
Bijan Shirinzadeh- Monash University (Australia)
Bijan Shirinzadeh
- Monash University (Australia)
About
364
Publications
66,143
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
14,806
Citations
Current institution
Publications
Publications (364)
In the field of quality control, the critical challenge of analyzing microdefects in steel filament holds significant importance. This is particularly vital, as steel filaments serve as reinforced fibers in the use and applications within various component manufacturing industries. This paper addresses the crucial requirement of identifying and inv...
Increasing applications of compliant microgripper demands flexibility in working with a wide range of micro-objects which requires a large workspace, high precision motion, low parasitic motion, and satisfactory bandwidth control. To meet the requirement of pick and place manipulation tasks, a high amplification piezoelectric actuated microgripper...
In the field of quality control, the critical challenge of analyzing microdefects in steel filament holds significant importance. This is particularly vital as steel filaments serve as reinforced fibers in the use and applications within various component manufacturing industries. This paper addresses the crucial requirement of identifying and inve...
This paper presents a novel design and control strategies for a parallel two degrees-of-freedom (DOF) flexure-based micropositioning stage for large-range manipulation applications. The motion-guiding beam utilizes a compound hybrid compliant prismatic joint (CHCPJ) composed of corrugated and leaf flexures, ensuring increased compliance in primary...
Statically indeterminate symmetric (SIS) flexure structures are symmetric structures with “clamped-clamped” boundary conditions. The static indeterminacy and topological symmetry significantly attenuate the parasitic motions associated with statically determinate flexure structures. Hence, SIS flexure structures feature decoupled linear and angular...
This paper presents a study of four-bar levered parallelogram guiding mechanisms with
different types of flexure hinges such as double-notch circular, double-notch elliptical, right-angle leaf,
and corner filleted leaf flexure hinges. The study focuses on evaluating the high-performance parallel
guiding motion-generating capability of the mechanism...
In the current industrial revolution, advanced technologies and methods can be effectively utilized for the detection and verification of defects in high-speed steel filament production. This paper introduces an innovative methodology for the precise detection and verification of micro surface defects found in steel filaments through the applicatio...
In the current industrial revolution, advanced technologies and methods can be effectively utilized for the detection and verification of defects in high-speed steel filament production. This paper introduces an innovative methodology for the precise detection and verification of micro surface defects found in steel filaments through the applicatio...
Flexure hinges are fundamental elements of compliant mechanisms. Therefore, the development of novel primitive flexure hinges is of great value. In this study, the basic structures of notch-type flexure hinges were extended by focusing on their transverse cross-sections, that is, the cross-sections perpendicular to the central axis. A group of prim...
A compact large-range six-degrees-of-freedom (six-DOF) parallel positioning system with high resolution, high resonant frequency, and high repeatability was proposed. It mainly consists of three identical kinematic sections. Each kinematic section consists of two identical displacement amplification and guiding mechanisms, which are finally connect...
A compliant parallel micromanipulator is a mechanism in which the moving platform is connected to the base through a number of flexural components. Utilizing parallel-kinematics configurations and flexure joints, the monolithic micromanipulators can achieve extremely high motion resolution and accuracy. In this work, the focus was towards the exper...
The integrity of the composite structures is affected by the manufacturing conditions. Controlling the ply orientation during the manufacturing process plays an important role in defining the induced residual stresses inside the laminate. This work evaluates the generated residual stresses inside multi-axis laminates of carbon fiber reinforced poly...
With their high specific stiffness, corrosion resistance and other characteristics, especially their outstanding performance in product weight loss, fiber-reinforced resin matrix composites are widely used in the aviation, shipbuilding and automotive fields. The difficulties in minimizing defects are an important factor in the high cost of composit...
In recent years, robotic minimally invasive surgery has transformed many types of surgical procedures and improved their outcomes. Implementing effective haptic feedback into a teleoperated robotic surgical system presents a significant challenge due to the trade-off between transparency and stability caused by system communication time delays. In...
This study focuses on the role of the damage evolution when estimating the failure behavior of AISI 1045 steel for sensing and measuring metal cutting parameters. A total of five Lagrangian explicit models are established to investigate the effect of applying damage evolution techniques. The Johnson–Cook failure model is introduced once to fully re...
With robotic-assisted minimally invasive surgery (RAMIS), patients and surgeons benefit from a reduced incision size and dexterous instruments. However, current robotic surgery platforms lack haptic feedback, which is an essential element of safe operation. Moreover, teleportation control challenges make complex surgical tasks like suturing more ti...
SLAM algorithms generally use the last system posture to estimate its current posture. Errors in the previous estimations can build up and cause significant drift accumulation. This accumulation of error leads to the bias of choosing accuracy over robustness. On the contrary, sensors like GPS do not accumulate errors. But the noise distribution in...
The robotic fiber placement (RFP) process depends on continuous fusion bonding and solidifying of prepreg tows onto a substrate by subjecting them to a compression force and heat flux. However the advantages provided when using the RFP to fabricate the composite structures, it has adverse effects due to the induced residual stresses (RSs). The curr...
Hybrid multiaxis flexure hinges with a generalized elliptical-arc hybrid fillet (EAHF) notch contour are herein developed and investigated. Analytical closed-form equations of compliance, rotational precision, and maximum stress under spatial combined loads are formulated. The presented analytical equations are confirmed by finite element analysis...
The present study investigates the effect of automated fiber placement process on the induced residual stresses in polymer-matrix composites. The robotic fiber placement is utilized to fabricate a total of 150 flat specimens. The specimens are then cured inside an autoclave. The incremental hole-drilling method is applied to estimate the maximum st...
The void fraction of composite tape winding products is one of the key characteristic parameters affecting the quality and mechanical properties of composite products. In this paper, the leading cause of void formation in the winding process is analyzed, and the critical winding process variables, including winding velocity, consolidation force, an...
The current study presents three calibration approaches for the hole-drilling method (HDM). A total of 72 finite element models and 144 simulations were established to calibrate the measurements of the strain sensors. The first approach assumed the stresses acted on the boundaries of the drilled hole and thus analyzed the surrounding displacements...
The rapid developments in precision applications have increased the demand for high accuracy large range planar 3-DOF micropositioning mechanisms. However, the parasitic motions and cross-axis coupling in these mechanisms pose real challenges for their resolution and accuracy. In this paper, the parasitic motions in a large range 3-DOF XYΘ was inve...
Nanomanufacturing and nanoassembly require positioners capable of producing nanometer order precision with millimeter order workspaces. Current nanopositioners are based on compliant mechanisms or stick-slip/inertial drives. Compliant mechanisms give ultra-high precision but small workspaces, while inertial drives are bulky, expensive, and induce l...
3D printing offers great potential for developing complex flexure mechanisms. Recently, thickness-correction factors (TCFs) were introduced to correct the thickness and stiffness deviations of powder-based metal 3D printed flexure hinges during design and analysis. However, the reasons for the different TCFs obtained in each study are not clear, re...
Integrating the steel fibers into the carbon fiber-reinforced polymers (CFRP) structures provides a new material with unique properties, e.g., superior specific strength and stiffness, high damage tolerance, energy absorption and electrical functions. Manufacturing and investigating the steel/carbon fiber reinforced polymers (SCFRP) are an importan...
A practical model is proposed for measuring the applied force to a spherical biological cell, or any other spherical elastic object such as liposome or tocosome, during micromanipulation processes.
Solid-State LiDAR (SSL) takes an increasing share of the LiDAR market. Compared with traditional spinning LiDAR, SSLs are more compact, energy-efficient and cost-effective. Generally, the current study of SSL mapping is limited to adapting existing SLAM algorithms to an SSL sensor. However, compared with spinning LiDARs, SSLs are different in terms...
The experimental investigation of the effects of key vibration parameters including vibration mode, frequency, and amplitude on vibration-assisted tip-based nanofabrication (VTBN) is presented in this paper. To analyze the detailed effects, the experiments were specifically designed with the general factorial method. The experiments are conducted w...
Filament-wound cylinder always demonstrates diverse performances due to the different designed parameters. This paper aims to provide a hybrid method for optimizing the winding angle and fiber volume content of a composite cylinder under internal pressure considering the stability of strength ratio. The analytical model of the composite cylinder un...
This paper presents the closed-form compliance equations of elliptic-revolute notch type multiple-axis flexure hinges undergoing small displacement for three-dimensional applications. Analytical compliance equations in six degrees of freedom are explicitly derived based on the beam theory. Comparisons with existing compliance equations of revolute...
The demand for large range three-degrees-of-freedom (3-DOF) micro/nanopositioning mechanisms has been increased recently for potential utilization in many applications. However, these mechanisms suffer from a large footprint and low motion accuracy, which severely affect their exploitation. In this paper, a compact mechanism is proposed to achieve...
With the advancement of technology, the demand for high precision micrograsping/releasing task is increasing. This paper presents a compliant piezoelectric actuated microgripper for precise positioning tasks. A parasitic motion minimization approach is adopted by the structural design of the microgripper. The over-constrained leaf flexure-based par...
Nano-structures such as carbon nanotube, nanobeams, nanorods, nanoplates, nanowires, and nanorings are tremendously used in various small-scale devices and investigating their dynamical behavior has been a hot research topic and can be beneficial in manufacturing and designing new devices. Therefore, free vibration analysis of a rotating cantilever...
In this study, parametric sensitivity was assessed based on a theoretical model of a composite cylinder under internal pressure. By varying the fiber volume content, number of layers, wound angle, internal pressure, and thickness of prepreg, the response objects of stresses and displacement were achieved. Besides, a global and local sensitivity ana...
As a typical non-deterministic polynomial (NP)-hard combinatorial optimization problem, the hybrid flow shop scheduling problem (HFSSP) is known to be a very common layout in real-life manufacturing scenarios. Even though many metaheuristic approaches have been presented for the HFSSP with makespan criterion, there are limitations of the metaheuris...
Compliant hinges are one of the most widely used design elements in precision mechanism design. They enable higher precision rotation than multi-part hinges and facilitate the adaptation of macro-scale parallel mechanisms into micro-scale. Existing hinge designs offer either a large range at the expense of rotational accuracy or attempt to produce...
In this paper, a flexure-based piezoelectric actuated microgripper is presented for high precision micro/nano manipulation tasks. A new design of microgripper based on a three-stage displacement amplification mechanism is utilized to magnify the piezoelectric actuator displacement. A bridge-type mechanism with a two-sided output port is serially co...
This paper presents a flexure-based piezoelectric actuated microgripper for high precision grasping/releasing tasks. The design of the microgripper consists of a three-stage amplification and transmission mechanism, and the parallel grasping technique. A bridge-type mechanism and two sequential lever-type mechanisms are symmetrically connected to a...
A three-degrees-of-freedom (3-DOF) monolithic compliant parallel micromanipulator with bridge-type displacement amplifier is presented in this paper. The research aims are to design a monolithic mechanism with capability of working in three translational axes and having a high resonant frequency. As a result of being precise in rotation, circular f...
This paper presents a compact flexure-based microgripper for grasping/releasing tasks. The microgripper is based on a double-stair bridge-type mechanism and consists of a bridge-type mechanism for amplifying the input displacement and the integrated parallelogram mechanisms for linearizing the motion at the microgripper jaws. The displacement trans...
In micro/nano manipulation mechanisms, the compliant z/tip/tilt stages have proved to have enormous advantages for out-of-plane positioning. Small workspace is a challenge in designing these out-of-plane positioning systems. This deficiency can be overcome significantly by a new insight into the optimization approach of a compliant mechanism that c...
Vibration-assisted tip-based nanofabrication techniques have advantages including increased material removal rate, reduced tip wear, and better material adaptability over traditional tip-based mechanical plowing. However, the influences of different vibration parameters on the machining efficiency are unclear, and how to select appropriate cutting...
The replacement rate of conventional material by composites is increasing. Possessing high specific strength and stiffness makes composites attractive to many applications. Different techniques are being utilized for composite placement processes. Robotic Fibre Placement (RFP) is introduced as a competing approach for composite fabrication. This ap...
This paper introduces a robust adaptive control methodology for piezo-actuated flexure-based micro/nano manipulation mechanisms. This special control approach is established for tracking of the desired complex motion trajectories with system uncertainties. Further, the control methodology is formulated to accommodate not only the system uncertainti...
This paper presents the design and experimental investigation of a piezo-driven monolithic compliant 3-PUU (1 prismatic joint (P-joint) and 2 universal joints (U-joints)) XYZ micro/nano manipulator with a high bandwidth frequency and a large workspace. The manipulator is manufactured using a 3D-printing technique, thus a monolithic structure is gua...
The recent developments in micro/nano-positioning technologies have highlighted the demand for compact large range three-degrees-of-freedom (3-DOF) XYΘ mechanisms for applications such as sample positioning in nanoimprint lithography, scanning probe microscopy, precision machining, and many more. However, this type of mechanisms suffers from a larg...
The mechanical behaviour of adherent cells when subjected to the local indentation can be modelled via various approaches. Specifically, the tensegrity structure has been widely used in describing the organization of discrete intracellular cytoskeletal components, including microtubules (MTs) and microfilaments. The establishment of a tensegrity mo...
The demand for high precision micro/nano manipulation is increasing for advanced manufacturing technology. The precise motion of the microgripper jaw is required to achieve high performance micromanipulation tasks. The parasitic motion of the microgripper reduces placement accuracy during pick and place tasks. This paper presents an asymmetric desi...
Planar 3-Degree of Freedom (3-DOF) micropositioning stages are widely adopted in many precision applications for their ability to provide in-plane rotation. However, their motion accuracy is adversely affected by cross-couplings, model uncertainty, and external disturbances. This work proposes an optimized robust control methodology based on distur...
Due to its flexibility and versatility, robotic belt polishing is one of the most effective processing methods to improve the surface quality of aeroengine blades. Since belt polishing of blades is a material removal process aimed at reducing surface roughness, it is difficult to achieve both minimum surface roughness and maximum material removal r...
Hector simultaneous localisation and mapping(SLAM) is a popular approach for mapping a space. It requires only a Light Detection and Ranging (LiDAR) sensor to perform the mapping. It uses previous scan results to estimate the current state of the system. However, Hector SLAM suffers from serious drifting in the starting stage. This does not affect...
Atomic force microscopy (AFM) is one of the useful tools in the fields of nanoscale measurement and manipulation. High speed scanning is one of the crucial requirements for live cell imaging and soft matter characterization. The scanning speed is limited by the bandwidth of the AFM’s detection and actuation components. Generally, the bandwidth of a...
Hyperthermia treatments require precise control of thermal energy to form the coagulation zones which sufficiently cover the tumor without affecting surrounding healthy tissues. This has led modeling of soft tissue thermal damage to become important in hyperthermia treatments to completely eradicate tumors without inducing tissue damage to surround...
Two of the key issues to meet the requirements of micro/nano manipulation in some complex cases are the adequate workspace and payload capacity of the moving platform. This paper presents the development and control methodologies for a 2 degrees of freedom (DOF) flexure-based micro/nano positioning stage with the capabilities of decoupling motion a...
This paper presents a new methodology based on neural dynamics for optimal robot path planning by drawing an analogy between cellular neural network (CNN) and path planning of mobile robots. The target activity is treated as an energy source injected into the neural system and is propagated through the local connectivity of cells in the state space...
Flexure-based mechanisms are widely utilized in nano manipulations. The closed-form statics and dynamics modeling is difficult due to the complex topologies, the inevitable compliance of levers, the Hertzian contact interface, etc. This paper presents the closed-form modeling of an XY nano-manipulator consisting of statically indeterminate symmetri...
Efficient simulation of heating processes in thermal ablation is of great importance for surgical simulation of thermal ablation procedures. This paper presents a Graphics Processing Unit (GPU) assisted finite element methodology for modeling and analysis of bio-heat transfer processes in the treatment of thermal ablation. The proposed methodology...
Modeling of thermomechanical behavior of soft tissues is vitally important for the development of surgical simulation of hyperthermia procedures. Currently, most literature considers only temperature-independent thermal parameters, such as the temperature-independent tissue specific heat capacity, thermal conductivity and stress–strain relationship...
In fields requiring precision manipulation, monolithic flexures are frequently used to guide motion. They utilize the structure's predictable elastic deformation, when a force is applied, to facilitate linear and rotational motions. Amongst the several common flexure designs, leaf flexures are the best suited to ‘large’ displacement tasks. Their ra...
Atomic force microscopy (AFM) is a useful tool in nanoscale measurement. However, conventional AFM suffers from slow scan speed, limiting the use for biological detection or nanofabrication, due to the limited bandwidth of AFM components. In which the resonant frequency of the AFM scanner is usually too low to achieve high-speed scanning. In this p...
A key hurdle to meet the needs of micro/nano manipulation in some complex cases is the inadequate workspace and flexibility of the operation ends. This paper presents a 6-degree of freedom (DOF) serial-parallel precision positioning system, which consists of two compact type 3-DOF parallel mechanisms. Each parallel mechanism is driven by three piez...
Bridge structures are one of the two most common design elements for providing input from stroke-limited piezoelectric actuators to flexure based mechanisms for micro/nano positioning and manipulation. However, the amplification achieved by such structures is dependent on both the element geometry and the load provided by the driven mechanism. In t...
In the field of micromanipulation, there exists a pressing need for flexible manipulation systems that facilitate the intuitive performance of a range of micro-scale tasks. Parallel or serial chains of compliant flexure mechanisms, driven by piezoelectric actuators (PEAs) are ideal micropositioners for these tasks. They offer smooth, continuous mot...
Robotic fiber placement is a promising technique to manufacture complex components for industry. Compaction pressure, hot gas torch temperature and laying velocity are the key molding factors for fiber placement process, and their optimal selection directly affects the product performance. Small compaction pressure, low gas temperature and fast lay...
Compliant bridge mechanisms are frequently utilized to scale micrometer order motions of piezoelectric actuators to levels suitable for desired applications. Analytical equations have previously been specifically developed for two configurations of bridge mechanisms: parallel and rhombic type. Based on elastic beam theory, a kinematic analysis of c...
A XYθz stage is designed and experimentally tested. This developed stage is driven by three piezoelectric actuators (PZTs) and guided by a flexure hinge based mechanism with three symmetric T-shape hinges. It was manufactured monolithically by using wire electrical discharge machining technology. In addition, considering the both electrical and mec...
This paper presents the design and test of a 6-degree-of-freedom(DOF) precision positioning system, which is assembled by two different 3-DOF precision positioning stages each driven by three piezoelectric actuators (PEAs). Based on the precision PEAs and flexure hinge mechanisms, high precision motion is obtained. The design methodology and kinema...
Due to their high strength-to-weight and stiffness-to-weight ratios, composite materials are widely used in the aerospace industry. As a key factor for the placement process, the compaction force directly affects the product performance by changing the interlaminar bonding strength. Besides the magnitude of the interlaminar bonding strength, the un...
This paper presents the design and test of a 6-degree-of-freedom(DOF) precision positioning system, which is assembled by two different 3-DOF precision positioning stages each driven by three piezoelectric actuators (PEAs). Based on the precision PEAs and flexure hinge mechanisms, high precision motion is obtained. The design methodology and kinema...
This paper proposes an autonomous system identification methodology for fixed wing autonomous aerial vehicles (AAVs) and implementation with a robust control technique. This system identification methodology does not require the user to provide any knowledge of the aerodynamic derivatives of the AAV. Hence, this control methodology is applicable to...
This paper presents the development and implementation of a single tilting rotor multirotor helicopter. A single tilting rotor multirotor helicopter is proposed that allows for decoupled lateral acceleration and attitude states. A dynamics model of the proposed multirotor helicopter is established to enable control system development. A control sys...
The development of many applications of microtechnology requires flexible new manipulation tools to perform micromanipulation tasks. A modular piezo-actuated translational flexure-based mechanism is investigated as a basis for the construction of bespoke micromanipulators. The design allows individual single degree of freedom (DOF) translational mo...
This paper presents the mechanical design, optimisation, and computational and experimental analyses of a flexure-based single degree of freedom rotation stage. The mechanism possesses a rotationally symmetric configuration, whilst only employing a single piezoelectric actuator, which increases the mechanism's ability to reject cross-coupled drift...