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Conformal Invariance and Surface Defects 
in the Two-Dimensional Ising Model. 
Exact Results 
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The surface critical behavior of the two-dimensional Ising model with 
homogeneous perturbations in the surface interactions is studied on the one- 
dimensional quantum version. A transfer-matrix method leads to an eigenvalue 
equation for the excitation energies. The spectrum at the bulk critical point is 
obtained using an L-1 expansion, where L is the length of the Ising chain. It 
exhibits the towerlike structure which is characteristic of conformal models in 
the case of irrelevant surface perturbations (hjJs ~ 0) as well as for the relevant 
perturbation h s = 0 for which the surface is ordered at the bulk critical point 
leading to an extraordinary surface transition. The exponents are deduced from 
the gap amplitudes and confirmed by exact finite-size scaling calculations. Both 
cases are finally related through a duality transformation. 

KEY WORDS: Ising model; surface defects; surface critical behavior; confor- 
real invariance; finite-size scaling. 

1. I N T R O D U C T I O N  

In  a r ecen t  w o r k  (1) (he rea f te r  re fer red  to as I), we p r e s e n t e d  a n u m e r i c a l  

s t udy  of  the  cr i t ica l  b e h a v i o r  n e a r  a surface  defect  in the  t w o - d i m e n s i o n a l  

I s ing  mode l .  T h e  t h e r m a l  a n d  m a g n e t i c  sur face  e x p o n e n t s  x s and  x ~  were  

o b t a i n e d  us ing  a f ini te-s ize sca l ing  ana lys i s  (2) o f  the  surface  e n e r g y  a n d  

m a g n e t i z a t i o n  or,  a s s u m i n g  c o n f o r m a l  i n v a r i a n c e  to  h o l d  in this s i tua t ion ,  

d e d u c e d  f r o m  the  a p p r o p r i a t e  g a p  ampl i tudes .  (3! W e  w o r k e d  on  the  1D 

q u a n t u m  ve r s ion  of  the  m o d e l  wi th  cha ins  of  up  to L = 2000 spins. Since  

then  we rea l i zed  t h a t  the  e i g e n v a l u e  e q u a t i o n  for  the f e r m i o n  exc i t a t i ons  

wh ich  was  n u m e r i c a l l y  s tud ied  in I can  be  exac t ly  so lved  for the  l ow- ly ing  
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excitations using an L ~ expansion. Here we present this exact analysis 
together with complementary results concerning the case where the surface 
transverse field h~ vanishes. When h~ = 0 the perturbation is relevant and 
one expects an extraordinary transition (4-6) with x eext-- xm~• = 2. This is 
actually what we observe on the second or more distant surface sites, while 
another critical behavior is obtained on the first site. 

In Section 2, we recall the main steps leading to the eigenvalue equa- 
tion for the excitations. The spectrum and finite-size scaling results are 
presented in Section 3 for the case of irrelevant surface perturbations and 
in Section 4 for h, = 0. A duality transformation allowing us to relate both 
situations is discussed in Section 5. 

2. E I G E N V A L U E  E Q U A T I O N  

Let us consider the 1D quantum version of the 2D Ising model ~73 on 
a chain with L spins and free boundary conditions: 

L - - 1  L 2 

Jt ~ = -  ~ ~z(i)- ~ ax(i) ax( i+l ) -hs[az(1)+~(L)]  
i = 2  i - - 2  

-Y , [~x(1)  ax (2 )+  o-x(L-  1) ax(L)] (2.1) 

where the a are Pauli spin operators. The system is taken at its critical 
point h/J= 1 in the bulk and perturbed on its surfaces, where the coupling 
Js and the transverse field hs deviate from their critical values. ~ com- 
mutes with the parity operator L P = H i =  1 o~(i), allowing us to classify the 
eigenstates according to their parity in the even (P = + 1) or odd (P = - 1 )  
sectors. 

A Jordan-Wigner  transformation ~8) of the spin operators leads to the 
fermion Hamiltonian 

L 1 L - - 2  

~ = -  ~. [2c+(i) c(i) - 1 ] -  ~ [c+(i ) -c( i )][c+(i+l)+c( i+l)]  
i = 2  i - - 2  

- 2hs[c+(1) c(1) + c+(L) c(L) - 1] 

-J,{[c+(1)-c(1)][c+(2)+c(2)] 

+ [ c + ( L  - 1 ) -  c ( L -  1)][c+(L)+e(L)]} (2.2) 

This quadratic form in the fermion operators may be diagonalized 
using standard methods, (93 giving 

= Eo + Z Akt/~-qk (2.3) 
k 
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where the excitations A k are obtained as solutions of the eigenvalue 
equation 

=Akq~ k (2.4) 

with 

3 =  ( 7 -  t?)(3 + 8) (2.5) 

where .~ and/~ are the following tridiagonal matrices: 

!2hs Js 
J, 2 1 

1 2 0 t 
2 1 
1 2 J, 

J, 2hs/ 

(2.6) 

~= 

[ 0 - J ,  

Js 0 
1 

0 
\ 

- 1  
0 

0 

0 - 1  
1 0 

J, 
~0 JS 

(2.7) 

such that 

(-d + B) q~k = A ~ k  (2.8) 

('~--/~) ~k = Ax~k (2.9) 

and the normalized eigenvectors q~ and ~ are linear combinations of the 
coefficients of the canonical transformation leading to Eq. (2.3) (see I). 
Introducing two-components column vectors, we replace the eigenvalue 
equation (2.4) by the recursion (1~ 

q~(i) : T i  ( p ( i - 1 ) = ( 0  1) (p(i-1) (2.10) 
~o(i+ 1) ~o(i) si ti ~o(i) 

with the boundary conditions q~(0)= q~(L+ 1)=0  and cp(1)= 1. The c~ in 
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Eq. (2.10) coincide with the q~ when normalized. The 2 x 2 transfer matrix 
T~ has the following matrix elements: 

A~ 
t i = t : - ~ - - 2 ,  s i = s = - I  ( i = 3 t o L - 2 )  (2.11a) 

A~ hs 
= s I = 0  (2.1 lb) 

tl 4hsJs Js' 

A~ ~ -hJ~  (Zlac) t2 =--~--  Js - 1, s 2 = 

A~ 2 1 
- s t _  - - - -  (2.11d) tL-1 4 j  s j ,  1 -  Js 

A~ h~ 
t L = J, ,  sL= - 1  (2.11e) 

4Js J, 

and in order to satisfy the boundary conditions the eigenvalues must be 
such that 

q)(O L) = TLTL 1 ~L 4T2T, 01 (2.12) 

where T =  Ti (i = 3 to L - 2). 
The low-lying excitations (A~ < 4) correspond to propagating modes. 

Then ~ has two complex conjugate eigenvalues 

2+ = 0 + i(1 -- 02) 1/2 = e ++-ip (2.13) 

with 0 = t/2. Using the corresponding eigenvectors 15+ = J;~+_ J, one may write 

TzT1 ~ =~v+ + ] ~ _  (2.14) 

and identifying the lower components on both sides of Eq. (2.12), one is led 
to the following equation for the propagating modes2: 

(tL tL_l - 1)[(c~ +/~) cos(L - 3) p + i(~ - / ~ )  s i n ( L -  3) p ]  

- ( t L / J s ) [ ( c ~ + ~ ) c o s ( L - 4 ) p + i ( e - f l ) s i n ( L - 4 ) p ] = O  (2.15) 

with 

~ + fl= t~ (2.16a) 

tl t 2 - h s J s -  ta O 
i(~ - /~)  = (1 - 02) 1/2 (2.16b) 

2 The first factor in Eq. (2.15) was incorrectly transcribed in Eqs. (4.14) and (4.16) of I. 
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3. E X C I T A T I O N  S P E C T R U M ,  S U R F A C E  E N E R G Y ,  
A N D  S U R F A C E  M A G N E T I Z A T I O N  W H E N  hs/Js~O 

At the bulk critical point, when the size L of the system grows to 
infinity, the low-lying excitations are known to vanish like ~11~ 

Ak= T 1+ Z- +O(L (3.1) 

An expansion of Eq. (2.13) in powers of L -1 gives 

2_+ = - 1 _ + i ~ - +  +_ibk -~+O(L (3.2a) 

p = ~ _ ( l  + ~ ]  az+o( L 3) (3.2b) 

whereas Eqs. (2.16a) and (2.16b) lead to 

+ ~ = - ~ + O(L 2) (3.3a) 

J, . hs'~ak 
i ( a - - f i )=  -- ~ +  ~ s j - ~ +  O(L-2)  (3.3b) 

From Eqs. (2.11d) and (2.11e), one deduces 

tLtL_l--l=l + a (hs~ 2 \JsJ +O(L 2) (3.4a) 

_ t_c=l+ +O(L 2) (3.4b) 
J, 

and after some algebra, Eq. (2.15) may by rewritten as 

ak (hs'~3cosak+[(~-bk)(~)3--2~]---~sinak=O(Z 2) (3.5) 
\Js} 

When hs/Js ~ 0 the leading term gives cos ak = 0 and 

7~ 
ak = (2k - t ) ~ (3.6) 

Up to O(L 1) one gets the coefficient of the first correction to scaling: 

3 - 2  {d'~2 (3.7) 
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so that 

A~ : ( 2 k -  1) ~ +  - 2  \ h J  J ( 2 k -  1) ~-7 J -O(L-3 )  (k := 1, 2,...) 

(3.8) 

As a consequence of the irrelevance of the surface perturbation when 
h~/Js # O, the excitation spectrum, up to terms of order L 1, is the same as 
for the unperturbed surface. 

The gap of the sound velocity v~. is given, for free boundaries, by (123 

G~s = vs L + O(L--2) = A~+ 1 - Ak (3.9) 

and v s : 2 ,  as expected for the Ising model in a transverse field. (13) The 
anomalous dimension of the surface energy operator may be deduced from 
the first gap in the even sector 

7"[ 
Ge : Vs Z xse -t- O ( L  -2 )  : A~ + A2 (3.10) 

and the surface magnetization exponent from the first gap in the odd 
sector: 

7[ Gm=Vs-'s 2 ) : A 1  (3.11) 

leading to the exponents of the ordinary surface transition(14): 

s 2, ' 1/2 X e = X m = (3.12) 

One gets two conformal towers, one for each parity sector (Fig. 1): 

ZC 
E e v ~ _ E o = A l + A n + 2 = v . _ s  2) (3.13a) 

EO~ _ E o = A n +  =VsL(x~m+n)+O(L-2 ) (3.13b) n+l  1 

where n is a nonnegative integer and we have given one of the combina- 
tions of excitations leading to the excited levels. Since the ground state is 
even, with an even (odd) number of excitations, one reaches an even (odd) 
excited state. 

Let us now turn to the finite-size scaling analysis. The energy and the 
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Fig. 1. Lower levels of the conformal towers for the ordinary surface transition with L = 50, 
a surface coupling J ,  = 1, and a surface transverse field h~ = 2 or 0.5. The level degeneracy is 
given in parentheses. An O(L 2) perturbation-dependent level shift is observed. 

magnetization may be studied on the surface site using the following matrix 
elements (see I): 

es~(1) = @l ~ z ( 1 ) 1 0 ) ~ L  x'e (3.14a) 

ms( l )=  (a] a x ( 1 ) 1 0 ) ~ L  -xs (3.14b) 

between the ground state 10) and the first excited states, le) + + 
in the even sector and f a ) =  ~/~ 10) in the odd sector. Working with the 
canonical fermion representation, one easily gets 

e~(i) = r ~b2(i) - r 01(0 (3.15a) 

m,(1) = r (3.15b) 

The eigenvectors may be obtained through the transfer matrix method: 

qO(; n)l)= ~n 3T2T1 ~ ( ( n = 3 t o L - - l )  (3.16) 
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giving 
~o(n)=(c~+fl)cos(n-2)p+i(c~-fl)sin(n-2)p (3.17) 

with 
7~ 

p = rc - (2k - 1) ~-~ + O(L 2) (3.18) 

After some algebra, one gets 

L 1 (hs)ZL +O(1)  (3.19) Z (p2(n)=skjs j ~t=l 
so that the first component of the normalized eigenvectors 

~k(1)=~(~s)L-l/2.JffO(L 3/2) (3.20) 

does not depend on k to this order. The ~k may be deduced from Eq. (2.8), 
leading to 

(2k - 1 ) ~zJ s L 3/2 + O(L -5/2) (3.21) 

Finally, using Eqs. (3.15a) and (3.15b), we get 

2~ (j,)2 L 2_~_ O(L-3) (3.22) / 

and 

Js) 3/2) ms(1)= /5 Z 1/2+O(Z (3.23) 

4. EXCITAT ION S P E C T R U M ,  S U R F A C E  ENERGY,  
A N D  S U R F A C E  M A G N E T I Z A T I O N  W H E N  h s = 0  

When hs = 0 the squares of the excitation energies are the eigenvalues 
of the following L x L matrix: 

i0 0 / 
0 l + J  2 1 0 

3 = 4  1 2 (4.1) 

0 2 Js 
J, 
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As a consequence, the lowest one is A 2 = 0  and the remaining L - 1  
are eigenvalues of the ( L -  1) x (L - 1) tridiagonal submatrix to which the 
same transfer matrix technique may be applied. T, TL 1, t2, and sL remain 
unchanged, but now 

S 2 ~ 0} 

and the recursion for the (/5 reads 

With 

A~ - L  (4.2) 
t L -= "-~s 

q)(L)o = TLTc 1 T L - 4 f 2  ~ (4.3) 

~2 ~ =Yf+ + 6 g -  (4.4) 

the excitations corresponding to propagating modes are still given by 
Eq. (2.15) provided ~ and /~ are changed into 7 and 3. Looking for the 
excitations in the form given in Eq. (3.1), we get 

~ / + 3 = 1  

t2--O J~ ( L - b k ) + O ( L  ') 
i(y - 3) = (1 - 02) 1/2 - a k 

tctL_ 1 -  1 = 1 +O(L -2) 

tL 1 + O(L 2) 
J, 

(4.5a) 

(4.5b) 

(4.5c) 

(4.5d) 

and Eq. (2.15) leads to 

- J s  2 cos ak=  O(L -1) 

to the leading order in L-1,  so that a k = ( 2 k -  1) ~r/2 and 

(4.6) 

TC 
A k = ( 2 k _ l ) z + O (  L 2) (k = l, 2,...) (4.7) 

The sound velocity vs is still given by Eq. (3.3), but due to the presence of 
the vanishing excitation A o = 0, we now get 

rc 
Ge=Vs-s X~e + O(L-2)= Ao + A1 (4.8) 
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and 

Gm = vs ~ x" m + O(L -2) = A 0 (4.9) 

so that 

s ~ " 0 (4.10) X e = ~, Xm = 

The vanishing magnetic exponent signals the occurrence of surface long- 
range order at the bulk critical point when h s = 0. In the 2D classical model 
h, = 0 corresponds to an infinite surface coupling in the temporal direction; 
the surface spins are then frozen in a ferromagnetic configuration and one 
should observe a behavior characteristic of the surface extraordinary 
transition on nearby sites. To get these exponents, one has to look at 
higher degenerate excited states with 

T~ ext  G;"t=vs-s +O(L 2 ) = A I + A 2  (4.11a) 

TC ext GemXt=Vs~Xm + O ( L - 2 ) = A o + A I + A 2  (4.11b) 

leading to 

xeeXt ~-- 2 ,  XmeXt = 2 (4.12) 

as required for the extraordinary transition. (6) Surface long-range order 
with A o = 0  leads to an even-odd degeneracy (Fig. 2) and we get the 
following conformal towers: 

Eodd(even) iF, = A n +  g s ~+1 ~ o  l ( + A o ) = V s - s  (4.13) 

7[" ext ~-~ n+  l P e x t  . . . .  (odd) --L'Or" = A I + A , , + 2 ( + A o ) = V s _ s  2) ( 4 . 1 4 )  

the last one corresponding to the extraordinary transition. The state 
leading to x~ =0 ,  which is degenerate with the ground state, does not 
belong to one of the conformal towers. This may be linked to the fact that 
x ~ = 0 ,  associated with a regular constant contribution to the surface 
magnetization, is not really an anomalous dimension. 

These results are confirmed by a finite-size scaling analysis of the 
surface critical behavior. In order to do this, we need the components of 
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Fig. 2. Lower levels of the conformal towers with L = 50, a vanishing surface transverse field, 
and surface coupling Js = 2 or 0.5. The levels of the towers associated with the extraordinary 
transition are drawn in dashed lines. The level degeneracy is indicated in parentheses. As in 
Fig. 1, a level shift due to the J~ dependence of the O(L 2) corrections is apparent. 

the  n o r m a l i z e d  e ig e n v e c to r s  q~ a n d  ~ on  the  first  two  sites. F r o m  Eq. (2.8) 
wi th  h,. = 0, one  d e d u c e s  

A , O k ( 1 )  = - -2 J~ r  ( k = 0 ,  1, 2,...) (4 . t5 )  

so t h a t  ~bo(2 ) van i shes  wi th  A0. E q u a t i o n s  (2.4) a n d  (4.1) p r o v i d e  a r ecu r -  
s ion  for  the  ~bo(n) a n d  o n e  m a y  verify t h a t  t hey  all  v a n i s h  w h e n  n >  1. 
T h r o u g h  n o r m a t i o n  one  gets  

Co(n) = 6n, i (4.16) 

In the  s ame  way,  Eq. (2.9) gives a r e c u r s i o n  for  the Co(n)  a n d  

Co(n) = 6,,L (4.17) 

U s i n g  Eqs.  (2.4) a n d  (4.1), one  o b t a i n s  

m~bk(1)  = 0  (4.18) 

8 2 2 / 6 0 / 1 - 2 - 1 2  



178 Berche and Turban 

so that 

~k(1) = 0  (k=  1, 2,...) (4.19) 

With the same procedure as in Section 3 applied to the ( L - 1 ) x  ( L - 1 )  
submatrix, one gets a recursion relation for the q)(n) corresponding to the 
excited states ( k > 0 )  with q)(2)= 1 and ~o(1)=0 from Eq. (4.19). This is 
Eq. (3.17) with c~ and fi changed into 7 and 6. After some calculations one 
gets 

L 2j4 L 3 
q~Z(n) ( 2 k -  1) 2 ~2 + O(L 2) (4.20) 

n = l  

and, through normation, 

( 2 k -  1)72 L 3/2+0(L-5/2) (k = 1, 2,...) (4.21) 

js 

Finally, Eq. (4.15) gives 

0k(1) = _--~-~ L ~/2+0(L-3/2) 
Js 

(k=  1, 2,...) (4.22) 

Equation (4.16) leads to 

ms(1)=~o(1) = 1 (4.23) 

and Eqs. (4.16), (4.17), and (4.22) to 

e~(1) = t)o(1)qtl(1)-~1(1)~bo(1)= ~ L 1/2+0(L-3/2) (4.24) 

confirming the values x~, = 0, x'~ = 1/2. 
The exponents of the extraordinary transition may be deduced from 3 

t / +  + 10) for the surface energy, so that (e'[ o-x(1)ax(2)10) with [ e ' ) =  1 q2 

e~X(1, 2) = $1(1) ~b2(2 ) - $2(1) ~b1(2) 

2TO 
= - - - - L  -2 + O(L -3) (4.25) 

3 One should notice that the excitation spectrum begins now with k = 0. 
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and from <o'l ax(2)F0) with la')=r/o%/~-~/~- 10) 
magnetization on the second site 

m'(2) = 2~b~ (2) ~b2(2) (All-2 ~1) 

2~ L 2 - j-7~ + O ( L - ' )  

ext  2. in agreement with x ~ t = x  e = 

for the surface 

(4.26) 

5. D U A L I T Y  T R A N S F O R M A T I O N  A N D  E X T R A O R D I N A R Y  
T R A N S I T I O N  W I T H  h s = O  

With a vanishing surface transverse field the spin Hamiltonian reads 

L 1 L - - 2  

= -  x(i) o x ( i  + 1 )  
i = 2  i - - 2  

- JsEax(1) ax(2) + a~(L - 1) ax(L)] (5.1 

Defining the dual spins as 

14(i)=ax(i) ax(i+ 1) (1 ~ i < L )  (5.2a) 

#~(L) = ax(L) (5.2b) 
i 

#x(i) = ]7[ ez(J) (1 <~i<~L) (5.2c) 
j = l  

where boundary effects have been taken into account in Eq. (5.2b), we get 
the following dual Hamiltonian: 

L - - 1  L - - 2  

~D = - - Z  I~x(i--1)t~x(i)-- ~ #z(i)-J,[l~z(l)+l~z(L)] (5.3) 
i - - 2  i = 2  

corresponding to a chain containing L -  1 spins with free ends and a free 
spin/~(L) in the transverse field Js. The perturbation introduced on the first 
spin of the chain by Js is irrelevant as long as Js remains finite and non- 
vanishing. As already mentioned in I, az(1) transforms into/~x(1) and the 
surface energy operator scales like the surface magnetization on the dual 
with x~ = 1/2. On the other hand, a~(1) transforms into the dual parity 
operator, which is size independent. 

The duality transformation allows us to get the exponents of the extra- 
ordinary transition. ~6,15) The surface energy operators ax(1) ~ (2 )  and a~(2) 
transform into the surface energy operators #z(1) and #~(1)/~(2) on the 
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dual chain, so that x;  xt = x~ = 2. The surface magnetization a x ( L  - 1) gives 
the dual operator # ~ ( L - 1 ) # z ( L ) ,  but #~(L) on the free spin gives back 
ax(L) with vanishing dimension, so that the surface magnetization on the 

ext second site scales like the surface energy on the dual chain with x m ---- 

X~e = 2. 

6. CONCLUSION 

Using a transfer-matrix technique together with an L 1 expansion for 
the excitation spectrum, we have shown that the towerlike structure which 
is characteristic for conformal models is conserved when perturbations are 
introduced on the surface of the 2D Ising model, working on the 1D quan- 
tum version. This is verified both in the case of irrelevant perturbations 
( h s / J ,  ~ 0), where the gap amplitudes give the ordinary surface exponents, 
and for a relevant perturbation (hs= 0), for which the surface is ordered 
and an extraordinary surface transition is obtained. Then the surface 
energy on the first site has a scaling dimension x;  = 1/2, which is charac- 
teristic of the quantum Hamiltonian version of the problem. In the 2D 
classical system, hs = 0 corresponds to an infinite coupling along the surface 
row, so that energy fluctuations are excluded. Since the first excitation has 
a vanishing energy, one gets a pair of degenerate conformal towers 
associated with the extraordinary transition. As a consequence the thermal 
and magnetic exponents, related to the first gap, are the same. 
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