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Introduction

Atrial fibrillation (AF) is the most common and
troublesome arrhythmia in clinical practice and
is a significant contributor to cardiovascular
morbidity and possibly mortality [1,2]. Although
AF can clearly occur in patients without evident
heart disease (so-called lone AF), organic heart
diseases, such as congestive heart failure (CHF),
mitral valve disease, and coronary artery disease,
are major co-existing conditions that contribute
to the occurrence and persistence of AF. The
mechanisms by which these cardiac conditions
favor the occurrence of AF are interesting and
may help in designing more effective therapeutic
approaches. Despite the fact that the pathophys-
iology of AF has been investigated extensively
for almost a century, the underlying mechanisms
remain incompletely understood [3].

Classical mechanisms of AF first described in
the early 20th century [3] still form the frame-
work for our understanding of its pathophysiol-
ogy. However, numerous studies performed over
the past 10 years have given us more detailed in-
sights into the pathogenesis of clinically-relevant
AF. This article reviews the contributions of some
of this recent work to our understanding of elec-
trophysiological, ionic and molecular mechanisms
of AF and of its clinical pathophysiology and man-
agement.

Classical Theories of AF Mechanism

In 1924, Garrey [4] reviewed the contemporary
understanding of AF mechanisms, highlighting
3 competing theories of its electrical basis: (1)
a “hyperectopia theory”, according to which sin-
gle or multiple rapidly-firing atrial ectopic foci

lead to fibrillation (Fig. 1A), (2) a single ro-
tor (“mother wave”) with fibrillatory conduction
(Fig. 1B), and (3) multiple circuit reentry (Fig. 1C).
Moe developed the “multiple wavelet hypothesis”
of AF, which resembled earlier conceptualizations
of multiple circuit reentry, refining them by re-
placing the notion of closed loop reentry with the
idea that AF is characterized by a large num-
ber of propagating wave fronts, a sufficient num-
ber of which must always find excitable tissue for
the arrhythmia to persist. His concept was so-
lidified by the development of a computer model
of atrial tissue, which showed that AF can be
sustained by multiple propagating wave fronts if
appropriately short and heterogeneous refractory
properties are included [5]. Subsequently, exper-
imental work by Allessie et al. provided exper-
imental support for the multiple wavelet model
[6].

A general conceptual model of these AF mecha-
nisms is presented in Figure 2. Reentry that main-
tains AF requires an appropriate substrate and an
initiating factor, or trigger, generally in the form of
a premature beat. Ectopic activity can provide the
trigger for initiating reentry, or if it is rapid and
sustained, may maintain AF by itself. In order to
explain the irregular atrial activation inherent to
AF on the basis of regularly discharging sources
like rapid single-site ectopy or single-circuit reen-
try, one must invoke break-up of the emanating
wave front against tissue with spatially variable
refractory or conduction properties.

The “wavelength” is a useful concept in the con-
sideration of reentry and AF. The wavelength (dis-
tance traveled by the electrical impulse in one
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Fig. 1. Ideas of AF mechanisms in the early 20th century.

refractory period, or product of refractory period
and conduction velocity) is, according to Allessie’s
leading circle model of reentry, the minimum path
length for a reentry circuit (Fig. 3A). It is believed
that in normal human atria, the wavelength is
such that few reentry circuits can be accommo-
dated and AF, once initiated, tends to terminate
spontaneously when the underlying functional cir-
cuits die out (Fig. 3B, left). A decreased wavelength
permits a larger number of functional reentry cir-
cuits to be accommodated within a given mass
of tissue, and therefore promotes multiple circuit
reentry (Fig. 3B, right).

Recent work suggests that local conduction dis-
turbances (for example, due to tissue fibrosis) can
stabilize reentry by producing conduction barri-
ers (Fig. 4), allowing for AF without decreases
in wavelength [7]. Haı̈ssaguere et al. have also
demonstrated that ectopic activity in the atrial
sleeves surrounding pulmonary veins may be cru-
cial in initiating, and possibly even maintaining,
AF in some clinical populations [8], consistent
with classical “hyperectopia theory”.

Fig. 2. A general schema of the mechanisms presently
believed to be involved in the pathophysiology of AF.

Atrial Remodeling

Atrial remodeling refers to any change in atrial
structure or function that promotes atrial ar-
rhythmogenesis. Two principal forms have been
identified in animal models- tachycardia-induced
remodeling and structural remodeling.

Atrial Tachycardia Remodeling
General Properties. Clinical experience sug-
gests that paroxysmal AF often progresses into
persistent AF, and the longer AF persists, the more
difficult it becomes to maintain sinus rhythm af-
ter cardioversion. In 1995, Wijffels et al. made the
now-classical observation that AF modifies atrial
properties so that AF maintains itself more read-
ily, a phenomenon called electrical remodeling and
described as “AF begets AF” [9]. Sustained atrial
tachycardia produces a similar form of remodel-
ing, suggesting that it is the rapid atrial rate of AF
that is the primary remodeling stimulus [10–12].
The remodeling produced by atrial tachycardia
and AF has been termed “atrial tachycardia
remodeling” to differentiate it from other forms
of atrial remodeling [3]. A prominent finding in
atrial tachycardia remodeling is a decrease in
atrial effective refractory period (ERP) and reduc-
tion in physiological ERP rate adaptation [9–12].
This ERP decrease reduces the wavelength, and
thus atrial tachycardia remodeling produces a
substrate favorable for AF (Figs. 2 and 3).

The signal transduction leading to ERP abbre-
viation in AF is still unclear. However, cellular
Ca2+ loading is believed to play an important role
[13]. Ca2+ enters the cell through L-type Ca2+
channels during each action potential, and with
the approximately 10-fold increase in atrial firing
rate when the atria go from sinus rhythm to AF,
Ca2+ loading is substantially enhanced (Fig. 5).
Atrial myocytes protect themselves against Ca2+
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Fig. 3. (A) The wavelength is given by the product of ERP and conduction velocity. According to leading circle recently theory, the
wavelength is the shortest circuit size that can sustain reentry. (B) Left: in a normal atrium with normal wavelength, the number of
re-entrant waves is small, thus AF is unstable and self-terminating. Right: if the wavelength is reduced, either by decreasing ERP
or conduction velocity (CV), re-entrant circuits are smaller so that more re-entrant waves can be accommodated and AF is more
likely to be sustained.

loading by short- and long-term mechanisms,
with the short term mechanisms consisting
primarily of functional L-type Ca2+ current (ICaL)
inactivation and the long-term mechanisms
including down regulation of mRNA encoding
L-type Ca2+ channels [14] and causing sustained
ICaL decreases that reduce atrial action potential
duration (APD) and consequently ERP [15]. Na+
current also appears to be down-regulated [16],
potentially contributing to atrial conduction slow-
ing [12,16] and helping to promote AF by reducing
the wavelength. In addition to decreasing ERP in
an absolute fashion, atrial tachycardia decreases

Fig. 4. Same format as Figure 3. Even without a decrease in wavelength, local conduction abnormalities can stabilize reentry,
allowing it to be sustained even when the number of circuits that can be accommodated is small.

ERP in a spatially heterogeneous way [12,17],
which facilitates multiple circuit reentry [5,18].
However, the time course of AF promotion due to
atrial tachycardia remodeling is slower than that
of ERP changes, indicating the involvement of
additional mechanisms [9,12].

Possible factors involved in the time-frame
discordance between ERP abbreviation and AF
promotion may be slowly-progressive conduction
slowing due to slowly-progressive decrease in
Na+ current (INa) [12,16], spatially heteroge-
neous downregulation of the expression of atrial
connexin 40 [19,20] and atrial cardiomyocyte
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Fig. 5. A schema of the potential pathogenesis of atrial-tachycardia remodeling. Ca2+ loading due to increased rates causes a
threat to cell viability, which is prevented by short- and long-term adaptations that reduce Ca2+ entry, providing protective negative
feedback on Ca2+ loading, APD abbreviation, and positive feedback on AF likelihood by reducing ERP and wavelength (WL).

dedifferentiation [21]. In addition to its electrical
effects, atrial tachycardia suppresses atrial my-
ocyte contractility, at least in part by altering Ca2+
homeostasis [22], and thereby causes “contractile
remodeling” [23] that may contribute to atrial sta-
sis and the associated thromboembolic predisposi-
tion, as well as to AF perpetuation. Although the
electrical changes caused by atrial tachycardia are
rapidly reversible (within several days) after the
cessation of atrial tachycardia, other alterations
(such as ultrastructural remodeling) may reverse
more slowly [21]. Atrial tachycardia remodeling
is believed to contribute to a variety of clinically
important phenomena, including the tendency
of paroxysmal AF to become persistent, the
tendency of AF to recur soon after cardioversion,
and the tendency for longer-lasting AF to become
refractory to pharmacological cardioversion [24].

Ionic Mechanisms. The ERP abbreviation
caused by atrial tachycardia remodeling is due to
APD abbreviation [15,25]. An important under-
lying ionic mechanism is down-regulation of ICaL
[14], which may contribute to atrial contractile
dysfunction [22,23]. There is also evidence for
down regulation of the transient outward K+-
current Ito [14,15], but its functional importance is
unknown. Although initial experimental studies
suggested no change in inward-rectifier current

in atrial tachycardia remodeling [14,15], recent
studies have shown up-regulation of inward
rectifier K+-current [26,27], which may include
contributions from both the background K+
current IK1 [26] and a constitutively-activated
acetylcholine-dependent current (IKACh) [27].
There is also evidence for decreased INa [16,28],
which may contribute to tachycardia-induced
conduction slowing. Atrial myocytes from right
atrial appendages of patients with persistent
AF have reduced Ito [29,30] and ICaL [30,31] and
increased inward-rectifier K+-currents [29,30,32].
To date, decreased INa has not been documented
in cardiomyocytes from AF patients. As in studies
with atrial-tachycardia remodeled canine car-
diomyocytes [14], inhibition of ICaL mimics the
action potential duration changes associated with
AF in man [30,31].

Molecular Mechanisms. The molecular mech-
anisms underlying atrial tachycardia remodeling
are still incompletely understood. A conceptual
model of atrial tachycardia remodeling is summa-
rized in Figure 5. AF increases atrial rate ∼10-
fold, which increases atrial myocyte Ca2+ load-
ing [13,33]. Since Ca2+ loading can be cytotoxic,
there is a need for mechanisms to protect against
cellular Ca2+ overload. Both short and long term
mechanisms come into play. Abrupt rate increases
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inactivate ICaL within minutes by a combination
of intracellular Ca2+-dependent inactivation and
incomplete recovery from classical voltage- and
time-dependent inactivation [34]. Over the sub-
sequent days to weeks, the expression of mRNA
encoding the α-subunits of Ito, ICa and INa chan-
nels decreases in parallel with reductions in ionic
currents [14–16]. There is evidence in an iso-
lated mouse atrial cell-line system (HL-1 cells)
that excessively rapid activation can downreg-
ulate protein expression directly by activating
proteases like calpain [35]. Activated myocardial
proteases, including calpain and caspases, may di-
rectly break down ion channel proteins (like ICaL)
and myofilament proteins [36–39], contributing
to ion-channel downregulation but also causing
myolysis and energy-sparing reductions in con-
tractility. Similar changes (down-regulation of ion-
channel mRNA and calpain activation) have been
reported in atrial tissue specimens from AF pa-
tients [40–43].

Decreased ICaL reduces Ca2+ transport into
the cell and reduces cellular Ca2+ loading, but
also decreases action potential duration (ICaL is
the main inward current maintaining the ac-
tion potential plateau), thus decreasing the ERP
and wavelength, favoring multiple circuit reen-
try. There is evidence that reduction in extracel-
lular Ca2+ or prevention of Ca2+ entry can in-
hibit some of the remodeling changes caused by
atrial tachycardia [33]. The relationship between
Ca2+ loading and other ionic changes that have
been reported with tachycardia-remodeling, such
as decreased Ito or INa, changes in connexin expres-
sion and increased inward-rectifier currents, is
unknown.

CHF and Atrial Structural Remodeling
CHF is one of the most common clinical causes
of AF [44]. In a dog model of CHF caused by
ventricular tachypacing for 2–5 weeks, the ability
to induce prolonged AF duration is markedly
increased [7,45,46]. Atrial ERP is unchanged or
increased by CHF, but local atrial conduction
abnormalities occur in association with marked
fibrosis between and within atrial muscle bundles
[7]. It is believed that these abnormalities in
atrial structure and local conduction may sta-
bilize atrial reentry, allowing for AF-sustaining
reentry circuits that sometimes appear to have
a stable macro-reentry pattern [47,48]. This
mechanism of AF maintenance resembles in some
respects the single-circuit reentry AF mechanism
championed by Sir Thomas Lewis (Fig. 1B).
According to this idea, instead of AF being main-
tained by multiple simultaneous reentry circuits
by virtue of wavelength reduction, wavelength is
unchanged but reentry is stabilized by anchoring
to fibrotic zones of conduction impairment (Fig. 4).

An additional mechanism that may contribute
to atrial tachyarrhythmias in CHF is triggered
ectopic activity related to delayed afterdepolar-
izations that cause focal atrial tachyarrhythmias
[49,50], analogous to the mechanism shown in
Figure 1A.

Ionic Mechanisms. Like atrial tachycardia,
CHF causes remodeling of atrial ionic current
and transport mechanisms [51]. However, the
ionic remodeling caused by CHF involves a more
balanced decrease in the inward current ICaL and
outward currents like Ito and IKs [51], resulting in
no change or an increase in APD. Thus, the ionic
current changes in CHF do not alter atrial action
potential properties in a way that favors atrial
reentry. On the other hand, CHF also upregulates
the Na+, Ca2+-exchanger (NCX) [51]. The func-
tion of the NCX is illustrated in Figure 6A. Ca2+
enters the cell during the plateau of the action po-
tential, triggering cellular contraction. This Ca2+
then has to be extruded in diastole to maintain
ionic balance, with one of the major extrusion
mechanisms being the NCX. The NCX extrudes
one Ca2+ ion for every 3 Na+ ions transported
into the cell, thus carrying a net positive charge
into the cell (and tending to depolarize it) with
each cycle. If NCX activity is enhanced as in CHF
(Fig. 6B), the inward positive-charge carrying
function of the NCX is enhanced, potentially
producing measurable delayed afterdepolariza-
tions (DADs). If the DADs are large enough,

Fig. 6. (A) The Na+, Ca2+ exchanger (NCX) extrudes Ca2+

that enters during the plateau of the action potential by
exchanging one Ca2+ ion (net charge +2) for 3 Na+ ions (net
charge +3, leading to one extra positive charge moving inward
per cycle) during phase 4 (after repolarization). (B) Increased
NCX activity due to CHF can increase the net inward charge
movement to the point that a perceptible depolarization (a
delayed after-depolarization, DAD) results. If the DAD is large
enough, it can reach threshold (dashed line) and cause ectopic
activity. A sequence of DADs can cause a tachyarrhythmia.
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they can reach threshold and cause ectopic firing
and tachyarrhythmias. DAD-related activity
may account for the occurrence of focal atrial
tachyarrhythmias in experimental CHF [49,50].
Observations of changes in atrial remodeling fol-
lowing recovery from tachypacing-induced CHF
in the dog indicate that AF is still inducible when
NCX enhancement has disappeared, indicating
that ionic remodeling is not essential for CHF-
induced AF promotion [46]. On the other hand,
atrial fibrosis does not regress following recovery
from CHF [45,46], suggesting that fibrosis may be
a very important contributor to CHF induced AF
promotion.

Molecular Mechanisms. The molecular mech-
anisms underlying atrial remodeling in CHF are
complex. Atrial angiotensin-II (Ang-II) concen-
trations increase rapidly in dogs subjected to
ventricular-tachypacing that induces CHF, in as-
sociation with increased phosphorylation of the
mitogen-activated protein kinases (MAPKs) ex-
tracellular signal-related kinase (ERK), p38 ki-
nase and N-terminal-c-jun kinase (JNK) [52,53].
Atrial Ang-II concentrations increase before
plasma levels rise [53], suggesting in situ cardiac
tissue synthesis as the source of atrial Ang-II in-
creases. Increased tissue Ang-II and phosphory-
lated MAPK concentrations are followed by an
increase in the ratio of pro-apoptotic (Bax) to anti-
apoptotic (Bcl-2) protein expression, activation of
the apoptotic executioner serine-protease caspase-
3, evidence of transient apoptosis (increased ter-
minal dUTP nick-end labeling (TUNEL) positivity
and DNA fragmentation), an increased rate of cell
death and leukocyte infiltration, and finally tissue
fibrosis [53]. The early activation of Ang-II and
its known ability to produce many of the changes
detected (apoptosis, MAPK activation, necrosis,
leukocyte infiltration, fibrosis) suggests that in-
hibiting Ang-II production or Ang-II interaction
with its receptor should be able to prevent this
type of remodeling. In fact, ACE inhibition [52,53]
and blockade of Ang-II type 1 receptors [54] are
capable of preventing atrial structural remodel-
ing and AF promotion in dog models of ventricu-
lar tachycardiomyopathy. On the other hand, al-
though ACE inhibition prevents ERK phosphory-
lation and apoptotic cell death, it does not prevent
early JNK and p38 phosphorylation, nor does it
significantly reduce the total rate of cell death [53].
Furthermore, the attenuation of atrial fibrosis is
only partial, suggesting the involvement of other
pathways [53]. The lack of effect of enalapril on
total cell death, despite its great effectiveness in
preventing apoptosis in this model, suggests that
a major portion of cell death is due to other mech-
anisms such as necrosis.

Atrial fibrotic remodeling is much more promi-
nent than that at the ventricular level in
tachypacing-induced CHF [55]. One factor that
may be implicated is activation of transforming
growth factor β1 (TGFβ1), which occurs at the
atrial, but not ventricular, level in tachypacing-
induced CHF [55]. This observation is inter-
esting in light of the finding that transgenic
mice with constitutively-activated TGFβ1 have
atrial-restricted fibrosis and an AF predisposi-
tion in the absence of changes in atrial action
potentials or dimensions [56]. Other extracellu-
lar matrix proteins that seem importantly al-
tered in atrial structural remodeling include ma-
trix metalloproteinases and their tissue inhibitor
[57,58].

Other Recent Remodeling Paradigms
Several novel, clinically-relevant experimental re-
modeling paradigms have been reported recently.
Chronic mitral regurgitation produces a substrate
that can sustain AF [59], in association with
atrial conduction abnormalities that do not occur
with atrial tachycardia remodeling [60] and are
in some ways similar to those occurring in CHF
[7]. Chronic atrioventricular block and ventricu-
lar pacing at physiological rates also promotes AF
in association with local conduction abnormalities
and mild atrial dilation [61]. This observation may
be relevant to the increased incidence of AF in pa-
tients with ventricular demand pacemakers [62].
Finally, a recent study has shown that atrial vol-
ume overload caused by an aorto-pulmonary shunt
in sheep produces a variety of electrophysiological
abnormalities, as well as atrial dilation and an AF
predisposition [63].

Triggers

Atrial Ectopic Activity and Pulmonary
Veins: Experimental Evidence Regarding
Electrophysiological Properties of
Pulmonary Veins and Potential Role
The cardiomyocyte sleeves of pulmonary veins
(PVs) are known to be an important source of
ectopic focal activity that initiates and may main-
tain AF in man [8,64]. A variety of experimental
work has been performed to clarify the mecha-
nisms by which PVs may contribute to AF. Chen
et al. have demonstrated specific arrhythmic cel-
lular electrical properties, including pacemaker
function and a predilection to early afterdepolar-
izations (EADs) and DADs in PV cardiomyocytes
[65]. They have also shown the enhancement
of such arrhythmic activity in arrhythmogenic
contexts such as chronic atrial tachypacing and
thyroid hormone exposure [66,67]. However,
other groups have failed to show such primary
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arrhythmic activity in intact PV preparations
from normal canine hearts [68–70] and hearts of
the dogs subjected to 1 week of atrial tachycardia
[71]. Exposure to low doses of ryanodine promotes
pacing-induced repetitive activity in PV cardiomy-
ocytes, and this activity can be suppressed by Ca2+
depletion and NCX inhibition, and enhanced by
β-adrenergic stimulation [72]. These observations
point to Ca2+ release/DAD related mechanisms,
suggesting possible arrhythmogenic abnormali-
ties in Ca2+-handling in PV cardiomyocytes.

Other observations suggest a possible contri-
bution of reentry in or near the PVs to AF. The
cardiomyocyte-sleeve fiber orientation in PVs
shows abrupt transitions from longitudinal to
transverse alignment, producing a predilection
to localized conduction slowing, particularly for
premature activations [68,73]. In combination
with PV cellular properties (reduced resting po-
tential, phase 0 Na+-current and action potential
duration) that would be expected to reduce the
wavelength [69], these anatomical properties
could make the PVs a favored site for atrial
reentry. Indeed, optical mapping has shown PV
reentry in normal dogs [74] and points to PV
reentry as a source of rapid activity during AF in
acutely dilated sheep atria [75]. Recent clinical
observations also point to a significant role for PV
reentry in AF [76].

Remodeling and Triggers
Much of the work on atrial remodeling has focused
on its ability to promote reentry. However, there
is intriguing information which suggests that
remodeling may also promote ectopic activity, as
shown in Figure 2. In AF associated with either
CHF or atrial tachycardia remodeling paradigms,
rapid activation with a focal pattern has been
demonstrated in PV sleeves [77,78]. As mentioned
above, atrial NCX activity is enhanced in CHF
[51], providing a potential basis for triggered
activity-related tachyarrhythmias [49,50]. PV
cardiomyocytes from dogs with atrial-tachycardia
remodeling have been shown to demonstrate a
variety of forms of abnormal spontaneous activity
[66], although this has not been confirmed in
other studies [71]. Radiofrequency ablation of
the thoracic veins can suppress AF in dogs with
chronic AF [79], but surgical excision of the
PVs does not affect atrial tachyarrhythmias
in isolated left atrial-PV preparations from
dogs subjected to 7 day tachycardia remodeling
[71]. The discrepancy may be due to signifi-
cant tissue destruction outside the PVs with
radiofrequency thoracic vein ablation [79], to
technical differences, or to the shorter duration
of remodeling in the isolated-preparation study
[71].

Therapeutic Implications of Atrial
Remodeling

Pharmacological Prevention of Atrial
Tachycardia Remodeling
Atrial tachycardia remodeling has a variety of
potentially deleterious clinical consequences
and its prevention is a potentially attractive
therapeutic approach [3,24]. Early enthusiasm
about the value of ICaL blockers in preventing
tachycardia-remodeling [80] was tempered by
subsequent studies showing that L-type Ca2+-
channel blockers are ineffective for remodeling
caused by >24 hours of tachycardia [81,82]. Clini-
cal studies of ICaL blockers have produced variable
results, with the consensus supporting lack of
efficacy [83]. Similarly, early reports of efficacy
of a Na+,H+-exchange inhibitor and of renin-
angiotensin system inhibition on short-term atrial
tachycardia remodeling [84,85] were also followed
by negative results with longer-term (>24-hour)
paradigms [86,87], pointing out the limitations
of short-term studies. Several drugs have been
shown to prevent experimental atrial remodeling
due to atrial tachycardia longer than several days.
For example, mibefradil, a Ca2+-channel blocker
selective for T-type channels, prevents remodeling
due to 7 days of atrial tachycardia in dogs [81,88],
but is no longer available on the market. The
superior therapeutic efficacy of amiodarone in pre-
venting AF in tachycardia-remodeled canine atria
appears to be due to prevention of tachycardia-
remodeling [89], which may contribute to its
superior clinical efficacy for the arrhythmia [90].
Like mibefradil, amiodarone also has T-type Ca2+-
channel blocking action [89], but both compounds
have many other effects including potential Na+-
channel blockade, K+-channel blockade, metabolic
effects, etc (discussed in detail in reference 83), so
that the precise mechanism of their remodeling-
prevention efficacy requires further study.

Recently, evidence for increased oxidative
stress has been obtained in atrial tissue sam-
ples from AF patients [91] and from dogs sub-
jected to atrial tachycardia [92]. Carnes et al.
found the antioxidant vitamin ascorbic acid to
be protective against atrial tachycardia remodel-
ing up to 48 hrs in dogs [92]. Although a sub-
sequent study failed to confirm a protective ef-
fect of ascorbate [93], other antioxidant molecules,
such as probucol and oxypurinol, seem to have
some ability to suppress tachycardia-remodeling
[94].

Chung et al. reported that the inflammatory
marker C-reactive protein (CRP) is elevated in
AF patients and that higher CRP levels are ob-
served in persistent than paroxysmal AF [95].
The same group subsequently demonstrated that
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CRP levels are not only higher in current AF
patients, but may also predict the future de-
velopment of AF [96]. These observations sug-
gest a potential pathophysiological role of in-
flammation in AF development. Prednisone, with
strong anti-inflammatory properties, has been
shown to prevent atrial tachycardia remodeling-
induced AF promotion in dogs [97]. In addi-
tion, a relatively small-scale clinical trial showed
that low-dose methylprednisolone prevents AF
recurrence, while lowering CRP concentrations
[98].

Simvastatin has both anti-oxidant and anti-
inflammatory properties, and has been shown
to suppress atrial refractoriness abbreviation,
arrhythmia promotion and L-type Ca2+-channel
α1c subunit protein downregulation in dogs ex-
posed to 7-day atrial tachycardia at 400/min [93].
Statins have been found to protect against clinical
AF in some retrospective studies [99,100], but a
prospective trial of pravastatin for prevention of
AF recurrence after cardioversion in persistent
AF patients failed to show benefit [101]. If statins
were effective in preventing AF recurrence, they
might constitute a safe and useful addition to
the clinical armamentarium, but current clinical
evidence is insufficiently supportive.

Suppression of Atrial Structural
Remodeling
ACE inhibitors [52,53] and Ang-II receptor antag-
onists [54] have shown value in the prevention of
CHF-related arrhythmogenic atrial structural re-
modeling in dogs. Clinical studies have confirmed
that ACE inhibition prevents AF in patients with
left ventricular dysfunction [102,103] and hyper-
tension [104,105]. The evidence that enalapril
produces incomplete attenuation of the atrial
remodeling response in CHF [53] suggests that
further work is needed to identify additional
and/or more effective molecular targets for the
prevention of atrial structural remodeling. In ad-
dition, there are data which suggest that inhibit-
ing renin-angiotensin signaling may prevent AF
recurrence in patients without signs of LV hyper-
trophy or dysfunction [106,107], so further work
is needed to clarify the indications, mechanisms
and utility of angiotensin-converting enzyme
inhibitors and angiotensin receptor blockers in
AF.

Effects of Atrial Remodeling on the
Response to Antiarrhythmic Drugs
The importance of AF duration as a determinant
of antiarrhythmic drug efficacy has long been
recognized [108]. Recent work suggests that atrial
remodeling may be an important determinant of
the AF response to antiarrhythmic drug therapy.

Realistic ionically-based mathematical modeling
indicates that atrial tachycardia remodeling
should reduce the response to IKr-blocking drugs
by abbreviating and triangularizing the action
potential, such that the IKr contribution to repo-
larization is minimized [109]. Correspondingly,
the IKr blocker dofetilide is much less effective
in AF in a tachycardia-remodeled substrate than
in a CHF-related structurally remodeled sub-
strate [110]. Dofetilide’s effects on refractoriness
are decreased in AF-remodeled goat atria, and
dofetilide and ibutilide are much less successful
in converting AF in the tachycardia-remodeled
atrium than AVE-0118, which acts on K+-currents
other than IKr [111]. In addition, there is evidence
that the efficacy of Na+-channel blockers is also
reduced with atrial-tachycardia remodeling [112],
possibly because of reduced state-dependent INa
blockade during the abbreviated remodeled action
potential plateau.

Model Considerations

This article has focused primarily on results from
experimental models of AF and their clinical rel-
evance. Experimental models and clinical studies
have different strengths and weaknesses and pro-
vide complementary information. In experimen-
tal studies, specific variables can be isolated and
studied precisely. Clinical studies, particularly ex-
perimental analyses based on tissue samples, are
always limited by a large number of variables
that are inherently poorly controllable (e.g., inter-
patient differences in underlying cardiac disease,
drug therapy, arrhythmia type and duration, etc.).
On the other hand, the applicability of experimen-
tal models to specific clinical populations is always
an issue. For example, animal studies of atrial re-
modeling for up to 6 weeks show that NCX ex-
pression is upregulated in CHF-related structural
remodeling [51] but not altered by atrial tachy-
cardia [14]. Schotten et al. showed that patients
with long-standing (>3 months) AF and mitral
valve disease have NCX upregulation compared
to a sinus-rhythm control group [23]. The hemo-
dynamics of the 2 groups were similar, suggesting
that NCX up-regulation was not due to cardiac
dysfunction, and possibly that long-standing AF
in man leads to NCX upregulation, unlike 6-week
atrial tachycardia in animals. On the other hand,
drug therapy was quite different between AF and
sinus-rhythm patients [23]. This and other poten-
tial differences could have contributed to NCX up-
regulation. Therefore, further experimental and
clinical research is needed to determine the pre-
cise determinants of NCX upregulation in AF.

The interplay between experimental and
clinical investigations is particularly important
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for the rapidly-developing field of AF genetics.
Although a familial predisposition to AF has been
noted for a long time [113], only recently have
modern genetic studies allowed the site of gene
variations involved in familial AF to be identified
[114–117]. Three of these have been shown by
expression studies in heterologous systems to in-
volve gain-of-function mutations in K+-channels
[115–118], which would be expected to accelerate
atrial repolarization and promote multiple-circuit
reentry [3]. The challenging nature of this type of
work is illustrated by the fact that the mechanistic
basis for the first familial AF form to be linked ge-
netically remains elusive eight years later [114].
While familial AF is rare, genetic predisposition to
the arrhythmia may be much more common [118].
At least one factor leading to AF predisposition
may be a polymorphism in the promoter region
of the connexin 40 gene that leads to decreased
transcription of connexin 40 message [119], in
agreement with the putative role of connexin 40
downregulation in atrial tachycardia remodeling
[19,20] and the results of connexin 40 knockout
studies in mice [120]. Polymorphisms in ion
channels may also contribute to a predisposition
to AF, with one study have suggesting a role for a
polymorphism in the IKs accessory subunit minK
[121]. However, the AF-promoting minK isoform
appears to be associated with reduced IKs upon
co-expression with the IKs pore-forming subunit
KvLQT1, raising questions about the association
and/or pathophysiology [122].

Conclusions

Recent research has provided novel insights into
the mechanisms and role of remodeling and trig-
gers in AF pathophysiology. These insights have
already been translated into improvements in AF
therapy, and promise to lead to continued thera-
peutic innovations in the future. Particularly im-
portant unsolved mysteries that remain to be ad-
dressed include the mechanistic basis for the privi-
leged role of the pulmonary veins in AF, the genetic
factors that determine AF susceptibility and the
signal transduction mechanisms involved in pro-
fibrillatory atrial remodeling. Developments in
genomics, molecular genetics, proteomics and cell
biology should allow for major advances in these
areas, which will both increase our knowledge and
allow for the identification of new approaches to
treatment.
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