Bianca van Kemenade

Bianca van Kemenade
University of Glasgow | UofG · Institute of Neuroscience and Psychology

Dr. rer. nat.

About

32
Publications
3,982
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
404
Citations
Additional affiliations
November 2019 - present
University of Glasgow
Position
  • PostDoc Position
April 2014 - October 2019
Philipps University of Marburg
Position
  • PostDoc Position
October 2013 - March 2014
Humboldt-Universität zu Berlin
Position
  • PostDoc Position
Education
October 2010 - March 2014
Humboldt-Universität zu Berlin
Field of study
  • Psychology
September 2009 - June 2010
Ecole Normale Supérieure de Paris
Field of study
  • Dual Masters in Brain and Mind Sciences
September 2008 - June 2009
University College London
Field of study
  • Dual Masters in Brain and Mind Sciences

Publications

Publications (32)
Article
It has been widely assumed that internal forward models use efference copies to create predictions about the sensory consequences of our own actions. While these predictions have frequently been associated with a reduced blood oxygen level dependent (BOLD) response in sensory cortices, the timing and duration of the hemodynamic response for the pro...
Article
Sensory consequences of one's own action are often perceived as less intense, and lead to reduced neural responses, compared to externally generated stimuli. Presumably, such sensory attenuation is due to predictive mechanisms based on the motor command (efference copy). However, sensory attenuation has also been observed outside the context of vol...
Article
Full-text available
Predictions shape our perception. The theory of predictive processing poses that our brains make sense of incoming sensory input by generating predictions, which are sent back from higher to lower levels of the processing hierarchy. These predictions are based on our internal model of the world and enable inferences about the hidden causes of the s...
Article
Full-text available
Adaptation to delays between actions and sensory feedback is important for efficiently interacting with our environment. Adaptation may rely on predictions of action-feedback pairing (motor-sensory component), or predictions of tactile-proprioceptive sensation from the action and sensory feedback of the action (inter-sensory component). Reliability...
Preprint
It has been widely assumed that internal forward models use efference copies to create predictions about the sensory consequences of our own actions. While these predictions had been frequently associated with reduced neural processing in sensory cortices, the timing and duration of the hemodynamic response of self-generated as opposed to externall...
Preprint
Full-text available
Adaptation to delays between actions and sensory feedback is important for efficiently interacting with our environment. Adaptation may rely on predictions of action-feedback pairing (motor-sensory component), or predictions of tactile-proprioceptive sensation from the action and sensory feedback of the action (inter-sensory component). Reliability...
Preprint
Full-text available
Sensory consequences of one's own action are often perceived as less intense, and lead to reduced neural responses, compared to externally generated stimuli. Presumably, such sensory attenuation is due to predictive mechanisms based on the motor command (efference copy). However, sensory attenuation has also been observed outside the context of vol...
Article
Full-text available
Sensory action consequences are highly predictable and thus engage less neural resources compared to externally generated sensory events. While this has frequently been observed to lead to attenuated perceptual sensitivity and suppression of activity in sensory cortices, some studies conversely reported enhanced perceptual sensitivity for action co...
Article
Schizophrenia spectrum disorders (SSD) are characterized by disturbed self-other distinction. While previous studies associate abnormalities in the sense of agency (ie, the feeling that an action and the resulting sensory consequences are produced by oneself) with disturbed processing in the angular gyrus, passive movement conditions to isolate con...
Preprint
Predictions shape our perception. The theory of predictive processing poses that our brains make sense of incoming sensory input by generating predictions, which are sent back from higher to lower levels of the processing hierarchy. These predictions are based on our internal model of the world and enable inferences about the hidden causes of the s...
Article
Full-text available
Patients with schizophrenia spectrum disorder often demonstrate impairments in action-outcome monitoring. Passivity phenomena and hallucinations, in particular, have been related to impairments of efference copy-based predictions which are relevant for the monitoring of outcomes produced by voluntary action. Frontal transcranial direct current stim...
Conference Paper
Full-text available
Background Core symptoms of schizophrenia include disturbances in the distinction between the self and the external world. It has been suggested that self-other distinction is governed by predictive processing: Copies of an action’s motor command are used to generate forward models that predict upcoming sensory input. These predictions are compared...
Article
Full-text available
Forward models can predict sensory consequences of self-action, which is reflected by less neural processing for actively than passively generated sensory inputs (BOLD suppression effect). However, it remains open whether forward models take the identity of a moving body part into account when predicting the sensory consequences of an action. In th...
Article
Full-text available
Sensory consequences of self-generated as opposed to externally generated movements are perceived as less intense and lead to less neural activity in corresponding sensory cortices, presumably due to predictive mechanisms. Self-generated sensory inputs have been mostly studied in a single modality, using abstract feedback, with control conditions n...
Article
Tool use is one of the most remarkable skills of the human species, enabling complex interactions with the environment. To establish such interactions, we predict the sensory consequences of our actions based on a copy of the motor command (efference copy), leading to an attenuated perception and neural suppression of the sensory input. Here, we in...
Article
During self-motion through an environment, our sensory systems are confronted with a constant flow of information from different modalities. To successfully navigate, self-induced sensory signals have to be dissociated from externally induced sensory signals. Previous studies have suggested that the processing of self-induced sensory information is...
Article
Full-text available
Action–feedback monitoring is essential to ensure meaningful interactions with the external world. This process involves generating efference copy-based sensory predictions and comparing these with the actual action-feedback. As neural correlates of comparator processes, previous fMRI studies have provided heterogeneous results, including the cereb...
Article
Full-text available
Predicting and processing the sensory consequences of one's own actions is essential to enable successful interactions with the environment. Previous studies have suggested that the angular gyrus detects discrepancies between predicted and actual action consequences, at least for unimodal feedback. However, most actions lead to multisensory consequ...
Article
Full-text available
Speech-associated gestures represent an important communication modality. However, individual differences in the production and perception of gestures are not well understood so far. We hypothesized that the perception of multisensory action consequences might play a crucial role. Verbal communication involves continuous calibration of audio–visual...
Article
Full-text available
Perceiving the sensory consequences of one’s own actions is essential to successfully interact with the environment. Previous studies compared self- (active) and externally generated (passive) movements to investigate the processing of voluntary action–outcomes. Increased temporal binding (intentional binding) as well as increased detection of dela...
Article
Full-text available
Forming a coherent percept of an event requires different sensory inputs originating from the event to be bound. Perceiving synchrony aids in binding of these inputs. In two experiments, we investigated how voluntary movements influence the perception of simultaneity, by measuring simultaneity judgments (SJs) for an audiovisual (AV) stimulus pair t...
Article
Full-text available
Binocular rivalry is a phenomenon where the simultaneous presentation of two different stimuli to the two eyes leads to alternating perception of the two stimuli. The temporary dominance of one stimulus over the other is influenced by several factors. Here, we studied the influence of reward on binocular rivalry dynamics and its neural representati...
Article
Full-text available
Predictive mechanisms are essential to successfully interact with the environment and to compensate for delays in the transmission of neural signals. However, whether and how we predict multisensory action outcomes remains largely unknown. Here we investigated the existence of multisensory predictive mechanisms in a context where actions have outco...
Data
Table A, Table B, Fig A, Fig B. (DOCX)
Article
Full-text available
Predicting the sensory consequences of our own actions contributes to efficient sensory processing and might help distinguish the consequences of self- versus externally generated actions. Previous research using unimodal stimuli has provided evidence for the existence of a forward model, which explains how such sensory predictions are generated an...
Article
Biological motion processing is critical for survival and social interaction, but whether processing of these stimuli can take place outside awareness is unknown. Point-light biological motion stimuli consisting of about a dozen markers attached to the limbs of an actor have been used for decades to study the perception of biological motion. Here,...
Article
When two gratings drifting in different directions are superimposed, the resulting stimulus can be perceived as two overlapping component gratings moving in different directions or as a single pattern moving in one direction. Whilst the motion direction of component gratings is already represented in visual area V1, the majority of previous studies...
Article
Full-text available
Using MRI-guided off-line TMS, we targeted two areas implicated in biological motion processing: ventral premotor cortex (PMC) and posterior STS (pSTS), plus a control site (vertex). Participants performed a detection task on noise-masked point-light displays of human animations and scrambled versions of the same stimuli. Perceptual thresholds were...
Article
Multiple brain areas have been identified as important for biological motion processing in neuroimaging and neuropsychological studies. Here, we investigated the role of two areas implicated in biological motion, the posterior superior temporal sulcus (STS) and the premotor cortex, using offline transcranial magnetic stimulation (TMS). Stimuli were...

Network

Cited By