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Abstract
The annual response variable in an ecological monitoring study often relates linearly to the weighted
cumulative effect of some daily covariate, after adjusting for other annual covariates. Here we consider the
problem of non-parametrically estimating the weights involved in computing the aforementioned
cumulative effect, with a panel of short and contemporaneously correlated time series whose responses
share the common cumulative effect of a daily covariate. The sequence of (unknown) daily weights
constitutes the so-called transfer function. Specifically, we consider the problem of estimating a smooth
common transfer function shared by a panel of short time series that are contemporaneously correlated. We
propose an estimation scheme using a likelihood approach that penalizes the roughness of the common
transfer function. We illustrate the proposed method with a simulation study and a biological example of
indirectly estimating the spawning date distribution of North Sea cod.

Keywords:Cod-spawning-date distribution, (generalized) cross-validation, Seemingly
unrelated regression, Multimodality.

1. Introduction
Recent genetic analysis by Knutsen, Andre., Jorde, Skogen, Thuroczy, and Stenseth (2004),
suggested that the young (half-year old) cod sampled in some fjords in the Skagerrak,
Norway, resembled adult cod in the North Sea in year 2001 but less so in year 2000. It
was, furthermore, found that in 2001 when the sampled young cod of Skagerrak were
genetically similar to the adult cod of North Sea, there was higher than average inflow of
sea current from the North Sea to the Skagerrak, but not so in 2000 when the resemblance
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switched to the local adult cod. Thus, Knutsen et al. (2004) suggested the hypothesis that
the North Sea cod stock might have contributed to the local cod population in the
Skagerrak via transportation of cod eggs by sea current from North Sea into the
Skagerrak. Stenseth, Jorde, Chan, Hansen, Knutsen, Andre, Skogen, and Lekve (2006) tested
this hypothesis using a long-term monitoring data on the (adjusted) annual counts of
young cod, the (annual) spawning biomass of North Sea cod and daily inflow of sea
current from North Sea to Skagerrak. It is believed that the cod spawn, or breed, in the
months of March and April, but it is not known specifically when the majority of the
spawning took place. Stenseth et al. (2006) computed the average daily inflow (from North
Sea to the Skagerrak) over several windows of 2-week period between March and April,
and tested the transportation hypothesis using a regression model with a covariate that is
the product of average sea influx times log spawning biomass (of the North Sea cod), a
proxy for the transportable amount of cod eggs, the coefficient of which is non-zero
under the transportation hypothesis and zero otherwise. Stenseth et al. (2006) found that the
transportation hypothesis is consistent with the data, with stronger, significant result
when the mean inflow is computed over the second half of March. Clearly, which two-
week period over which the mean inflow is computed is critical as the test can be made
more powerful by aligning the period with the main period when the cod spawned.

Here, we propose to study the problem from a different perspective. Instead of searching
for an optimal window for averaging the daily inflow, we consider the distribution of the
cod spawning date. Let S be the day counted starting from the beginning of March of
each year, when a randomly selected adult cod spawns. Let j be the probability that

=S j . The daily contribution of North Sea cod to the Skagerrak is postulated to
additively contribute, on the logarithmic scale, to the young cod counts by an amount
proportional to ,j t j tc b where tb is the log spawning biomass in the t th year and ,t jc is
the mean inflow on the j th day (counted starting March 1st) of the t th year; for
simplicity of notation, the proportional constant is absorbed into j so that they need not
sum to 1. In other words, the total annual North-Sea-cod contribution equaled

61
,=1 j t j tj

c b , under the transportation hypothesis. See Figure 1 for time plots of the daily

sea current and annual spawning biomass data.

Let 0
,t sn be the logarithm of the number of young cod caught in fjord s in year t , after

adjusted for the intra-specific and the inter-specific effects, as well as the environmental
effects on the local cod in the Skagerrak (Chan, Stenseth, Kittilsen, Gjosaeter, Lekve, Smith,
Tveite, and Danielssen 2003a, Chan, Stenseth, Lekve, and Gjosæter 2003b, Stenseth et al. 2006).
Specifically, the adjustment is based on an auto-regressive moving-average exogenous-
variable (ARMAX) model of auto-regressive moving-average order (2,2), for the
logarithmically transformed 0-group cod abundance series. The exogenous variables
include abundance of co-existing species (mainly adult Pollock, Pollachius pollacius),
environmental factors such as water temperature and North Atlantic Oscillation,
experimental larvae releases, as well as the effect of an extensive algal bloom in 1988.
The 0

,t sn are residuals from the model fitted to data over the period from 1945 to 1997.
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We confine the analysis reported below to eight fjords in the Southern Norway (Figure
2), over the period from 1971 to 1997 over which we have complete data. These eight
fjords are reported in the earlier analysis to admit significant transportation effects. We
now state the model.

61
0
, , ,

=1
= ; = 1, ,26; = 1, ,8.t s s t j t j t t s

j
n b c b e t s       (1.1)

The s 's can be interpreted as the fjord-specific effect on the cod population, and they
may be expected to be close to zero because 0

,t sn are part of the longer residual series
from an ARMAX model fitted to data from 1945 to 1997. The term ,j t j tc b is a proxy for
the amount of cod larvae spawned on day j of year t that were transported by current to
the local fjord s . The eight fjords (Figure 2) are located in a relatively small region in
Skagerrak, so we adopt the first-order approximation that they received the same amount
of contributions from the North Sea cod on the average. (This assumption may be relaxed
in a number of ways, e.g. a mixed-effect approach, and will be pursued elsewhere.) The
term tb can be interpreted as the contributions of the North Sea adult cod by directly
swimming to the Skagerrak and spawning there.

Figure 1. a) Time plot of the annual spawning biomass under the log transformation. b)
Time plot of the daily net inflow into the Skagerrak in 1971. c) Time plot of the daily net inflow
into the Skagerrak in 1997. d) Box plots of the daily net inflow into the Skagerrak for all years.
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Figure 2. Map of the North Sea-Skagerrak area displaying the eight juvenile cod monitoring
stations (numbered circles) on which the statistical analysis is focused, and predominant ocean
currents (arrows).

Motivated by the above ecological problem, we first consider the following stochastic
regression model describing how a scalar response depends on the aggregate effects of a
covariate:

2

,
= 1

= , = 1, 2, , ,T
t t j t j t

j m

m
Y W X e t T    (1.2)

where tY are the responses, tW and ,t jX are vector-valued and scalar-valued covariates,
respectively,  and  s are parameters and { }te is a sequence of independent and
identically distributed random variables of zero mean and finite variance; the superscript
T denotes the transpose. The sampling scheme is as follows. Both Y and W are
measured over regular, basic sampling intervals, e.g. years. Each basic sampling interval
is further sub-divided into, say M , equal intervals, e.g. days, over each of which X is
measured. The measurement of X in the j th sub-interval of the t th basic sampling
interval is denoted by ,t jX . The summation limits 1m and 2m are assumed to be known
integers. The model defined by (1.2) is also known as a transfer-function model (Box,
Jenkins, and Reinsel 1994 p. 371) or distributed-lag model  (Almon 1965).
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In the ecological application, tY is t -th yearly abundance of some local cod population in
Southern Norway, after adjusting for the intra-specific dynamics and other known
interventions, , ,=t j t t jX b c is proportional to the daily amount of eggs in day j of year y
that could be transported into the Skagerrak, and its parameter j may be interpreted as
proportional to the spawning probability on the j -th day, under the transportation
hypothesis that cod eggs were carried by sea current into the Skagerrak from the North
Sea, and zero otherwise.

The main interest is to estimate j as a function of j . Often, the functional form of  is
unknown. Empirical parametric models such as the rational transfer function model and
the Almon polynomial lag model are popular methods for estimating  , but they are less
useful with complex functional forms. For example, in our biological application,  may
be a multimodal function, in which case both the rational transfer function model and the
Almon polynomial lag model require many parameters for providing an adequate
description of  .  Shiller (1973) introduces a nonparametric approach for estimating a
smooth  function by postulating a smoothness prior on the second difference of  , but
otherwise putting no constraints on  .

2(1 ) = ,j jB   (1.3)

where B is the backshift operator defined by =k
j j kB    , for = 0,1, 2,..k , and j are

iid normal with zero mean and variance 2 > 0 . That is, a hierarchical model is
employed. Shiller discussed both the use of a fully Bayesian analysis with non-
informative priors as well as a sort of empirical Bayes approach where 2

 is specified by
some rule of thumb. Using a smoothness prior on the second differences codifies the
belief that the  's have small ''curvature'' as a function of j . For example, in the extreme
case that 2 = 0 , the  's fall on a straight line. See, also (Kitagawa and Gersch 1996, p.37).
Note that the approach introduced by Shiller is similar to spline smoothing; see Wahba
(1990), Wood (2000, 2006a) and Gu (2002). Indeed, Corradi (1977) showed that the
estimator of Shiller's approach can be identified as some smoothing spline function on a
suitably defined Hilbert space.

However, even the nonparametric approach fails if the number of data cases is small
compared to 2 1 1m m  , the number of ,t jX 's appearing in the model. This problem may
be circumvented if there exist a panel of S time series that share the same transfer
function so that information can be pooled across series for estimating  . In our
application, we have time-series data from eight fjords in the Skagerrak. Here, we
consider this situation so that the s th series is generated by the model:

2

, , , ,
= 1

= , = 1,2, , , = 1,2, , ,T
t s t s j t j t s

j m

m
Y W X e t T s S     (1.4)

where we note that the same X 's enter into the equation for each component series, but
W and e may vary across series. For the panel data, the errors are often
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contemporaneously correlated although they may be serially independent. Here, we
``extend" Shiller's approach to a multivariate stochastic regression model with
contemporaneously correlated errors that subsumes the common transfer function model
defined by (1.4). However, our approach differs from Shiller's approach in that we use a
penalized likelihood approach (Green and Silverman 1994 p. 5). Note that the model
defined by (1.4) is a special case of the unit-rank regression model with the left singular
vector of the coefficient matrix proportional to the vector whose elements all equal 1
(Reinsel and Velu 1998, Chapter 8). Thus, a generalization of (1.4) is to allow a general
left singular vector, which relaxes the strong assumption of common transfer function.
We will persue this generalization elsewhere.

We now outline the organization of the rest of the paper. In section 2, we elaborate on the
framework of a multivariate stochastic regression model that subsumes the common
transfer function model. A cross-validation approach is outlined for estimating the
smoothness parameter. Some large-sample properties of the estimator are derived. In
section 4 we apply the proposed method to analyze the Skagerrak cod data. In particular,
we estimate the probability density function of the egg spawning date of North Sea cod
indirectly based on data on sea current, spawning biomass and adjusted counts of half-
year old cod in eight fjords in Southern Norway. In section 5, a simulation study is
reported where the simulation model is motivated by the real application. In the
simulation study we investigate the empirical power of our approach for detecting
multimodality in the  function. We briefly conclude in section 6.

2. A multivariate stochastic regression model
Consider the following general regression model with multivariate response and
covariate.

= ; = 1, ,t t tX t TY b e  (2.1)
where the dimension of tY is 1S  , tX is S k , and the coefficient vector b is 1k  .
The te 's are independent and identically distributed as normal with mean zero and
variance-covariance matrix  , and te is independent of tX . (Here, we restrict the errors
to be normally distributed for convenience; extension to non-normality is straight-
forward but it will complicate the iterative estimation procedure below.) This model is
rather general and subsumes the common transfer-function model defined by (1.4), upon
letting

,1 , , 1 ,1 1 2
,1

,2 , , 1 ,1 1 2
,2

, , , 1 ,1 1 2,

= ; =

T
t t m t m t m

t T
t t m t m t m

t
t t

T
t S t m t m t m
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(2.2)

1 2
= ( , , , )T T

m m    , and ,1 ,= ( ,.., )T
t t t Se ee , Consider the case that the dimension of 

is high compared to the sample size resulting in near multicollinearity. The
multicollinearity problem can be mitigated by exploiting some known ``smoothness"
property of  . Suppose that the roughness of  can be quantified by the Euclidean norm
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of = A  where A is a known m k matrix. (In the case of the common transfer
function model defined by (1.4), A is essentially the vector of second differences of
 .) We can now construct a penalized log-likelihood where a quadratic penalty for A
is used:

2 1
2

=1

1 1( , ; ) = log | | ( ) ( ) ,
2 2 2

T TT
T

t t t t
t

T A AX X


    


        Y Y (2.3)

where the coefficient 2 > 0 quantifies the trade-off between badness of fit and

roughness of the parameter. Here, for known 2
 , the penalized log-likelihood has the

Bayesian interpretation that the components of  have joint prior independent and
identical normal distribution of zero mean and variance 2

 . In practice, 2
 is unknown,

and we propose to determine 2
 by the method of generalized cross-validation.

Specifically, for each 2 > 0 , a generalized cross-validation score denoted by GCV 2( )
and whose definition is given below, is computed for the model with the parameters 
and  estimated by maximizing the corresponding penalized maximum likelihood
function; the generalized cross-validatory estimator of 2

 is set to be 2ˆ , the (global)
minimizer of the GCV function. Finally, we estimate  and  by their penalized
maximum likelihood estimator (PMLE) with 2

 equal to 2ˆ .

To implement the proposed estimation scheme, we first elaborate how to compute the
PMLE with a fixed 2

 . In this case, the objective function (2.3) can be maximized by
iteratively alternating the updating of  and  as follows. For fixed  , it can be shown
that the objective function is maximized with  equal to


=1

1( ) = ( )( ) .
T

T T T
t t t t

t
X X

T
     Y Y (2.4)

On the other hand, for fixed  , the objective function is maximized at
 2 1 1 1( ) = ( / ) .T T T

t t t t
t t

A A X X X Y         (2.5)

The PMLE of  and  is then obtained by iterating (2.4) and (2.5) until some stopping
criterion is satisfied, e.g., when the relative change in the parameter estimates or the
objective function, defined in (2.3), is smaller than some prespecified tolerance level. The
iteration can be started by initializing  as the identity matrix. The iterative procedure
bears resemblance to the method of iteratively seemingly unrelated regression technique,
see Zellner (1962) and (Hamilton 1994, p. 315). Indeed, it reduces to iteratively
seemingly unrelated regression in the absence of penalty.

Next, we extend the cross-validatory score and its variant, the generalized cross-
validatory score, for correlated data; see, also, Han and Gu (2008). The basic idea
consists of defining the CV or (GCV) in terms of their counterparts for the decorrelated
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data. For a fixed 2
 , write  and  for the corresponding PMLEs. Let Z be the vector

obtained by stacking up the  1/2
=t t


Z Y 's, X the corresponding design matrix found by

stacking the 
1/2

tX

 's, and Z the fitted values so that

 = = ,HZ X Z (2.6)
where the matrix = [ ]ijH h is the hat matrix equal to WX where W is implicitly defined

by (2.5) in the vector form  = W Z . The incorporation of Z is necessary to the
calculation of CV and GCV to account for the contemporaneous correlation. Let

1 2= ( , , , )T
TSZ Z ZZ  be the result of stacking the tZ , where iZ are scalars. The value of

2= ( )CV CV  is defined by the following formula:
 2

2
2

=1

( )1( ) = .
(1 )

TS
ii

i ii

Z ZCV
TS h


 (2.7)

GCV can also be defined similarly by replacing 1 iih by the average.
 2

2

2=1

=1

( )1( ) = .
1(1 )

TS
ii

TS
i

jj
j

Z ZGCV
TS h

TS








(2.8)

In principle, 2
 can be determined by minimizing the CV or GCV. However, either

optimization problem is very computationally intensive. Instead, a computationally more
efficient approach consists of (i) updating  and 2

 jointly, (ii) updating  , and (iii)
repeating (i) and (ii) until convergence; c.f. the method of generalized additive model
(GAM) fitting as detailed in Wood (2006a). Since step (ii) admits a closed-form solution,
We need only elaborate step (i). Let  equal to some iterate and be fixed. Re-
parametrize 2

 by the parameter 2 2=1/   . Maximization of the objective function
(2.3) is then equivalent to minimizing the following expression.

1
2

=1

1 1 1 1
2 2 2 2

=1

2

( ) ( )

=

.

T TT
T

t t t t
t

TT

t t t t
t

T T

A AX X

X X

A A



  


 

  



   

   

   
      
   






Y Y

Y Y (2.9)

Importantly, (2.9) equals the penalized sum of squares for the classical regression
problem with uncorrelated data where the response vector consists of stacking up

1/2
t

 Y 's and the design matrix obtained by stacking up 1/2
tX 's, with the regression

coefficient vector subject to the quadratic penalty 2 T TA A   . Within the framework of
penalized least squares, we can apply the efficient algorithm developed by Wood (2000)
for determining 2 by GCV and the corresponding penalized estimator for  . Step (ii)
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can be implemented via the magic function of the mgcv library of R (Wood 2004), which
is done in the simulation and data analysis reported below. The function magic is a quick
algorithm to find the smoothing parameter that minimized the GCV function.

The minimum GCV approach for estimating the smoothing parameter can be justified as
follows. For fixed 2 and  , Denote the optimal estimator of  minimizing (2.3) by

2( , )   . For selecting a model with correlated data, we may use the Kullback-Leibler
loss function defined by the formula

2 2
0 0 0( , ) = (log( ( | ; ( , ), ) / ( | ; , )))K E f f      Y X Y X

where ( , )X Y are independent of ( , )X Y but have identical joint distribution, 0 and 0
denote the true parameter values and 0 ( )E  denotes taking the expectation of the enclosed
expression under the true model. It follows from Theorem 4.2 of Han and Gu (2008) that
the proposed minimum GCV criterion is asymptotically equivalent to minimizing the
Kullback-Leibler loss, under some regularity conditions detailed in Han and Gu (2008)
and the additional condition that ( ) = ( )ptr H o T , uniformly in  and  . (This essentially
follows from the asymptotic equivalence of (3.4) and (3.6) there, under the additional
trace condition.) The preceding trace condition is, however, generally valid in our setting
since it can be checked that 2 1 1 1

=1 =1
( ) = (( / ) )T TT T T

t t t tt t
tr H tr A A X X X X k

       ,
if the inverse exists, which happens almost surely, for T sufficiently large, whenever the
Law of Large Numbers hold: 1

=1
/T T

t tt
X X T  some fixed positive definite k k

matrix.

3. Computing confidence bands
Conditional on the covariates and the estimated smoothing parameter, it follows from
(2.5) that the asymptotic covariance matrix of  is approximately given by

    2 1 1 2 11 1( / ) ( )( / ) .T T T T T
t t t t t t

t t t
A A X X X X A A X X  

          (3.1)

Along with the preceding frequentist approach to estimating an individual confidence
band for  , other methods of estimation are possible. In Section 3.1 we will consider the
Bayesian approach of computing a confidence band (Wood 2006a). In Section 3.2 we
will elaborate two approaches to computing the confidence band using bootstrap
approaches (Efron and Tibshirani 1998, p. 105).

3.1 Bayesian approach
Using a Bayesian approach, the smoothness in  may be formulated in terms of putting
a prior on  as

2

2( ) .
T TA A

f e




 






This prior is typically improper because A may not be of full rank. Now the conditional
distribution of Y given the parameter  can then be stated as
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     11
2|

T

f e
 


   


Y X Y X

Y

So now we can compute the posterior distribution  |f  Y .

  1 1 1 2
2

2
( | )

T T T T TA A
f e

   


      


X Y X X
Y

This posterior distribution turns out to be a normal distribution with variance-covariance
matrix

  112 .T T
t tt

A A X X


  (3.2)

We can then use the square root of the diagonal elements of (3.2) as standard errors for
 , which can then be used for constructing confidence bands for  . The confidence
band can then be computed by using the square roots of the diagonals of (3.2) as standard
errors. For the case of spline function estimation, the Bayesian confidence band enjoys
the property that its across-function-coverage rate is close to the nominal level despite
ignoring the variability in the smoothing parameter, see (Wahba 1990, p. 69).

3.2 Bootstrap confidence bands
In order to compute the bootstrap confidence bands, we will have to use the fitted values
of  tY to compute the estimated residuals.

 = , = 1, ,tt t t T Y Y  (3.3)

These  t 's would keep the property that they approximately preserve the underlying
contemporaneous correlation. From that, we can repeat the following steps N times.
1. Take a random sample of T  t 's with replacement, where  t are defined in Equation
(3.3). These sampled values will be called * * *

1 2, , , T   .
2. Compute the bootstrap response vector *

tY as
* *= tt tY Y (3.4)

3. Fit *
tY from Equation (3.4) onto tX with  and  fixed at the values estimated from

the original analysis to obtain * .

From these N bootstrapped samples, we can construct (1 ) 100%  (individual)
confidence band for  ; specifically, for each i , the ( / 2) 100  th percentile and the
(1 / 2) 100  th percentile of *

i are the endpoints of the individual confidence interval
(Efron and Tibshirani 1998, Section 13.3).

Similarly, we can define steps for computing a parametric bootstrap confidence band for
 . Repeat the following N times.

1.Simulate *, = 1, ,t t T  from (0, )N  , where  is the variance-covariance matrix
estimated from the original analysis.
2. Compute the bootstrap response vector *

tY as
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* *= tt tY Y (3.5)
3. Fit *

tY from Equation (3.5) onto tX with  and  fixed at the values estimated from
the original analysis to obtain * .
Parametric bootstrapping is suitable in situations where the form of the underlying error
distribution is known. On the other hand, the idea of bootstrapping is to be able to
compute standard errors without restricting ourselves to a known distribution. So
nonparametric bootstrap standard errors would be preferred when an assumption on the
error distributions is uncertain and is considered more robust than parametric bootstrap
confidence bands. It should be noted that all methods discussed so far do not account for
the variations in the smoothing parameters, i.e. the confidence bands so constructed are
conditional on the estimated smoothing parameter; however, see (Wood 2006a, Section
4.9) for a related bootstrap approach that accounts for the uncertainty in the smoothing
parameters.

4. Inflow of larvae cod as an example
We now analyze the cod data using the methods developed in the preceding two sections.
In estimating (1.1), we impose the following constraints:

1 22 = ; = 3, , ,i i i i i D      
as well as end constraints:

1 1

2 1 2

1 1

2

=
2 =

2 =
= ,

D D D

D D

 
  
  

 
 




 

to ensure that the  function estimates are smooth across the boundaries beyond which
they are zero, where = 61D . These end constraints merely incorporate the prior
assumption that  is zero beyond March and April, and maintain the constraint of small
roughness across the boundaries. We estimated the model using the method proposed in
Section 2. We can compare the model defined by (1.1) with two other models, namely,
the model obtained by suppressing the common transfer function (no transportation
effects) and the model that only keeps the intercepts in (1.1) (no transportation effects
and no direct contributions from North Sea cod). The GCV for the model (1.1) equals
0.6066, whereas the GCVs of the latter two competing models equal 1.049 and 1.038,
respectively. Thus, based on GCV, the common transfer-function model is preferred,
which lends support to the transportation hypothesis.

Figure 3 plots the  function where the central solid line is the estimated curve and the
other two dashed lines enclose the individual 95% confidence limits. For the frequentist
confidence band, there is a significant spike in the spawning that begins on March 1st and
ends March 24th. For the Bayesian confidence band, the spike is between March 16th and
March 21st. The 90% nonparametric bootstrap confidence band indicates an interval of
March 12th to March 29th, and the 90% parametric bootstrap confidence band indicates
March 18th to March 27th. Certainly all of these approaches are asserting that the
spawning is occuring in and around the second half of March. The  estimates sum to



Elizabeth Hansen, Kung-Sik Chan, Nils Chr. Stenseth

Pak.j.stat.oper.res. Vol. VIII No.3 2012 pp701-717712

0.1089, so that systematically increasing the daily transportable cod eggs by 1 unit leads
to about 11% increase in local cod abundance in Southern Norway, on the average. Table
3.1 reports the rest of the parameter estimates. In particular, all intercept terms are non-
significant, and so is the coefficient estimate of  .

Figure 3. The plot of b ψj versus day j for the North Sea cod – the central solid line in each graph;
day 0 corresponds to March 1. The confidence bands are shown for a) frequentist (dashed line is
95%), b) Bayesian (dashed line is 95%), c) nonparametric bootstrap (dashed line is 95%, dotted-
dashed line is 90%), and d) parametric bootstrap (dashed line is 95%, dotted-dashed line is 90%)
methods.

Model checking procedures were done on our data by examining the residuals. To save
space, diagnostics figures are not shown, but we note that the residual against the fitted
value plot suggests no residual nonlinearity and that the residuals have constant variance.
The time plot of the residuals (not shown) displays no temporal patterns. The normal Q-Q
plot of the residuals appears mostly straight. These model diagnostics suggest that the
model assumptions seem reasonable.

In conclusion, there is clear evidence that sea current transported the North Sea cod eggs
to the Skagerrak, mainly over the second half of March. Furthermore, the data suggest
that the North Sea adult cod did not swim to the Skagerrak to spawn there. These
conclusions are consistent with the previous findings that is obtained by assuming
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constant  over 2-week periods (Stenseth et al. 2006). However, our new method allows
for much more refined conclusions of great importance to the field of marine ecology.

Table 1: Estimates of model parameters for the Skagerrak cod.

Parameter Estimate SE
1 -0.22 0.26

2 -0.21 0.27

3 -0.42 0.33

4 -0.20 0.22

5 -0.02 0.24

6 -0.00 0.26

7 -0.13 0.27

8 -0.35 0.26
 0.12 0.08

5. Simulation

We investigate the empirical performance of the proposed method by simulations. We
will study two matters: the number of significant modes detected and the error involved
in the estimates. The simulation model is motivated by the cod example:

= ; = 1, , ,T
t t t t tb b t T    Y c e  (5.1)

where tY is the response vector of dimension 1S  ,  ,  , and  are parameters, and tb
and tc are covariates, where the dimension of the vectors  and tc is 1D for both. The
error vector te has a multivariate normal distribution with mean zero and variance-
covariance matrix 2

e P , where P is a correlation matrix.

In the examples below, = 50T , = 3S , = 61D , = [1,0, 1]T  , and = 1 . The value of

tb is determined by taking a random number from a normal distribution with mean zero
and standard deviation one, while the value of tc are determined by creating a vector of
sixty-one random numbers from a normal distribution with zero mean and unit variance.
There will be two levels of the error standard deviation: either 0.05 or 0.1. We will use a
correlation matrix that is compound symmetric, meaning that

1
= 1

1
P

 
 
 

 
 
 
  

where there are four levels of  : 0.2 , 0.2, 0.5, and 0.9. The j equals the probability
density function at j of an equal mixture of two normal distributions, namely

(30 ,9)N   and (30 ,4), = 10,5,0N    , making three levels of the  function. Hence
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 has two modes that are separated by either 20 units, 10 units, or 0 units (thus making
one mode). Each case was simulated 1,000 times. The plots of the three different sets of
 's used can be found in Figure 4.

Simulation results are summarized in Figure 5. Recall the simulation was used to study
two aspects of the problem: the number of significant modes detected (based on 95%
confidence band) and the error involved in the estimates. Recent works have made a
comparison between the Bayesian and frequentist approaches for the case of curves with
continuous arguments (Wood 2006b), which we also do here with the confidence bands
computed via either the frequentist approach, i.e. using Formula (3.1), or the Bayesian
approach. In regard to the first aspect, Figure 5 shows that the simulation catches
unimodality and multimodality fairly well when the correlation is high and the error
variance is low. (Note that we count the number of modes only for the j 's that are
significantly different from zero, hence there could be no mode in the curve if none of the

j 's are significant.) The Bayesian confidence bands tend to catch unimodality and
bimodality better than the frequentist confidence bands when the correlation is closer to
zero. It seems that the two methods give similar results with a correlation around 0.5. The
frequentist confidence bands tend to catch unimodality and bimodality better than the
Bayesian confidence bands when the correlation is around 0.9. As far as the second
aspect, the mean absolute deviation and mean deviation (unreported) were small as
compared to the maximum value of the  's being estimated. Their standard deviations
were small as well and depended proportionately on the error variance.

Figure 4. Plots of ψjversus j for the simulation model; ψj is the probability density function of the
an equal mixture of N(30 ∆, 9) and N(30 +∆, 4), where ∆ = 0, 5, 10, from left to right.
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Figure 5.Percents of 0, 1, 2, 3 or more modes detected. Red dotted lines: frequentist, ∆ = 0; red
dashed lines: frequentist, ∆ = 5; red solid lines: frequentist, ∆ = 10; blue twodash lines: Bayesian,
∆ = 0; blue longdash lines: Bayesian, ∆ = 5; blue dashdot lines: Bayesian, ∆ = 10.

6. Conclusion
We have demonstrated the potential usefulness of the method of penalized likelihood for
estimating a smooth common transfer function with a panel of short, contemporaneously
correlatedtime series. As illustrated with our marine example, the new method provides
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refined conclusion within the field of marine ecology, particularly with reference to how
different populations of a marine fish species are interlinked through larvae inflow. As
such, our results are of direct relevance for studies on the ecological effects of climate
change (see, e.g., Stenseth, Mysterud, Ottersen, Hurrell, Chan, and Lima (2002)).

There are a few interesting future research problems. First, it is of interest to work out the
case of non-normal errors in greater details. Second, the common transfer function
assumption is a strong one. A more flexible approach is to incorporate random-effects in
the transfer function model.
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