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Abstract

Time series forecasting is an important aspect of machine
learning since it has a wide range of applications, including
forecasting power usage, traffic, and air quality, to name a
few. For all active participants in the electrical market, load
forecasting has become an important aspect of planning and
operation. The penalty costs for under or over contracting
electricity have increased dramatically as a result of the new
market structure, making prediction error minimization more
crucial than ever. Forecasting end user load for power pur-
chase has become critical in the context of electricity sup-
pliers. Additionally, abnormal power usage detection can be
helpful in detecting excessive unwanted power usage and
sometimes hinting on the device failures. Our research fo-
cuses on forecasting energy consumption, which will serve as
an alerting system in the event of abnormal power consump-
tion conditions, as well as assisting users in planning their
power usage. We have used the continuous power data being
recorded by the installed MiDAS sensor for our research.

1 Introduction
The growth in the deployment of Internet of Things (IoT)
sensors across different industries has opened several oppor-
tunities for the economy. One of them is the collection of IoT
data that companies can use to build smarter solutions. These
IoT sensors, while performing their assigned tasks, can also
help collect data from real-world objects or devices for anal-
ysis and gain intelligence to improve the latter’s capabilities.
One such prominent application is the collection and analy-
sis of Electricity Consumption Data (ECD) for a robust and
reliable energy management system at any organization.

There is a rich body of work on data-based energy man-
agement but much of it is in forecasting and with limited
access to data. Accurate forecasting of energy consump-
tion has the potential to save large utility bills. These sav-
ings can be realised once the forecasted load knowledge is
used to control operations and decisions of the power util-
ity. Mainly in the power systems, the economy of opera-
tions and control of operations are sensitive to forecasting
errors. Existing forecasting methods can be characterized as
conventional [1] or statistical [20] and they focus on short-
term load forecasting. These approaches use the trends in the
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power data to develop a suitable model and use the model for
forecasting the future load [1]. Based on the characteristics
of the time series data, there are different statistical mod-
els popularly used. Some of them are auto-regressive (AR),
auto-regressive moving-average (ARMA), auto-regressive
integrated moving-average (ARIMA). In [11], authors used
Gaussian features of the load to determine the model of
ARMA dynamically. Complex models can be used to make
high-precision predictions, but this is challenging given the
high complexity, irregularity, randomness, and non-linearity
of real world data. Machine learning techniques can be used
to create nonlinear prediction models based on a significant
amount of historical data. Typical machine learning mod-
els include support vector machines (SVM) [19] or ker-
nel based classification, artificial neural network (ANN) [7],
tree-based ensemble methods such as gradient-boosted re-
gression or decision trees [13] or long short-term memory
units (LSTM) [3, 4, 5] or transformers [22]. Authors in [17]
focused on providing rule based explanations for a partic-
ular forecast, considering the global forecasting model as a
black-box model trained across multi-variate time series.

More recent work in energy management has focused
on Non-Intrusive Load Monitoring (NILM) [2], [9] where,
from the aggregate power data, the aim is to dis-aggregate
and estimate individual load. This technique is especially
appealing to the industry due to its low cost and easy im-
plementation.

2 Related Work
In the following section we discuss about the literature re-
view of the related work.

2.1 Anomaly Detection Methods
Anomalies or outliers of a data is defined by Hawkins as “an
observation which deviates so significantly from other ob-
servations as to arouse suspicion that it was generated by a
different mechanism” [10]. Outlier detection has been stud-
ied in variety of application domains such as credit card
fraud detection [18], intrusion detection in cyber security
[14], or fault diagnosis in industry [16].

Authors in [21] has proposed a LSTM based model for
anomaly detection in which the LSTM model is trained
to forecast the power consumption data. Later this LSTM



model is used to compare the original reading and the fore-
casted value to decide on the anomalous state of a reading.
Authors in [12] has provided a visual representation of the
anomalous scores to direct analysts to anomalous points us-
ing a clustering-based anomaly detection method.

2.2 Time Series Forecasting Methods
In recent years, several research works have been proposed
in the field of time series data forecasting. Some of the
works focused on household level power consumption data
[8] from the data recorded by the real world sensors. While
the works in [3], [4] and [5] focused on state/union territory
level power consumption data sampled at 15 minutes inter-
val.

The works in [3] and [4] considered Chandigarh UT data
and analysis of the data was done by clustering the data into
3 major groups - summer, rainy, winter seasons. In [3] au-
thors considered 4 days (monday, wednesday, friday, sun-
day) for each seasons and build 12 LSTM models. In this
work the authors has used Emperical Mode Decomposition
(EMD) to decompose the signal into a set of Intrinsic Mode
Functions (IMFs). The authors suggest that their work has
achieved a percentage error that varies from 5% to 8%. In
[4] authors considered 3 days (monday - start of the week,
wednesday - peak demand day of the week, sunday - week-
end) for each seasons and build 9 LSTM models. On an av-
erage the LSTM models developed are shown to have a per-
centage error of 7% to 10% considering all the experimental
settings.

The authors in [5] considered the time series data of Hi-
machal Pradesh(HP) by clustering the Electricity Consump-
tion Data (ECD) into 3 groups. Daily level analysis was done
by considering 3 days (monday, wednesday, sunday) per
season The authors have used Variance Mode Decomposi-
tion (VMD) to decompose the ECD into 8 modes/sub-series.
These sub-series are fed to a autoencoder model to extract
the latent space representation (k optimal features) of the
time series. These optimal features along with the original
time series data are used to train a LSTM-MIMO forecasting
model. In this case they built a total of 9*k LSTM models.
Authors also tried to chose the window size of the LSTM
model dynamically by performing intracorrelation with FFT
convolution. The forecasted time series for k optimal sig-
nals are passed through the trained decoder module. The fi-
nal forecasted time series signal is given as a summation of
the decoded signals for an individual day in each cluster.
The authors state that the proposed architecture using the
VMD method provides a Mean Absolute Percentage Error
(MAPE) of 3.04%.

3 Data Collection and Usage
We now discuss how the data is collected by the MiDAS
device installed by Tantiv4.

MiDAS IoT Sensors: The MiDAS IOT sensor measures
phase voltages (three-phase), phase currents (three-phase),
neutral current, power factor (three-phase), active power
(three-phase), apparent power (three-phase), reactive power

(three-phase), frequency and phase (three-phase) values ev-
ery 300ms. The device is also capable of collecting three-
phases of current and voltage harmonics data from 2 to
32 harmonic levels along with total harmonic distortion for
each phase of current and voltage every 500ms. It interfaces
using current sensors with a clamp format for easy installa-
tion. Voltage sensors are internal to the device. Field termi-
nals can take up to 1.5 sq. mm cables.

Data Collection: To demonstrate the generality of the SIP
problem, we are making data-sets available from differ-
ent economic industries: Manufacturing, Hospital & Educa-
tional institutions. The dataset obtained from MiDAS device
is of two forms: Electricity Consumption Data and Harmon-
ics Data. The harmonics information obtained by the Mi-
DAS sensor can be used for further analysis of electric de-
vice performance.

Electricity Consumption Dataset: contains 28 differ-
ent features of electricity consumption data. The features
are: Current (IA, IB, IC INCURRENT), Voltage (VA, VB,
VC), Power Factor (PFA, PFB, PFC, PFT), Phase (PhaseA,
PhaseB, PhaseC), Active Power (ActivePA, ActivePB, Ac-
tivePC, ActivePT), Reactive Power (ReactivePA, Reac-
tivePB, ReactivePC, ReactivePT), Apparent Power (Appar-
entPA, ApparentPB, ApparentPC, ApparentPT), Frequency
(FREQ), and Time Stamp.

Harmonics Dataset: contains 193 different harmon-
ics data features. The features are: Current (AI HR[2 to
32], AI THD, BI HR[2 to 32], BI THD, CI HR[2 to 32],
CI THD), Voltage (AV HR[2 to 32], AV THD, BV HR[2
to 32], BV THD, CV HR[2 to 32], CV THD) and Time
Stamp.

• India-1: The sensor is connected to a single Laser cut-
ting machine with power readings between 2 to 25 Amps.
The machine laser cuts stainless, carbon steel, aluminum,
brass, titanium, and more.

• India-2: The sensor is connected to a hospital’s main in-
coming supply and the power load includes machines for
CT scan, ECG, EEG, Digital Xray, USG, and C-ARM di-
agnostic services. The power consumption fluctuates be-
tween 35 to 110 Amps.

• India-3: The sensor is connected to a single device lathe
machine which is used to perform various operations
such as cutting, sanding, knurling, drilling, deformation,
facing, and turning, with tools that are applied to the
work piece to create an object with symmetry about that
axis with power consumption between 2 to 40 Amps.

• India-4: The sensor is connected to the main supply of
a manufacturing plant which comprises of devices such
as multiple CNC (computer numerically controlled) ma-
chines, Lathe machines, Lifts etc. and the power con-
sumption is between 15 to 60 Amps.

• India-5: The sensor is connected to a single CNC ma-
chine which is used for testing roughness, waviness, flat-
ness, curvature etc of objects and the power consumption
is between 3 to 25 Amps.

• India-6: The sensor is connected to the main supply
of design & drafting division, comprising of less than



Location Industry Load Illustration Load Figures (ActivePT vs datetime)*

India-1 Manufacturing Laser Cutting Machine

India-2 Hospital Main Supply

India-3 Manufacturing Lathe Machine

India-4 Manufacturing Main Supply

India-5 Manufacturing CNC Machine

India-6 Manufacturing Main Supply

USA-1 Education AI/ML Lab

USA-2 Education Data center

Table 1: Characteristics of data collected locations; *illustrative power usage for a day - Jul 04 (except India-5: Jul 18, 2022).

10 employees, equipped with dedicated plotters, jumbo
photo copiers, blue printer, spiral binder etc. and the
power consumption is between 0.5 to 10 Amps.

• USA-1: The sensor is connected to the main supply of
a research center at a University with 10-30 daily users
who bring their devices or use servers.

• USA-2: The sensor is connected to the main supply of a
server room at a Computer Science department of a Uni-
versity being used for various computational loads.

Data Cleaning and Augmentation: Many real world sen-
sors face with the problem of missing data. The data can be
missing due to various reasons such as power outage, sensor
failure, sensor maintenance work or the sensor is not con-
nected to the network. To solve this issue of missing data,
we filled in a timestamp’s missing data by taking the mean
of two previously and subsequently available occurrences of
the same timestamp. For example, if the data is missing at

02-01-2022 09:00:00, we looped back(forward) to the pre-
vious(future available) days where the data is available at
09:00:00 timestamp and considered mean of these obser-
vations. The main idea of considering the same timestamp
is that, given a working environment, the characteristics of
the power consumption data for a given timestamp would be
similar across the working/non-working days.

4 Approaches
In the following section we discuss about the different ap-
proaches used for Time series forecasting.

4.1 ARIMA
One of the most famous and commonly used statistical mod-
els for time-series forecasting is the Auto Regressive Inte-
grated Moving Average (ARIMA) model. It’s a category of
statistical techniques that captures the standard temporal de-
pendencies that are particular to time series data.



Figure 1: ARIMA model as anomaly detector performed on
USA-1 location

4.2 LSTM
Statistical forecasting approaches, such as the ARIMA
model mentioned earlier, are popular and reliable, but they
lack the general generizability that memory-based models
may provide. The Long Short Term Memory (LSTM) Net-
work is a kind of Recurrent Neural Network (RNN) that can
deal with long-term dependencies in a dataset. Considering
the relationships between the time stamps while working
with the Time-Series dataset is essential to effective predic-
tion of future time stamp values.

4.3 Gradient Boost Regression for Time Series
Gradient Boosting is a machine learning approach that can
be used to solve problems in classification and regression.
It is based on the idea that a group of weak learners may
produce a more accurate predictor when they work together.
Gradient boosting works by gradually developing smaller
prediction models, each of which attempts to predict the er-
ror left behind by the preceding model. As a result, the algo-
rithm has a tendency towards overfitting.

5 Evaluation
The following section will discuss the evaluation and results
of the proposed methods.

ARIMA
The ARIMA model is chosen using the pmdarima library’s
auto-arima function. The ARIMA model with the lowest
AIC values is returned by this function. The ADF statistical
test determines if the dataset is stationary or trend-stationary.
For a given time series data, this test produces a p-value. We
can determine the dataset’s stationariness based on this p-
value, which in turn determines whether or not to utilize the
differencing parameter in ARIMA model. The model param-
eters and RMSE value for one of our test datasets are shown

Model Parameters of the Model RMSE
ARIMA SARIMA p=0, d=1, q=2 0.059
LSTM 1 layer with 200 units of LSTM 0.134
GBRT 150 units 0.262

Table 2: Result comparison among different models

in Table 1. We have used ARIMA model as a anomaly de-
tector by comparing the 95% confidence intreval level of
forecasted value against the actual value. The data points ex-
ceeding this level are categorised as anomalies. The result of
the ARIMA model as snomaly detector is shown in Figure
1(a).

LSTM
LSTM architecture selection is influenced by a number of
factors. On the same train and test data splits, we experi-
mented with several model settings and compared the per-
formance of various architectures. We devised an optimal
model equation that takes into account the RMSE values,
the number of epochs, and the length of the train dataset in
order to select the best model with the best performance.
All three parameters in the equation should be minimized
for a model to be optimum, even when deployed on an edge
device. As a result, the model with the lowest value in the
optimal equation was chosen as the best. The details of the
model selection, experimental settings and the results ob-
tained are discussed in the next section.

GBRT
Authors in [6] tried converting the time series forecasting
challenge into a window-based regression problem, similar
to deep neural network (DNN) models. Furthermore, authors
have feature-engineered the GBRT model’s input and output
structures so that the target values are concatenated with ex-
ternal features for each training window and then flattened to
generate one input instance for a multi-output GBRT model.
We used their GBRT model implementation for electricity
dataset on our MiDAS power data with some changes in the
input and output shapes. The details of the experimental set-
tings and the results obtained are discussed in the further
sections.

6 From Point to Window Prediction
While the point forecast is useful for detecting anomalies
and activating an alarm system, multiple output prediction
might be useful for giving the user a visual representation of
forecasted power usage for the day, week, or a month. This
aids in the proper planning of power usage.

LSTM
We performed Neural Architecture Exploration to choose
the appropriate model for deployment. We explored 3 dif-
ferent settings: 1) LSTM with 1 layer with single layer, 2)
LSTM with 2 layers with equal units in both the layers of
LSTM, and 3) LSTM with 2 layers with varying number
of units in both the layers of LSTM. Each of these settings
was evaluated on two different depths of training and testing
data: More days into the past and few days into the past.
Each of these settings was evaluated on a different num-
ber of epochs. All these different parameter settings while
choosing LSTM architecture resulted in varying root means
square error (RMSE) values and also the training time which
is directly dependent on the number of epochs, days to train,
and the width of the neural network. To choose a desired



layers units epochs data Training Time RMSE eq result
1 [100] 20 50 Days in Past 52.12 0.108 1.508
1 [100] 20 20 Days in Past 27.46 0.255 1.155
1 [100] 50 50 Days in Past 125.46 0.101 2.101
1 [100] 50 20 Days in Past 67.73 0.11 1.61
1 [200] 20 50 Days in Past 85.15 0.094 1.494
1 [200] 20 20 Days in Past 47.14 0.248 1.148
1 [200] 50 50 Days in Past 184.1 0.098 2.098
1 [200] 50 20 Days in Past 95.46 0.129 1.629
2 [100, 100] 20 50 Days in Past 93.4 0.5 1.9
2 [100, 100] 20 20 Days in Past 49 0.307 1.207
2 [100, 100] 50 50 Days in Past 240.08 0.104 2.104
2 [100, 100] 50 20 Days in Past 124.93 0.158 1.658
2 [200, 200] 20 50 Days in Past 131.85 0.263 1.663
2 [200, 200] 20 20 Days in Past 65.31 0.576 1.476
2 [200, 200] 50 50 Days in Past 322.02 0.288 2.288
2 [200, 200] 50 20 Days in Past 203.38 0.443 1.943
2 [100, 50] 20 50 Days in Past 59.09 0.322 1.722
2 [100, 50] 20 20 Days in Past 37.46 0.529 1.429
2 [100, 50] 50 50 Days in Past 156.91 0.448 2.448
2 [100, 50] 50 20 Days in Past 77.88 0.555 2.055
2 [200, 100] 20 50 Days in Past 126.6 0.327 1.727
2 [200, 100] 20 20 Days in Past 62.33 0.421 1.321
2 [200, 100] 50 50 Days in Past 394.37 0.486 2.486
2 [200, 100] 50 20 Days in Past 259.01 0.478 1.978

Table 3: LSTM Neural Architecture Exploration performed on USA-2 location

model, weights were assigned to each of these parameters
and a mathematical equation was devised to determine the
best model.

val = W1∗RMSE+W2∗dataV al+W3∗epochV al (1)

The equation 1 shows the weight equation which consid-
ers RMSE, number of data points in training, and number of

Figure 2: (a) LSTM-MIMO prediction result performed on
USA-2 location (b) GBRT prediction result performed on
USA-1 location

epochs. The weights were assigned to each of these parame-
ters in order to determine the best model. Currently we have
given equal weights for all the parameters. The model result-
ing in the least value for equation 1 was chosen as the best
model. The results for LSTM neural architecture exploration
results for different settings is shown in Table 3.

With the help of sliding window technique we have built
a Multi-Input Multi-Output (MIMO) based LSTM model.
The window size is considered to be 6 in case of 10 minute
sampled data which corresponds to 1 hour. The output size
of the LSTM network is equal to 2 data points. The result-
ing LSTM-MIMO model with 200 units and trained on one
month data was shown to have the best results according
to equation 1. The forecasted results for the LSTM-MIMO
model built are shown in Figure 2(a).

GBRT

We have used the Gradient Boost Regression for Time Series
(GBRT) model for forecasting multiple days of the power
data. Along with the active power data, the model is also
trained with the parameters of the timestamp like month,
day, hour, minute, day of the week, day of the year and week
of the year as additional features of the data. These features
help the model’s prediction accuracy. We have used the slid-
ing window technique while training the model with input
size of 14 days and output size of 7 days with a 10 minute
sampled data. The forecasted results for the GBRT model
are shown in Figure 2(b).



7 Conclusion
In this paper we have presented the different energy fore-
casting techniques using both statistical and machine learn-
ing techniques. The data collected by the MiDAS IoT sensor
in a diverse range of settings, including manufacturing, edu-
cation, and hospitals, is used to test the proposed techniques.
We demonstrated the use of a statistical ARIMA model,
by dynamically changing the model’s parameters based on
the data being analyzed, as an anomaly detector by com-
paring the recorded values with the forecasted values using
95% confidence interval as a threshold. While the statistical
ARIMA model had the lowest RMSE value of 0.059 in terms
of forecasting energy consumption, it can only make point
predictions. In order to predict the energy usage several days
in advance, we have also looked into the window-based pre-
diction methods employing LSTM and GBRT models. Neu-
ral architecture exploration along with the modeled weight
equation are used to select the desired LSTM model for the
dataset. The RMSE value is used to evaluate the model’s
prediction performance. The RMSE value for the chosen
LSTM-MIMO model is observed to be 0.134, while the
RMSE value for the GBRT model, which was used to fore-
cast energy demand for multiple days, is 0.262.

In future, one can extend this work by exploring emerg-
ing methods for time series analysis like transformers [22].
The dataset can also be used for new tasks like state identi-
fication where the goal is to identify the states, i.e., distinct
usage patterns, of a system whose power data is collected,
are determined using unsupervised methods [15].
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