Bidur Khanal

Bidur Khanal
Rochester Institute of Technology | RIT · Chester F. Carlson Center for Imaging Science

About

23
Publications
4,829
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
90
Citations
Introduction
My research interests include: Deep Learning, Computer Vision and Medical Image Analysis

Publications

Publications (23)
Preprint
Full-text available
Accurate left atrium (LA) segmentation from pre-operative scans is crucial for diagnosing atrial fibrillation, treatment planning, and supporting surgical interventions. While deep learning models are key in medical image segmentation, they often require extensive manually annotated data. Foundation models trained on larger datasets have reduced th...
Preprint
Full-text available
The robustness of supervised deep learning-based medical image classification is significantly undermined by label noise. Although several methods have been proposed to enhance classification performance in the presence of noisy labels, they face some challenges: 1) a struggle with class-imbalanced datasets, leading to the frequent overlooking of m...
Preprint
Full-text available
Medical Vision Language Pretraining (VLP) has recently emerged as a promising solution to the scarcity of labeled data in the medical domain. By leveraging paired/unpaired vision and text datasets through self-supervised learning, models can be trained to acquire vast knowledge and learn robust feature representations. Such pretrained models have t...
Preprint
Full-text available
Noisy labels can significantly impact medical image classification, particularly in deep learning , by corrupting learned features. Self-supervised pretraining, which doesn't rely on labeled data, can enhance robustness against noisy labels. However, this robustness varies based on factors like the number of classes, dataset complexity, and trainin...
Conference Paper
Acquiring properly annotated data is expensive in the medical field as it requires experts, time-consuming protocols, and rigorous validation. Active learning attempts to minimize the need for large annotated samples by actively sampling the most informative examples for annotation. These examples contribute significantly to improving the performan...
Chapter
Noisy labels hurt deep learning-based supervised image classification performance as the models may overfit the noise and learn corrupted feature extractors. For natural image classification training with noisy labeled data, model initialization with contrastive self-supervised pretrained weights has shown to reduce feature corruption and improve c...
Preprint
Full-text available
Noisy labels hurt deep learning-based supervised image classification performance as the models may overfit the noise and learn corrupted feature extractors. For natural image classification training with noisy labeled data, model initialization with contrastive self-supervised pretrained weights has shown to reduce feature corruption and improve c...
Preprint
Full-text available
Acquiring properly annotated data is expensive in the medical field as it requires experts, time-consuming protocols, and rigorous validation. Active learning attempts to minimize the need for large annotated samples by actively sampling the most informative examples for annotation. These examples contribute significantly to improving the performan...
Conference Paper
Full-text available
Label noise is inevitable in medical image databases developed for deep learning due to the inter-observer variability caused by the different levels of expertise of the experts annotating the images, and, in some cases, the automated methods that generate labels from medical reports. It is known that incorrect annotations or label noise can degrad...
Article
Full-text available
Paper-based analytical devices (PADs) employing colorimetric detection and smartphone images have gained wider acceptance in a variety of measurement applications. PADs are primarily meant to be used in field settings where assay and imaging conditions greatly vary, resulting in less accurate results. Recently, machine-learning (ML)-assisted models...
Preprint
Full-text available
Paper-based analytical devices (PADs) employing colorimetric detection and smartphone images have gained wider acceptance in a variety of measurement applications. The PADs are primarily meant to be used in field settings where assay and imaging conditions greatly vary resulting in less accurate results. Recently, machine learning (ML) assisted mod...
Preprint
Paper-based analytical devices (PADs) employing colorimetric detection and smartphone images have gained wider acceptance in a variety of measurement applications. The PADs are primarily meant to be used in field settings where assay and imaging conditions greatly vary resulting in less accurate results. Recently, machine learning (ML) assisted mod...
Preprint
Full-text available
Incorrectly labeled examples, or label noise, is common in real-world computer vision datasets. While the impact of label noise on learning in deep neural networks has been studied in prior work, these studies have exclusively focused on homogeneous label noise, i.e., the degree of label noise is the same across all categories. However, in the real...
Article
Full-text available
Scoliosis is a common medical condition, which occurs most often during the growth spurt just before puberty. Untreated Scoliosis may cause long-term sequelae. Therefore, accurate automated quantitative estimation of spinal curvature is an important task for the clinical evaluation and treatment planning of Scoliosis. A couple of attempts have been...
Preprint
Full-text available
Multi-domain image-to-image translation with conditional Generative Adversarial Networks (GANs) can generate highly photo realistic images with desired target classes, yet these synthetic images have not always been helpful to improve downstream supervised tasks such as image classification. Improving downstream tasks with synthetic examples requir...
Chapter
Incorrectly labeled examples, or label noise, is common in real-world computer vision datasets. While the impact of label noise on learning in deep neural networks has been studied in prior work, these studies have exclusively focused on homogeneous label noise, i.e., the degree of label noise is the same across all categories. However, in the real...
Chapter
Full-text available
Correct evaluation and treatment of Scoliosis require accurate estimation of spinal curvature. Current gold standard is to manually estimate Cobb Angles in spinal X-ray images which is time consuming and has high inter-rater variability. We propose an automatic method with a novel framework that first detects vertebrae as objects followed by a land...
Preprint
Full-text available
Correct evaluation and treatment of Scoliosis require accurate estimation of spinal curvature. Current gold standard is to manually estimate Cobb Angles in spinal X-ray images which is time consuming and has high inter-rater variability. We propose an automatic method with a novel framework that first detects vertebrae as objects followed by a land...
Preprint
Full-text available
Correct evaluation and treatment of Scoliosis require accurate estimation of spinal curvature. Current gold standard is to manually estimate Cobb Angles in spinal X-ray images which is time consuming and has high inter-rater variability. We propose an automatic method with a novel framework that first detects vertebrae as objects followed by a land...
Conference Paper
Full-text available
Mental States are a function of brain activity; with advancements in Brain Computer Interface (BCI) tools, they can be effectively predicted. Generally, BCI researches are sophisticated requiring multi-channel electrodes, and often carried out in controlled lab environment. This paper illustrates that a simple BCI research, targeting specific regio...

Questions

Question (1)
Question
I am looking for a high-resolution dataset (alternative to ImageNet) that has classes with sub-groups. I need this dataset for the domain transfer experiment. Basically, I will be using DNN pre-trained on ImageNet to extract features. Example: in CIFAR100, 100 classes are grouped into 20 super classes, such that each super classes have some sub-classes. I need similar dataset, but it has to be high resolution. Can you suggest any suggest one?

Network

Cited By