
LEARNING TO PHYSICS

Machine learning methods have been effectively used
in various quantum information processing problems in-
cluding quantum signal processing, quantum metrology,
Hamiltonian estimation, problems of quantum control
and many others. The construction of advanced quan-
tum devices including quantum computers use the tech-
niques of quantum machine learning and artificial intel-
ligence. Machine learning and Reinforcement learning
techniques are used to create entangled states. Auto-
mated machines can control complex processes for exam-
ple, the execution of a sequence of simple gates, as used in
quantum computation. While performing quantum com-
putation, decoherence or noise can be dealt with, by using
advanced techniques of machine learning. Optimization
algorithms have been used to optimize QKD-type crypto-
graphic protocols in presence of noise58. On-line Machine
learning optimization can be used for determining the op-
timal evaporation ramps for Bose-Einstein condensates
production59. The overlap between the theoretical foun-
dations of machine learning and quantum theory is due
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to the underlying statistical nature of both. In the field of
condensed matter physics, the identification of different
phases and determining the order parameters can be done
with the help of unsupervised learning. The problem of
the Ising model configurations of thermal states can be
solved using unsupervised learning techniques. Besides
detecting the phases, the order parameters (for example
magnetization in this case) can also be identified. Even
without any prior knowledge about the system Hamil-
tonian, we can get information about the phases using
these techniques.

IX. QUANTUM MACHINE LEARNING AND
QUANTUM ARTIFICIAL INTELLIGENCE

Quantum Artificial Intelligence is still a much more
debatable concept. However in the following few sub-
sections we try to understand some basic AI and ma-
chine learning terminologies and finally see how they can
be modified using quantum information processing and
quantum computing. At the end of this section we cite
some recent developments in this field.

A. Basic Terminologies

Human intelligence allows us to accumulate knowledge,
understand it and use it to make best decisions. The field
of AI aims to simulate such kind of process. The most
important part of AI is machine learning (ML). ML tries
to formalise algorithms which can learn and predict us-
ing some initial data. ML broadly can be classified in two
fields viz. Supervised Intelligence and Unsupervised In-
telligence. Supervised intelligence maps input to output
using labels. Unsupervised learning on the other hand
doesn’t use labels and rather uses samples based on some
specified rules. Other class of ML is Responsive Learn-
ing (RL). This is important with a quantum information
perspective. In RL the environment is interactive rather
than being static. The agent interacts with environment
and gets rewarded if it’s behavior is correct. The agent
learns through its cumulative experiences. An intelligent
agent may be defined as an autonomous entity which can
store data and act to achieve some goals.

B. Quantum Artificial Intelligence

The bigger question now is “Can quantum world offer
something to the field of AI ?” We will now try to relate
quantum information processing to AI using some kind
of simulations. Quantum Computing (QC) can simulate
large quantum data and can enable faster search and
optimisation. This in particular is very helpful for AI.
For example, variants of the Grover algorithm can be ex-
ploited to gain a quadratic speed up in search problems,

and some recent Quantum Machine Learning develop-
ments have led to exponential gains in certain Machine
Learning tasks. We now try to understand Projective
Simulation (PS). The agent is situated in an environment
on which it can act, and which reacts in form of certain
physical inputs. Hence the agent learns from experience.
The main part of PS model is Episodic Computational
Memory (ECM). ECM helps agent to project itself and
thus induces a random walk through episodic memory
space. PS model can easily be quantised. A quantum-
enhanced autonomous agent can be defined as an agent
that interacts with a classical environment, but whose
memory uses quantum degrees of freedom. The agent
now takes a quantum walk through its memory space.
The transitions generated are now quantum superposi-
tions and can interference. Also quantum jumps are gen-
erated between different clip states. Since PS model can
be quantised, the model can potentially reach high speed
ups in exploring memory. Hence extension of PS model
to quantum regime defines for the first time meaning of
embodied quantum agents.

C. Recent Developments

There has been some early research into artificial neu-
ral networks run on the 5-qubit IBM Q Experience device
published by a team at the University of Pavia in Italy.
IBM worked with Raytheon BBN in 2017 to perform cer-
tain black box machine learning tasks more efficiently. In
2014, it was announced that Google’s Quantum AI Lab,
in partnership with UC Santa Barbara, would be launch-
ing an initiative to create quantum information proces-
sors based on superconducting electronics. According to
a recent research paper on “Quantum Computing for AI
Alignment”, as of now we can’t expect QC to be relevant
to current AI Alignment research due to safety reasons
until some protocols are made as efficient as possible.

We conclude this section by quoting Sankar Das Sarma
and Dong-Ling Deng and Lu-Ming Duan, who wrote “It
is hard to foresee what the quantum future will look like.
Yet one thing is certain: The marriage of machine learn-
ing and quantum physics is a symbiotic relationship that
could transform them both.”

X. ENTANGLEMENT IN QUANTUM
MACHINE LEARNING

Quantum Non- locality and Entanglement was recog-
nised as a key feature of Quantum Physics. Entangle-
ment can be described as correlations between distinct
subsystems which cannot be created by local actions on
each subsystems separately. In quantum Entanglement
two or more particle which are separated (space like sep-
arated) are correlated in such a way that local measure-
ments in any one of the particles will affect the other par-
ticle(s) far away i.e. ‘The spooky action at a distance’
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stated by Albert Einstein. This basic nature of quantum
particles is due to entanglement. This phenomenon has
received a lot of attention since the beginnings of quan-
tum mechanics (EPR paradox60) and nowadays contin-
ues being an active area of research. Let us try to re-
sume the basic idea in the following example. Lets take
two shocks (qubits ) and each of the shocks can be right
one or left one or superposition of both right and left
with some probabilities. The right shocks is represented
by |0〉 and left one by |1〉. Now if we want to represent
a group of two shock we will take a tensor product of
the two. The composite system of two shock is repre-
sented by |ψ〉 such as |ψ〉 = (a |0〉+ b |1〉)⊗ (c |0〉+ d |1〉)
|ψ〉 = (ac |0〉 |0〉+ ad |0〉 |1〉+ bc |1〉 |0〉+ bd |1〉 |1〉), where
a,b,c,d are probabilities coefficient. If we want to form
a pair of shocks from these set then the coefficients have
to be chosen to cancel the two terms of the sum that
is |00〉 and |11〉 conserving the other two. Therefore if
we want a pair of shocks it can not be obtained as the
tensor product of the individual shocks. This is because
between them to form a pair they have some correla-
tion. That when these qubits are separated (space like
separated), their correlations remains, even without the
existence of any interaction . In this situation, it is said
that the shocks (qubits) are entangled, because it is im-
possible to separate the representation of the composite
system into the qubits states, they are interconnected,
and the measurements performed on one of the qubits af-
fects the measurements made on the other. This feature
is extensively used in Machine learning as it reduces no of
qubits required to perform the same task in classical ma-
chine learning. However there are some demerits of using
Quantum Machine Learning as well which is discussed in
the work of Cristian61 and later in our conclusion.

In 2015, Cai62 and his group did a work in which they
demonstrates that the manipulation of high-dimensional
vectors and the estimation of the distance and inner
product between vectors, a ubiquitous task in machine
learning, can be naturally done with quantum comput-
ers, thus proved the suitability and potential power of
quantum machine learning. They report the first experi-
mental entanglement based classification of 2, 4, and 8 di-
mensional vectors to different clusters using a small-scale
photonic quantum computer, which are then used to im-
plement supervised and unsupervised machine learning.
The method can in principle be scaled to larger num-
ber of qubits, and may provide a new route to accelerate
machine learning.

In 2018 another work is done by Liu63 and his group.
They implemented simple numerical experiments, related
to pattern/images classification, in which they repre-
sent the classifiers by many-qubit quantum states written
in the matrix product states (MPS). Classical machine
learning algorithm is applied to these quantum states to
learn the classical data. They explicitly show how quan-
tum entanglement (i.e., single-site and bipartite entan-
glement) can emerge in such represented images. Entan-
glement characterizes here the importance of data, and

such information are practically used to guide the archi-
tecture of MPS, and improve the efficiency. The number
of needed qubits can be reduced to less than 1/10 of the
original number, which is within the access of the state-
of-the-art quantum computers.

In recent work by Yoav Levine64 and his group es-
tablish contemporary deep learning architectures, in the
form of deep convolution and recurrent networks, can
efficiently represent highly entangled quantum systems.
By constructing Tensor Network equivalents of these ar-
chitectures, they identified an inherent re-use of infor-
mation in the network operation as a key trait which
distinguishes them from standard Tensor Network based
representations, and which enhances their entanglement
capacity. Their results show that such architectures can
support volume-law entanglement scaling, polynomially
more efficiently than presently employed RBMs. Thus,
beyond a quantification of the entanglement capacity of
leading deep learning architectures, their analysis for-
mally motivates a shift of trending neural-network based
wave function representations closer to the state-of-the-
art in machine learning.

Neural Network is one of the most significant sides of
machine learning and artificial intelligence. To make ma-
chines learn from the data patterns, analyze the data
on it’s own, scientists made algorithms to simulate our
natural neural network. Warren McCulloch of the Uni-
versity of Illinois and Walter Pitts of the University of
Chicago developed the theoretical basis of neural net-
works in 1943. In 1954 Belmont Farley and Wesley Clark
of MIT developed the first neural network for pattern-
recognition skills65. In this context, we see that as the
demand of machine learning is increasing day by day, un-
derstanding the physical aspects of neural network is to
be increased certainly and this is one of the sides where
study of entanglement properties has to be done. Fo-
cusing on the RBM66(Restricted-Boltzmann Machine),
Dong-Ling Deng, Xiaopeng Li and S. Das Sarma, in 2017,
studied67 the entanglement properties and they found
that for short RBM states entanglement entropy follows
the area law which is also inspired by the holographic
principle68 that states all the informations reside on the
surface of black hole, hence the entropy depends on it’s
surface not on volume. For any dimension and arbitrary
bipartition geometric R-range RBM states, entanglement
entropy becomes

S ≤ 2a(A)R log 2 (17)

where a(A) is the surface area of subsystem A.
In the limit, N →∞ (N qubits), the entropy starts to

vary linearly with the size of the system - entanglement
volume law.

Supervised Learning can be enhanced by Entangled
Sensor Network as shown by Zhuang and Zhang early in
this year69. So far existing quantum supervised learn-
ing schemes depend on quantum random access mem-
ories (qRAM) to store quantum-encoded data given a
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priori in a classical description. However, data acquisi-
tion process has not been used while this process makes
the maximum usage of input data for different super-
vised machine learning tasks, as constrained by the quan-
tum Cramér-Rao bound. They introduced the Super-
vised Learning Enhanced by an Entangled sensor Net-
work (SLEEN). The entanglement states become handy
in quantum data classification and data compression.
They used SLEEN to construct entanglement-enhanced
SVM and entangled-enhanced PCA and for both cases
they got genuine advantages of entangled states - data
classification and data compression respectively.

In case of SVMs, while seperable-state SVM becomes
inaccurate due to measurement uncertainty amking the
data classification less contrasting, when entangled-state
SVM is not effected by the uncertainty keeping the out-
put as expected.

FIG. 11. Performance contrast between Entangled-state SVM
and Seperable-state SVM69.

IN case of PCAs, same uncertainties factor prevent
the entangled-state PCA from making a perfect princi-
pal axis, while entangled-state PCA precisely finds the
principal axis.

FIG. 12. Performance contrast between Entangled-state PCA
and Separable-state PCA69

Hence, this entanglement stuff makes the Supervised
Machine Learning ultrasensitive to various fields in bio-
logical, thermal systems.

On other hand, machine learning is also used to deter-
mine the entanglement of systems - how much entangled
they are. Jaffali and Oeding showed, mainly focusing
on pure states in their paper how Artificial Neural Net-
work can be trained to predict the entanglement type of
a quantum state and distinguish them. This may help in
processing quantum information, increasing the efficiency
of quantum algorithm, cryptographic schemes etc.

From the above works we can see that by using the
Quantum Entanglement we can not only outperform the
results of classical computers but it also requires less re-
sources. The most motivating work is merging many
body quantum system to machine learning using Ten-
sor Network. Such an interdisciplinary field was recently
strongly motivated, due to the exciting achievements in
the so called “quantum technologies”. Thanks to the suc-
cesses in quantum simulations/computations, including
the D Wave and the quantum computers by Google and
others (“Quantum Supremacy”), it becomes unprece-
dentedly urgent and important to explore the utiliza-
tions of quantum computations to solve machine learn-
ing tasks. The low demands on the bond dimensions
and, particularly, on the size, permit to simulate ma-
chine learning tasks by quantum simulations or quantum
computations in the near future.

XI. QUANTUM NEURAL NETWORK

The following few sub-sections elaborate the merger of
classical neural networks and quantum computing, pro-
ducing a more powerful version of the former. In sub-
section A, we provide a brief introduction to classical
neural networks. In sub-section B, we discuss the pre-
vious works on quantum neural networks. Subsequent
sections on-wards, we describe the quantum neuron and
its implementation to the quantum computer and present
the latest development on quantum convolutional neural
networks.

A. Classical Neural Networks

One of the most basic neural networks in classical deep
learning is the deep feed-forward networks, mathemati-
cally defined by a function y = f(x; θ), where x is the in-
put n-dimensional vector, y is the output m-dimensional
vector (m < n usually), and θ represents the parameters
that guide the network to map x to y70. Neural net-
works are organized in layers (specially the hidden layers
between the input layer and the output layer) to divide
computation into steps. At each step (or hidden layer),
some degree of non-linearity is added, allowing the net-
work to learn complicated functions.

Training a network is choosing the combination of pa-
rameters θ that can map the input vectors x as closely
as possible to the actual output vectors y70. Training
involves initial random choice of parameters, followed by
gradual updates as the same vectors x are passed on to
the network and predictions by the network are com-
pared to the actual, real outputs y externally provided to
the network. This training happens through the classical
procedures- gradient descent and back-propagation70.

Several different types of architectures have been de-
veloped, for instance Convolutional Neural Networks
(CNNs), Long-Short Term Memory networks (LSTMs),
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Recurrent Neural Networks (RNNs), Generative Ad-
versarial Neural networks (GANs), variational autoen-
coders, and many more70. Together, they are able to
drive the AI revolution, finding increasing applications to
image and sound processing, self-driving cars, online rec-
ommender systems, reinforcement learning based game
playing bots, stock market price predictors, virtual assis-
tants, and several other applications in all walks of life.
For further technical details on these, we refer to Deep
Learning by Ian Goodfellow, Yoshua Bengio, and Aaron
Courville70.

B. Background Work in Quantum Neural
Networks

In a paper by Kak in 199571, attempts were made to
model a neural network in quantum computing, and dis-
cussions were presented on the versatility of the quantum
neural computer with respect to the classical computers.
In the same year, Menneer and Narayanan’s72 work intro-
duced a method based on multi-universe interpretation
of the quantum theory that made neural network train-
ing powerful than ever before- superposition of several
single layered neural networks to form a bigger quan-
tum neural network. Perus73 used the quantum version
of classical gradient descent, coupled with CNOT gates,
to demonstrate the use of parallelism in quantum neu-
ral architectures. Menneer74 did a comprehensive study
of the contemporary NN architectures in his PhD thesis.
Faber et al.75 addressed the question of implementation
of an artificial neural network architecture on a quantum
hardware. Schuld76 gave guidelines for quantum neural
network models: (1). ability of the network to produce
binary output of length separated from the length of the
binary input by some distance measure, (2). reflect some
neural computing mechanisms, and (3). utilize quantum
phenomenon and be fully consistent with the quantum
theory.

In the recent past, several advancements have been
made to bridge the gap between classical and quantum
deep learning. In 2014, Wiebe et al.77 demonstrated
the power of quantum computing over classical comput-
ing in deep learning and objective function optimization.
Adachi et al. Recent research hasb demonstrated the
superiority of quantum annealing (using D-Wave quan-
tum annealing machine) to contrastive divergence based
methods, and tested the same on preprocessed MNIST
data set.

Other notable works include quantum perceptron
model78, quantum neural networks vased on Deutsch’s
model of quantum computational network79, and quan-
tum version of the Generative Adversarial Networks80.

C. Quantum Neuron

The current issue in quantum neural networks is the
problem of introducing non-linearity, as is the case in
classical neural networks. Non-linearity is central to
learning complex functions, and thus efforts have been
made to resolve this: use of quantum measurements
Kak et al.81 and Zak et al.82, using dissipative quan-
tum gates81, and the idea that a quantum neural network
based on the time-evolution of the system is intrinsically
non-linear.

A quantum neuron is strongly correlated to the actual
neuron of the human system. The latter, based on the
electrochemical signals received, either fires or not. Sim-
ilar is the model of the classical neuron in deep learning.
An input vector x (corresponding to the stimulus in hu-
mans) is combined with a set of weights θ (corresponding
to the neurotransmitters) and the result of this combina-
tion determines whether the neuron fires or not. Mathe-
matically, a n-dimensional input vector X = x1, x2, ..., xn
is combined with weights θ = θ1, θ2, ..., θn to yield the
combination: x1θ1 + x2θ2 + ...+ xnθn + b where b is the
bias added to the computation to incorporate functions
not passing through the origin of the n−dimensional
space considered here83. To introduce non-linearity in
the same, several activation functions are used, which
have been shown to benefit neural network training84.
Recent advances have explored learning activation func-
tions for separate neurons using gradient descent85, ap-
proximation of neural networks using ReLU as the acti-
vation function86, and other conventional functions like
the sigmoid function and the step function.

The quantum equivalent of the classical neuron: the
quantum neuron, is used to build the quantum neural
networks, which benefit from the intrinsic property of
quantum mechanics of storing co matrices and perform-
ing linear algebraic operations on those matrices conve-
niently Neukart et al.87, Schuld et al.88, Alvarez et al.89,
Wan et al.90, Rebentrost et al.91, Otterbach et al.92,
Lamata et al.93. To implement a quantum neuron, a
set of n qubits is prepared and operated upon by some
unitary transformation, and the result is prepared in a
separate ancilla qubit that is then measured- the mea-
surement being the decision whether the quantum neuron
fires or not. Specific details follow as under:

To encode a m dimensional classical input vector x,
n qubits are used such that m = 2n, n < m, thereby
exploiting the advantage of quantum information storage
allowing exponential reduction in number of input nodes
required. The following transformation is done on the
input qubits: U |0〉⊗n = |ψ〉.

Assuming the computational basis of the already de-
fined n dimensional Hilbert space is |1〉, |2〉, |3〉, ..., |n〉,
the input vector x and the weight vector θ can be de-
fined in quantum terms as:
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|ψ〉 =
1

n1/2

n∑
j=1

xj |j〉 (18)

where xj is represents the usual jth component of the
classical input vector x. Likewise, the weight vector θ
can be encoded in the quantum realm as:

|φ〉 =
1

n1/2

n∑
j=1

θj |j〉 (19)

where θj represents the usual jth component of the
classical weight vector θ.

Tacchino et al.94 defines a unitary operation that per-
forms the inner product of the two terms defined above,
and updates an ancilla qubit based on a multi-controlled
NOT gate. The authors introduce a non-linearity by per-
forming a quantum measurement on the ancilla qubit.

D. Quantum Convolutional Neural Network

Convolutional Neural Network is a special type of deep
neural network architecture motivated from the visual
cortex of animals95. CNNs provide great power over a
variety of tasks: object tracking96, text detection and
recognition97, pose estimation98, action recognition99,
scene labeling100, saliency detection using multi-context
deep learning101. Further review of deep convolutional
deep learning is referred102. The power of CNNs arises
from the several convolutional layers, pooling layers, fol-
lowed by few densely, fully connected layers that help
to reduce the huge size of various matrices of images to
few hundred nodes which can then be used for the final
output layer of a few nodes (for instance equal to the
number of classes in a multi-classification problem). The
weights are optimized by training on huge data-sets fed
into the network through multiple passes. CNNs also
involve parameters that directly affect the parameter-
s/weights, called the hyperparameters. Hyperparameters
are fixed for specific networks based on experiments and
comparisons across several models.

On the quantum side, neural networks have been used
to study properties of quantum many-body systems, as in
Carleo et al.103, Nieuwenburg et al.104, Maskara et al.105,
Zhang et al.106, Carrasquilla et al.107, Wang et al.108,
and Levine et. al.109. The use of quantum computers to
enhance conventional machine learning tasks has gained
traction in the modern world Biamonte et al.110, Dunjko
et al.111, Farhi et al.112, and Huggins et al.113.

A QCNN circuit model has been proposed by Cong et
al.114. The proposed model upper bounds the n input
parameters by O(log(n)). Like conventional CNN, the
authors continued the training on the quantum version
of the mean squared error :

MSE =
1

2M

m∑
i=0

(yi − h(ψ))2 (20)

where yi is the actual output of the input state ψ, and
h(ψ) is the computation done by the quantum network.
The mean squared error tends to reduce the distance be-
tween the predicted value from the network. The au-
thors discuss the efficient implementation on experimen-
tal platforms: efficient preparation of quantum many-
body input states, two-qubit gates application, and pro-
jective measurements. With the success of quantum con-
volutional neural network, it is hoped that other con-
ventional deep learning networks will be soon converted,
thus increasing the range of quantum neural networks.

To solve highly complex problems like quantum phase
recognition (QPR), which asks whether a given input
quantum state ρin belongs to particular quantum phase
of matter, quantum error correction (QEC) optimization,
asks for an optimal QEC code for a given, a priori un-
known error model such as dephasing or potentially cor-
related depolarization in realistic experimental settings,
quantum convolution neural networks has stood out to
be best possible solution. The highly intrinsic quantum
nature of these problems makes them difficult to solve
using existing classical and quantum machine learning
techniques. While conventional machine learning with
large-scale neural networks can successfully solve anal-
ogous classical problems such as image recognition or
improving classical error correction, the exponentially
large many-body Hilbert space hinders efficiently trans-
lating such quantum problems into a classical framework
without performing exponentially difficult quantum state
or process tomography. Quantum algorithms avoid this
overhead, but the limited size and coherence times of
near-term quantum devices prevent the use of large-scale
networks; thus, it is vital to first theoretically understand
the most important machine learning mechanisms that
must be implemented.

XII. USE OF ARTIFICIAL NEURAL
NETWORKS TO SOLVE MANY BODY

QUANTUM SYSTEMS

Studying the many body quantum systems remains to
be one of the most challenging areas of physics. It is
mainly due to the exponential complexity of the many
body wave function and the difficulty in describing the
non-trivial correlations encoded in its wavefunction103.
However, recently the use of neural networks for the vari-
ational representation of the quantum many body states
has generated a huge interest in this field115–117. This
representation was first introduced by Carleo and Troyer
in 2016 in which they had used the Restricted Boltzmann
Machine (RBM) architecture with a variable number of
hidden neurons. Using this procedure, they could find the
ground state of the tranverse-field Ising (TFI) and the
antiferromagnetic Heisenberg (AFH) models with high
accuracy103. Moereover, they could also also describe the
unitary time evolution of complex interacting quantum
systems. Since then neural networks have been exten-
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sively used to study various physical systems. The repre-
sentational power and the entanglement properties of the
RBM states have been investigated and the RBM repre-
sentation of different systems such as the Ising Model,
Toric code, graph states and stabiliser codes have been
constructed115. Also, the representational power of the
other neural netowork architectures such as the Deep
Boltzmann Machine (DBM)118 are under active inves-
tigation.

A. Variational representation of many body
systems in RBM networks

A neural network can represent a quantum state of a
physical system in terms of its network parameters103.
The Restricted Boltzmann Machine architecture consists
of a visible layer of N neurons and a hidden layer of M
neurons. The neurons of the visible layer and hidden
layers are connected but there are no intra-layer connec-
tions. As the spin of the neurons in the RBM network can
have the values ±1, the spins of the neurons of the visible
layer can be mapped to the spins of the physical system
they represent. Moreover a set of weights is assigned to
the visible (ai for the ith visible neuron), hidden (bi for
the ith hidden neuron) and to the couplers connecting
them(Wij for the coupler connecting the ith visible neu-
ron with the jth hidden neuron)119. Then, wave function
ansatz for the N-dimensional quantum state of spin vari-
able configuration S = {si}Ni=1 would be given by103,119.

ψM (S,W) =
∑
{hi}

e
∑
i aisi+

∑
j bjhj+

∑
ijWijsihj (21)

where si and hi denote the spins of the visible and
hidden neurons respectively and the whole state is given
by the superposition of all the spin configuration states
with ψ(S) as the amplitude of the |S〉 state119,120.

|ψ〉 =
∑
S
ψ(S) |S〉 (22)

XIII. CLASSICAL SIMULATION OF
QUANTUM COMPUTATION USING NEURAL

NETWORKS

Since the neural networks are able to represent vari-
ous quantum states efficiently, a natural question to be
posed is whether they can also simulate various quan-
tum algorithms. Interestingly, the networks are also
able to simulate the action of various quantum gates.
This has been investigated in the DBM and the RBM
architectures118,121. As mentioned before, the represen-
tation of a quantum state by a neural network depends on
its network parameters. Thus, the action of various gates

FIG. 13. The structure of a Restricted Boltzmann
Machine119. The spin configuration of the N visible neu-
rons is represented by {si}Ni=1 (si is the spin value of the ith
neuron). Also, there are M hidden neurons in one more layer
(called the hidden layer). The coupler connecting the ith vis-
ble neuron with the jth hidden neuron has the weight Wij .
However, there are no intra-layer connections. The wavefun-
tion ansatz for the system represented by this network is given
by Eqn. 21.

can be simulated by appropriately changing the network
parameters in a way that the new quantum state repre-
sented by the network with the new parameters is the
same as would have been obtained by applying the quan-
tum gate to the initial quantum state. Also in a recent
work, the methods to prepare specific initial states initial
states in RBM analogous to those used as initial states
while implementing a quantum algorithms in a quantum
circuit model has been discussed119. The prepared states
were shown to efficiently simulate the action of the Pauli
X gate. These results have opened up a great possibility
of solving various quantum mechanical problems using
neural networks. Future investigations in this direction
may include the implementations of quantum algorithms
in various neural network architectures and the exploita-
tion of the machine learning techniques to achieve higher
accuracy in solving the quantum mechanical problems119.

XIV. IMPLEMENTATION OF QUANTUM
MACHINE LEARNING ALGORITHMS ON

QUANTUM COMPUTERS

In this section we discuss the implementation of some
quantum machine learning algorithms with the help of
quantum logic and quantum gates.

Earlier this year H. Liu’s122 paper first proposed a
quantum algorithm to obtain the classical gradients.
can be regarded as the inner product of two vec-
tors (p(x1;w) − y1, ..., p(xN ;w) − yN ) and (xj1, ..., x

j
N ).

To achieve this, their quantum algorithm consists of
two steps: generate an intermediate quantum state
1√
N

ΣNi=1|i〉|p(xi;w)〉 mainly based on amplitude estima-

tion; (2)perform swap test to obtain Owj in the classical
form. Then the parameters w is updated according to
the iterative rules via simple calculations. The entire al-
gorithm process is shown in Fig. 13.
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(1) Generate an intermediate quantum state
(1.1) Prepare three quantum registers in the state

|0 logN〉 |0〉 |0logM 〉 and perform the Hadamard gates
H⊗ logN on the first register, then the system becomes

1√
N

ΣNi=1|i〉|0〉|0logM 〉 (23)

where i is represented in binary as i1, i2, ..., ilogN .
(1.2) Perform H on the second register

1√
N
|i〉 1√

2
(|0〉+ |1〉)|0logM 〉 (24)

FIG. 14. The whole process of the entire algorithm for Quan-
tum Logistic Regression122.

In the above circuit, where ε is the precision, η is the
step factor, w(0) is the initial value, t = 0, 1, 2, . . . is the
iteration number, T is the data set. The brown rect-
angle represents the quantum algorithm, and the light
purple rectangle represents the classical iterative update
algorithm.

FIG. 15. Quantum circuit diagram to generate an immediate
quantum state122.

In the above circuit, A denotes the 2 sin 2(π)− 1 gate
to estimate 〈xi|w〉. s is the number qubits for estimating
xi|w〉., B, U are the unitary gates to access ||w||,||xi||,
respectively. C represents the 1

1+exp(−kx) gate to obtain

|p(xi;w)〉.

In addition to the above quantum machine learning
algorithm implementation there have been other algo-
rithms that have been implemented on quantum comput-
ers as well, for example S. Lloyd123 and team have work
Quantum Hopfield neural network which uses qHop, en-
coding data in order log2(d) qubits.

XV. CONCLUSION AND FUTURE WORKS

In this review, we tried to compile the effects that
quantum computers are having and will have on ma-
chine learning. While only a few years ago, most of
the research works in this fields were largely theoreti-
cal, we now have demonstrable quantum machine learn-
ing algorithms. And as expected these algorithms are
significantly faster and more effective than their classi-
cal counterparts. This amalgamation of machine learn-
ing and quantum computers allows us to run classical
algorithms significantly faster in many cases. The effect
that quantum computers can have on machine learning
is extremely vast. As quantum computers with larger
number of qubits are realized, we will be able to test
more quantum algorithms and then truly access the effect
that quantum computer will end up having on machine
learning. Many of realized on an actual quantum com-
puter due to the large number of qubits they require. But
as research in this field progresses, we shall have better
quantum computers and better algorithms to solve our
machine learning problems. It is always possible that a
more effective algorithm to solve machine learning prob-
lem is yet to be discovered. This is still one of the biggest
problems while working with quantum computers since
quantum algorithms are often unintuitive and it may take
a lot of time to discover a better algorithms. Using quan-
tum computers, we are able to implement classical ma-
chine learning classifiers for better, faster and accurate
classification. While only time can tell the true effect
that quantum computers will have on machine learning
the possibilities seem endless and with every new algo-
rithm machine learning seems to be something that can
be definitely improved upon by quantum computers. In
our society where huge amounts of data is collected and
needs to be processed every minute and where new and
novel research methods can have huge impacts on both
life and economy quantum machine learning definitely
seems to be a methodology that will lead to a better
future.

Here, we discussed a number of different methods of
quantum machine learning algorithms. Most of the work
in this new area of research is still largely theoretical and
conceptual and there are, for example, hardly any dedi-
cated experiments demonstrating how quantum mechan-
ics can be exploited for ML and AI. However, there are a
number of theoretical proposals. Quantum computation
exhibits promising applications in machine learning and
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data analysis with much more advance time and space
complexity. However, the execution of quantum algo-
rithms requires quantum hardware that is not yet avail-
able. On the hardware side, there have been great strides
in several enabling technologies. Small-scale quantum
computers with 500-100 qubits will be made widely
available via quantum cloud computing (the ‘Qloud’).
Special-purpose quantum information processors such as
quantum simulators, quantum annealers, integrated pho-
tonic chips, nitrogen vacancy centres (NV)-diamond ar-
rays, qRAM, and made-to-order superconducting circuits
will continue to advance in size and complexity. Pro-
grammable quantum optic arrays with around 100 tun-
able interferometers have been constructed using inte-
grated photonics in silicon, but loss of quantum effects
increases as such circuits are scaled up. Quantum ma-
chine learning offers a suite of potential applications for
small quantum computers complemented and enhanced
by special-purpose quantum information processors dig-
ital quantum processors and sensors.

Nevertheless, there is not a general theory to analyze
and engineer new quantum machine learning algorithms,
and there are additionally some unanswered related ques-
tions. One of the problems to be solved in quantum
machine learning is the limitation present in the quan-
tity of input data that the proposed implementations can
handle. Although many-body quantum systems have a
Hilbert space whose dimension increases exponentially in
relation to the size of the system, permitting to store and
manipulate a huge quantity of data, an important prob-
lem is to initialize accurately and efficiently this quan-
tum state with the desired data. In machine learning
this stage is essential, since learning a problem needs a
lot of learning data. Another important problem is to
obtain quantum dynamics with memory which simulta-
neously conserves its quantum properties. The memory is
important in the implementation of machine learning al-
gorithms in devices with non-universal computing capac-
ities. This also holds in the quantum realm. Obtaining
this memory in quantum dynamic is even more difficult,
due to the unitary evolution. Another biggest challenges
for quantum annealers to implement quantum machine
learning algorithms include improving connectivity and
implementing more general tunable couplings between
qubits. There are many challenges in quantum machine
learning are the following: Although quantum algorithms
can provide dramatic speedups for processing data, they
do not provide advantages in reading data. Sometimes
the cost of reading data exceeds the cost of quantum al-
gorithms. This is a problem yet to understand.The other

problem is obtaining the full solution from some quan-
tum algorithms as a string of bits requires learning an
exponential number of bits. This makes some applica-
tions of quantum machine learning algorithms infeasible.
This problem can potentially be sidestepped by learning
only summary statistics for the solution state. One of
the mail challenges is the costing problem. Bounds on
the complexity suggest that for sufficiently large prob-
lems they will offer huge advantages, but it is still unclear
when that crossover point occurs. The other problem is
the Benchmarking problem. It is often difficult to assert
that a quantum algorithm is ever better than all known
classical machine algorithms in practice because this re-
quires extensive benchmarking against modern heuristic
methods. Additional results establishing lower bounds
for quantum machine learning would partially address
this.

We can avoid a few of the above said problems by
applying quantum machine learning for system which
follows the principle of quantum mechanics rather than
applying on classical data. One aim therein is to use
quantum machine learning to characterize and control
quantum computers. This would enable a virtuous cy-
cle of innovation similar to that which occurred in clas-
sical computing, wherein each generation of processors
is then leveraged to design the next-generation proces-
sors. Even in the case of quantum algorithms for linear
algebra, where rigorous guarantees are already available,
issues related to data access and restrictions on the types
of problems that can be solved might hinder their per-
formance in practice. In fact, near future advances in
quantum hardware development will be important to em-
pirically assess the true potential of these techniques. In
this regard, we note how the great majority of the QML
literature has been developed within the quantum com-
munity. We believe that further advances in the field will
only come after significant interactions between the two
communities. For this reason, we tried to structure this
review to present the different topics in a way that is
familiar to both quantum scientists and ML researchers.
To achieve this goal, we put great emphasis on the com-
putational aspects of ML.

ACKNOWLEDGMENTS

A.P.D. acknowledges the support of KVPY fellowship.
S.R. and S.C. acknowledge the support of DST Inspire
fellowship. B.K.B acknowledges the support of IISER-K
Institute fellowship.

∗ bkb18rs025@iiserkol.ac.in
† mukhopadhyaysabyasachi@gmail.com
‡ pprasanta@iiserkol.ac.in
1 P. W. Shor, Algorithms for quantum computation: dis-

crete logarithms and factoring, Proceedings 35th Annual

Symposium on Foundations of Computer Science, IEEE
Comput. Soc. Press. (1994).

2 J. Bermejo-Vega, and K. C. Zatloukal, Abelian Hy-
pergroups and Quantum Computation, arXiv:1509.05806
(2015).

mailto:bkb18rs025@iiserkol.ac.in
mailto:mukhopadhyaysabyasachi@gmail.com
mailto:pprasanta@iiserkol.ac.in


22

3 R. D. Somma, Quantum simulations of one dimen-
sional quantum systems, Quantum Inf. Comput. 16, 1125
(2016).

4 S. J. Russell and P. Norvig, Artificial intelligence: a
modern approach. Malaysia; Pearson Education Limited,
(2016).

5 O. Bousquet, U. V. Luxburg, and G. Ratsch, (Eds.).
Advanced Lectures on Machine Learning: ML Summer
Schools 2003, Canberra, Australia, February 2-14, 2003,
Tubingen, Germany, August 4-16, 2003, Revised Lectures,
Springer 3176, (2011).

6 L. P. Kaelbling, M. L. Littman, and A. W. Moore, Rein-
forcement learning: A survey, J. Art. Intel. Res. 4, 237-
285 (1996).

7 P. Rebentrost, M. Mohseni, and S. Lloyd, Quantum sup-
port vector machine for big data classification, Phys. Rev.
Lett. 113, 130503 (2014).

8 H. Abdi and L. J. Williams, Principal component analysis,
Wil. Inter. Rev.: Comput. Stat. 2, 433 (2010).

9 R. Orus, S. Mugel, and E. Lizaso, Quantum computing
for finance: overview and prospects, Rev. Phys. 4, 100028
(2019).

10 M. S. Palsson, M. Gu, J. Ho, H. M. Wiseman, and G. J.
Pryde, Experimentally modeling stochastic processes with
less memory by the use of a quantum processor. Sci. Advs.
3, (2017).

11 J. Li and S. Kais, Entanglement classifier in chemical re-
actions. Sci. Adv. 5, eaax5283 (2019).

12 C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J.
Smolin, Experimental Quantum Cryptography, J. Crypt.
5, 3 (1992).

13 A. Pathak, Elements of Quantum Computation and
Quantum Communication, CRC Press, (2018).

14 T. M. Mitchell, Machine learning, McGraw-Hill, (2006).
15 D. Angluin, Computational learning theory: Survey and

selected bibliography. Proc. of 24th An. Symp. Theor.
Comput. 351-369 (1992).

16 L. Valiant, Commun. ACM 27(11), 1134-1142 (1984).
17 V. N. Vapnik and A. Chervonenkis, On uniform conver-

gence of relative frequencies of events to their probabili-
ties, Theor. prob. appl. 16, 264 (1971).

18 S. Lloyd, M. Mohseni, and P. Rebentrost, Quantum algo-
rithms for supervised and unsupervised machine learning,
arXiv:1307.0411.

19 E.Farhi, and H.Neven,Classification with Quan-
tum Neural Networks on Near Term Processors,
arXiv:1802.06002v2

20 Songfeng Lu, and Samuel L. Braunstein, Quantum deci-
sion tree classifier, Quantum Inf Process, 2013

21 M. Schuld, and I. Sinayskiy, and F. Petruccione, An intro-
duction to quantum machine learning, arXiv:1409.3097v1

22 S. Shahane, S. Shendye and A. Shaikh, Implementation of
Artificial Neural Network Learning Methods on Embed-
ded Platform, Int. J. Electric. Electron. Comput. Sys. 2,
2347 (2014).

23 S. Lloyd, Quantum algorithm for solving linear systems
of equations, APS March Meeting Abstracts, (2010).

24 S. Aaronson, Read the fine print, Nat. Phys. 11.4, 291
(2015).

25 A. M. Childs, R. Kothari, and R. D. Somma, SIAM J.
Comput. 46, 1920 (2017).

26 Clader, B. David, B. C. Jacobs, and C. R. Sprouse. Pre-
conditioned quantum linear system algorithm, Phys. Rev.
Lett. 110.25, 250504 (2013).

27 D. Dervovic, et al. Quantum linear systems algorithms: a
primer, (2018), arXiv preprint arXiv:1802.08227

28 S. Dutta, et al. Demonstration of a Quantum Circuit De-
sign Methodology for Multiple Regression, arXiv preprint
arXiv:1811.01726, (2018).

29 E. Tang, A quantum-inspired classical algorithm for rec-
ommendation systems, Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing.
ACM, (2019).

30 E. Tang, Quantum-inspired classical algorithms for prin-
cipal component analysis and supervised clustering, arXiv
preprint arXiv: arXiv:1811.00414, (2018).

31 A. Gilyén, S. Lloyd, and E. Tang, Quantum-inspired low-
rank stochastic regression with logarithmic dependence on
the dimension, arXiv preprint arXiv:1811.04909, (2018).

32 N.-H. Chia, H.-H. Lin, and C. Wang, Quantum-inspired
sublinear classical algorithms for solving low-rank linear
systems, arXiv preprint arXiv:1811.04852, (2018).

33 E. Tang, An overview of quantum-inspired classical sam-
pling, (2019).

34 E. Tang, Some settings supporting efficient state prepa-
ration, (2019), .

35 S. Nowozin and C. H. Lampert, Structured Learning and
Prediction in Computer Vision, Foundations and Trends
in Computer Graphics and Vision 6, 185-365 (2011).

36 M. N. Wernick, Y. Yang, J. G. Brankov, et.al., Machine
Learning in Medical Imaging, IEEE 27, 25-38 (2010).

37 B. J. Erickson, P. Korfiatis, Z. Akkus, and T. L. Kline,
Machine Learning for Medical Imaging, Rad. Graph. 37,
505-515 (2017).

38 A. Lavecchia, Machine-learning approaches in drug dis-
covey: methods 5nd applications, Sci. Dir. 20, 318-331
(2015).

39 C. Bahlmann, B. Haasdonk, and H. Burkhardt, Online
handwriting recognition with support vector machines - a
kernel approach, Proceedings Eighth International Work-
shop on Frontiers in Handwriting Recognition, (2002).

40 L. Chen, C. Ren, L. Li, et al., A Comparative Assess-
ment of Geostatistical, Machine Learning, and Hybrid
Approaches for Mapping Topsoil Organic Carbon Con-
tent, Int. J. Geo-Inf 8(4),174 , (2019).

41 Z. Li, X. Lui, N. Xu, and J. Du, Experimental Realization
of a Quantum Support Vector Machine, Phys. Rev. Lett.
114, 140504 (2015).

42 I. Kerenidis, A. Prakash, and D. Szilágyi, Quantum algo-
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