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a b s t r a c t

Recent insights into the conceptual structure of localization in QFT (modular localization) led to
clarifications of old unsolved problems. The oldest one is the Einstein–Jordan conundrum which led
Jordan in 1925 to the discovery of quantum field theory. This comparison of fluctuations in subsystems of
heat bath systems (Einstein) with those resulting from the restriction of the QFT vacuum state to an open
subvolume (Jordan) leads to a perfect analogy; the globally pure vacuum state becomes upon local
restriction a strongly impure KMS state. This phenomenon of localization-caused thermal behavior as
well as the vacuum-polarization clouds at the causal boundary of the localization region places
localization in QFT into a sharp contrast with quantum mechanics and justifies the attribute “holstic”.
In fact it positions the E–J Gedankenexperiment into the same conceptual category as the cosmological
constant problem and the Unruh Gedankenexperiment. The holistic structure of QFT resulting from
“modular localization” also leads to a revision of the conceptual origin of the crucial crossing property
which entered particle theory at the time of the bootstrap S-matrix approach but suffered from incorrect
use in the S-matrix settings of the dual model and string theory.

The new holistic point of view, which strengthens the autonomous aspect of QFT, also comes with
new messages for gauge theory by exposing the clash between Hilbert space structure and localization
and presenting alternative solutions based on the use of stringlocal fields in Hilbert space. Among other
things this leads to a reformulation of the Englert–Higgs symmetry breaking mechanism.

& 2015 Published by Elsevier Ltd.
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1. Preface

The subject of this paper grew out of many discussions about
Jordan's discovery of quantum field theory (QFT) which I had with
the late Jürgen Ehlers. They focussed in particular on events
between the publication of Jordan's thesis on quantum aspects
of statistical quantum mechanics in 1924 (Jordan, 1924a), and his
discovery of QFT around 1925 which was published in one section
of the famous 1926 “Dreimännerarbeit” (Born, Heisenberg, &
Jordan, 1926) together with Born and Heisenberg. This paper was
in fact the second paper after Heisenberg's discovery of quantum
mechanics (QM). The resistance of Born and Heisenberg against
Jordan's section has its natural explanation in that these two

authors felt that Jordan was burdening the conceptual struggle to
understand the new quantum mechanics with something which
may distract from this project.

I met Jürgen Ehlers the first time around 1957 at the University
of Hamburg when he was Jordan's assistant and played the leading
role in Jordan's general relativity seminar. Our paths split, after I
wrote my diploma thesis on a topic of particle theory at the time
when particle physics moved away from the university physics
institute to the newly constructed high energy laboratory at DESY.
Contacts with Ehlers and the relativity group became less frequent
and ended when both of us took up research associate positions at
different universities in the US.

Only 40 years later, when Ehlers moved to Potsdam/Golm in
the 1990s as the founding director of the new Albert Einstein
Institute (AEI), we met a second time. After having done important
research on problems of general relativity and astrophysics he
became increasingly interested to understand some of Jordan's
famous early work on quantum field theory about which we knew
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little at the time of Jordan's weekly relativity seminar.2 Ehlers was
in particular interested to understand some subtle points in a
dispute between Jordan and Einstein concerning Einstein's use of
statistical mechanics fluctuation arguments for black body radia-
tion (Einstein, 1925). The ensuing dispute around this purely
theoretical argument in favor of the existence of photons has been
more recently referred to as the Einstein–Jordan conundrum
(Duncan & Janssen, 2008).

As the terminology reveals, the E–J conundrum was a poorly
understood relation between fluctuations caused by restricting the
vacuum state to the observables in a subvolume in Jordan's newly
discovered field quantization and Einstein's use of statistical
mechanics within the old Bohr–Sommerfield quantum setting.
This led him to identify a particle-like component in the fluctua-
tion spectrum of a black body radiation ensemble (which he
termed “Nadelstrahlung”) with his 1905 interpretation of the
photo-electric effect as a manifestation of the corpuscular nature
of light.

The E–J conundrum has sometimes been seen as an illustration
of the particle–wave dualism of quantum mechanics, but with the
hindsight of modern QFT its real significance points into a much
deeper level. This was certainly Ehler's view when he drew my
attention to what he considered its real significance. Coming from
general relativity and cosmology he thought that this problem is
analogous (Ehlers, Hoffmann, & Renn, 2007) to the problems
related to vacuum polarization used to explain the origin of the
cosmological constant in terms of fluctuations of the quantum
field theoretic vacuum. He hoped that with my experience of
40 years of QFT I could be of some help to obtain a better
understanding.

I learned recently through John Stachel that conjectures about
possible connections between thermal aspects of the subvolume
fluctuations in QFT as they occur in the E–J conundrum and
Hawking–Unruh problems already existed in the 1980s (Stachel,
1986). In fact it will become clear in the course of the present work
that it indeed can and should be viewed this way.

For some time this problem remained out of my range of
interest; I did not want to loose time on something which would
draw me into opaque historical problems away from my research
on new foundational insights into to QFT via “modular localiza-
tion”3 (Schroer, 1999). During a 2 year stay (2002/2003) in Brazil, a
CNPq supported research project “The Modular Structure of Causal
Quantum Physics” provided the chance to extend this research.
Around 2007 I suddenly realized that the complete understanding
of the E–J conundrum can be obtained with the help of precisely
those newly gained insights. One just had to apply the principle of
modular localization, which assigns a certain number of unex-
pected properties to localized subalgebras. Whereas the global
vacuum state is pure, the restriction to a causally localized
subalgebra renders it impure; in fact its impurity can be described
as a thermodynamic KMS state (Haag, 1996) with respect to a
“modular Hamiltonian”. This is a general result of the application
of the so-called Tomita–Takesaki modular theory of local operator
algebras to the subalgebra which observables localized in a space-
time region (whose causal completion remains smaller than
Minkowski spacetime) generate.

This reduced vacuum state is entangled in a more radical sense
than the entanglement of particle states in Schrödinger's QM of
particle states under a binary split of the system into spatial inside/

outside subsystems. Entanglement in quantum mechanics resulting
from binary inside/outside splits of degrees of freedom resulting
from the reduction to the inside and the ensuing loss of the outside
information is a well-known phenomenon; it has been observed in
quantum optical experiments and the results led to a Nobel prize.
But the quantum mechanical “vacuum” (the mathematical refer-
ence state which one needs for the “second quantization” multi-
particle description of QM) remains completely inert against
entanglement. In fact the singular vacuum entanglement caused by
localization in QFT is characteristic for the enormous conceptual
distance between the two quantum theories. The terminology E–J
“conundrum” refers to the fact that for a long time this aspect of the
vacuum remained outside theoretical comprehension.

In fact most theoretical physicists became for the first time
aware of the KMS nature of the QFT restricted vacuum state in
connection with the Unruh's “Gedankenexperiment” in which the
localization region is a spacetime wedge. This aspect of vacuum
entanglement also points at the “fleeting” nature of this effect;
it remains many orders of magnitude below the measured quan-
tum optical entanglement of quantum mechanical particle states.
But even if it will always remain a “Gedanken” concept,4 it is at the
heart of QFT and follows directly from the quantum adaptation of
the Faraday–Maxwell “action at the neighborhood” which Einstein
converted into the Minkowski spacetime causality principle. Its
quantum counterpart is of a radically different nature whose
physical manifestations are somewhat unexpected. It will be
referred to as modular localization; a terminology which relates
its mathematical formulation with its physical implications. In the
present work it will be shown that its conceptual range is not
limited to shed light into dark corners of QFT's history as the
before mentioned E–J conundrum, but it also plays an important
role in an ongoing conceptual reformulation of QFT (which
includes gauge theories and the recently much discussed “Higgs
mechanism”).

The two components in Einstein's statistical mechanics fluctua-
tion properties are indeed, as Jordan claimed, also present in the
physical vacuum state after restricting it to the ensemble of
observables which are localized in a subvolume. It is important
to not impose boundary restrictions (box quantization) but remain
within the realm of “open systems”. Here it is irrelevant whether
Jordan's calculation treated this aspect correctly (Duncan &
Janssen, 2008); many important observations in the history of
quantum physics have been made within doubtful calculations.

When I was about to explain my findings (Schroer, 2011c, 2013,
2012) in 2008 to Ehlers, I learned that he passed away shortly
before my return to Berlin.

The main aim of this paper, which I dedicate to the memory of
Jürgen Ehlers, is to explain my findings and their relation to the
ongoing research in QFT in more details and a larger context than
previously in Schroer (2013).

I remember that Ehlers, in his capacity as the founding director
of the AEI in Potsdam, took an interest in string theory (ST).
He was however annoyed by the fact that he was unable to bridge
the gaps between his understanding of spacetime properties of
gravity and the (sometimes bizarre) claims of members of the ST
group at the AEI; notwithstanding the fact of the enormous
amount of mathematical sophistication and the professional
reputation of some of the protagonists of ST.

The work on modular localization also led me to string-
localized fields and their improved short distance property which
promised a radical extension of renormalization theory to inter-
action between fields with higher spins. The reason why I mention2 After WWII Jordan's interest was mainly focussed on general relativity and

philosophical implications of quantum theory. Since he never mentioned his early
work on QFT, we remained quite ignorant about it.

3 Here modular localization stands for an intrinsic formulation of causal
localization which is independent on what quantum field “coordinatization” one
uses in order to describe the particular model of QFT.

4 The situation becomes less "fleeting" if the horizon of the localization region
is an (Unruh observer-independent) black hole “event horizon”.
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this here is that this new concept of string-localized fields in
Hilbert space also revealed that string theory (ST) and its deriva-
tives (embeddings, dimensional reductions, the AdS–CFT iso-
morphism) has no relation to causal localization in spacetime; it
is rather the result of a fundamental misunderstanding on these
issues. Hence Ehlers' problems with the ancient Einstein–Jordan
conundrum and his new problems with ST were interconnected in
a curious way. His death in 2008 prevented me from conveying
this insight.

It is the purpose of these notes to explain the constructive
(Schroer, 2013) as well as critical (Schroer, 2014) power in a
historical context.

Usually a historical paper revisits the past about already closed
subjects; typical examples are research papers on the discovery
and the conceptual development of QM. In contrast to such
subjects, which are closed from a foundational physical point of
view (but sometimes still lead to bitter philosophical feuds), the
situation of the problems addressed in this paper is very different.
Most of them, although some having been present in QFT from its
historical beginnings, were only properly understood recently and
have not yet been addressed by philosophers. In contrast to QM,
QFT is still far from its conceptual closure not to mention its
philosophical exploration. The present paper attempts to give an
account of the present situation.

The Einstein–Jordan conundrum was often misunderstood as a
confirmation of the particle–wave duality which, since de Broglie's
matter–wave idea and Schrödinger's wave equation, was an
integral part of QM. But the E–J dispute addresses a much deeper
issue which, before the appearance of modular localization con-
cept in QFT, had little chance to be properly understood.

My posthumous thanks for introducing me to a fascinating
topic from the genesis of QFT which, far from being a closed part of
history, exerts its conceptual spell over actual particle theory,
naturally go to Jürgen Ehlers. The present exploration of the
foundational principle of modular localization did not only change
the view about hitherto incompletely understood problems at the
dawn of QFT (Schroer, 2013), but also promises to have an
important say about its future (Schroer, 2014).

2. Introduction

A dispute between Einstein and Jordan (referred to as the E–J
conundrum, Duncan & Janssen, 2008) led Jordan to propose the
first quantum field theoretical model with the purpose to show
that there exists a quantum analog of Einstein's thermal subvo-
lume fluctuations in open subvolumes (intervals) of two-
dimensional quantized Maxwell waves in a global vacuum state.
For this purpose Jordan invented the simplest QFT which in
modern terminology is the model generated by a conformal chiral
current. A brief sketch of the pre-history which led to the E–J
conundrum may be helpful.

� Einstein 1917 in Einstein (1917): calculation of mean square
fluctuations in an open subvolume in statistical mechanics of
the thermal black body radiation shows presence of two
components: wave- and particle-like (Nadelstrahlung) fluctua-
tion structure which Einstein interpreted as a theoretical
evidence for photons (after his 1905 paper based on the
observational support coming from the photoelectric effect).

� Jordan in his PhD thesis (1924, Jordan, 1924b) argued that the
particle-like component Eν � hν is not needed for attaining
equilibrium.

� Einstein's reaction (Einstein, 1925) consisted in a publication in
which Jordan's argument is conceded to be mathematically
correct but physically flawed (the absorption is incorrectly

described). However he praised Jordan's statistical innovations
(Stosszahlansatz).

� Einstein's paper caused Jordan's radical change of mind; he
fully accepted Einstein's view by demonstrating that he can
obtain the same wave- and particle-like fluctuation compo-
nents by restricting a “two-dimensional quantized Maxwell
field” (modern terminology: d¼1þ1 chiral current model) to a
subinterval. In this way he discovered field quantization,
probably without understanding why a vacuum in QFT behaves
radically different from a quantum mechanical “no particle
state”, in particular why the reduced vacuum shares the kind of
impurity with that of a KMS statistical mechanics state.

Shortly after this episode Jordan published his first field
quantization in a separate section in the famous 1926 “Dreimän-
nerarbeit” (Born et al., 1926). Gaps in Jordan's computation and his
somewhat artistic treatments of infinities caused some ruffling of
feathers with his coauthors Born and Heisenberg (Duncan &
Janssen, 2008). From a modern point of view the picture painted
in some historical reviews, namely that this was a typical case of a
young brainstorming innovator set against a scientific establish-
ment (represented by Born), is not quite correct. Born and
Heisenberg had valid reasons to consider Jordan's fluctuation
calculations as incomplete, to put it mildly. Conceding this does
however not lessen Jordan's merits as the protagonist of QFT .

One reasonwhy this discovery of QFT was not fully embraced at
the time was that, although a free field on its own (staying with its
linear properties) is a rather simple mathematical object, the
problem of energy fluctuations in open subvolumes is anything
but simple. To understand why subvolume fluctuations in the
vacuum state of QFT are similar to Einstein's statistical mechanics
thermal fluctuations is a deep conceptual problem which could
not have been solved solely by calculations; especially because
before the arrival of the concept of modular localization such
calculations could only have been done in terms of conceptually
uncontrolled approximations. But now it can be satisfactory
answered with the help of a new view of QFT which generically
relates the restriction of the vacuum to the observables of a
spacetime subvolume with thermal properties and vacuum polar-
ization (“split inclusions” of modular localized algebras, Haag,
1996); this is precisely what “modular localization” achieves.
One may safely assume that Born and Heisenberg perceived that
this new quantum field model of Jordan with infinitely many
oscillator degrees of freedom did not quite fit into their quantum
mechanical project which Heisenberg started a short time before;
in particular Jordan's nonchalant way of handling infinities led to
critical comments (Duncan & Janssen, 2008).

Nevertheless Heisenberg, who in comparison to Jordan under-
stood less about statistical mechanics at the time of the E–J
conundrum, later became aware of vacuum polarization (which is
absent in QM) probably still under the influence of Jordan's fluctua-
tion problem. A letter he wrote to Jordan before he published his
famous vacuum polarization paper mentions a logarithmic diver-
gence limε-1log ε, with ε describing the “fuzziness” at the interval
ends of Jordan's one-dimensional model (Duncan & Janssen, 2008).
Indeed vacuum polarization and thermal manifestations of vacuum
entanglement from causal localization are opposite sides of the
same coin.

One note of caution. Since the terminology “particles” and
“waves” played an important role in the Einstein–Jordan dispute,
the reader may think that it refers (as mentioned before) to the
quantum mechanical particle–wave dualisms (the two equivalent
descriptions of QM); in this way its real significance, namely the
thermal aspects of vacuum entanglement through causal localiza-
tion of quantum matter, is sometimes overlooked.
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The important distinction between the global quantum
mechanical nature of infinitely many oscillators and their holistic
role in the implementation of causal localization in a quantum
theory of local fields had to wait almost five decades before being
understood on a foundational level. For some time QFT was even
suspected to be afflicted by internal inconsistencies which lead to
ultraviolet divergencies (the “ultraviolet catastrophe”). Even after
discovering the covariant renormalized perturbation theory for
quantum electrodynamics (and finding an impressively successful
agreement of low order perturbation with experimental observa-
tions) some of these doubts lingered on. Renormalized perturba-
tion theory remained for a long time a collection of recipes about
how to extract finite time-ordered correlation functions from the
quantization rules starting with classical Lagrangians. What con-
vinced people despite the weakness was the internal consistency
of the finite results.

The quantization parallelism to the classical field theory of
Faraday and Maxwell as embodied in the Lagrangian or functional
integral quantization prevented for a long time an awareness
about some radical differences resulting from quantum causal
localization as compared to its classical counterpart. One mani-
festation of such a difference was that quantum fields, in contrast
to smooth causally propagating classical functions, were rather
singular operator-valued Schwartz distributions. They require
testfunction smearing in order to attain the status of (generally)
unbounded operators with which one then can construct operator
algebras of bounded operators which are causally localized in
spacetime regions. The other surprise was that these operator
algebras have properties which were somewhat unexpected from
the conceptual viewpoint of QM. Causal localization causes the
global vacuum state to become impure upon restriction to a local
operator subalgebra AðOÞ generated by covariant fields A(x)
smeared with O�supported test functions. These impure “partial”
states fulfill the so-called KMS property (Haag, 1996) with respect
to a modular Hamiltonian which is intrinsically determined by the
pair (AðOÞ;Ωvac) of local algebra and vacuum state vector. In fact all
physical (i.e. finite energy) states restricted to a local algebra
behave like statistical mechanics states.

The mathematical theory of operator algebras which highlights
such properties is the Tomita–Takesaki modular operator theory
which is omnipresent in QFT thanks to its causal localization
structure. The presentation of QFT in terms of a net of operator
algebras and their properties was proposed by Haag shortly after
Arthur Wightman published his characterization of covariant
fields in terms of properties of their correlation functions
(Streater & Wightman, 1964). Haag's textbook on “local quantum
physics” (LQP) (Haag, 1996), based on an operator-algebraic
approach to QFT, appeared only many decades after he gave a
first account of this new formulation; for a historical review see
(Haag, 2010). The terminology LQP in the present article is used
whenever it is important to remind the reader that the arguments
go beyond the view about QFT which he meets in most textbooks
(which are usually restricted to a formulation of perturbation
theory within the setting of Lagrangian quantization and its
functional integral formulation).

The mathematical property which guaranties the applicability
of the T–T modular operator theory is the so-called standardness of
the pair (AðOÞ;Ωvac) i.e. the property that the operator algebra acts
on Ωvac (more generally on all finite-energy state vectors) in a
cyclic (AðOÞΩvac ¼H) and separating (AðOÞ contains no annihilators
of Ωvac) manner. The cyclicity of the vacuum is closely related to
the positivity of the energy of the representation of the Poincaré
group, whereas the separating property results from spacelike
commutativity of observables and is equivalent to the fact that the
commutant, which contains the algebra of the causal complement
AðOÞ0+AðO0Þ, acts also cyclic on Ωvac as long as the spacelike

complement O0 is non-void. This physicists know under the name
of the “Reeh–Schlieder property” (Haag, 1996), whereas the
operator algebraists call this the “standardness” of the pair
(AðOÞ;Ω). This property is not shared by QM and accounts for
the significant differences between these two QT (Schroer, 2010b).

For a structural comparison it is convenient to rewrite (the
Schrödinger form of) QM into the Fock space setting of “second
quantization” which converts wave functions into fields. As men-
tioned before in this reformulation the newly introduced vacuum
remains, as opposed to its active role in QFT, completely inert with
respect to the action of the Schrödinger “quantum field” (no
vacuum entanglement leading to vacuum polarization). Instead
of the cyclic action the local algebra at a fixed time5 corresponding
e.g. to a spatial region R�R3, one obtains a subspace and a tensor
factorization of H

HðRÞ ¼AðRÞΩQM �H ¼HðRÞ � HðR? Þ
AðRÞ ¼ BðHðRÞÞ;A� BðHÞ ¼AðRÞ � AðR? Þ ð1Þ

of with a factorizing vacuum ΩQM . This inertness against entangle-
ment of the quantum mechanical vacuum is very different from
the “vacuum polarizability” of Ωvac in QFT which is connected to
the lack of tensor factorization (despite the fact that by definition
the commutant AðOÞ0 contains all operators which commute with
AðOÞ). In terms of structural properties of operator algebras these
remarkable differences in the mathematical structure amount to
the existence of two non-isomorphic factor algebras which are
met in QFT: the global BðHÞ algebra of all bounded operators on a
Hilbert space (the unique type I1 factor) and the local monad
algebras AðOÞ which are all isomorphic to the unique hyperfinite
type III1 factor algebra in the Murray–von Neumann–Connes
classification of factor algebras (Haag, 1996).

The choice of terminology reveals the intention to see the new
local quantum physical view of QFT in analogy to the way Leibnitz
understood reality in terms of relations between monads. In this
extreme relational view, a monad by itself is nearly structureless,
similar to a point in geometry. Indeed in the local quantum physical
description of QFT, all properties of quantum matter, including the
Poincaré covariance of its localization in spacetime and its possible
localization-preserving inner symmetries, can be shown to arise from
the abstract (non-geometric) modular positioning of a finite number of
copies (depending on the spacetime dimension) of the monad within
a shared Hilbert space (Section 3); the Poincaré group can be extracted
from the modular groups of the contributing algebras and the concept
of modular inclusions (Kaehler & Wiesbrock, 2001).

Together with the thermal KMS property of the locally
restricted vacuum, there is the formation of a vacuum polarization
cloud at the causal boundary of localization which accounts for a
localization entropy, a special type of entanglement entropy. By
replacing the boundary by a thin shell of size ε the localization
entropy can be described in terms of a function of the dimension-
less area α¼ area=ε2 which diverges in the limit ε-0. This relation
between the increasing sharpness of localization and the increas-
ing localization entropy is the substitute of the lost quantum
mechanical Heisenberg uncertainty relation. The position operator
xop is, as all quantum mechanical observables, of global nature;
it does not belong to the observables obeying the causal localiza-
tion principle of LQP but may be used in the (non-covariant)
effective description of wave-function propagation. The diver-
gence in the sharp localization limit ε-0 shows another aspect
in which QFT differs from QM.

The entanglement between the wedge-localized algebra and its
opposite (that of the spacelike separated wedge) is always infinite

5 In LQP such an algebra at a fixed time AðRÞ is defined as the intersection of all
spacetime algebras AðOÞ with R�O.
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in the sense that it is not possible to describe the associated state
as density matrix (accounting for the singular nature of vacuum
entanglement); indeed there are no pure states nor density matrix
states on monad algebras; all states are impure in a very radical
way. This is not a disease of QFT but rather its conceptual heart;
without it there would be no relativistic QFT. In quantum statis-
tical mechanics this kind of KMS state is only met in the
thermodynamic limit of density matrix Gibbs states diverge and
pass to KMS states on a monad algebra. In this case the QFT
generated by the commutant describes a “shadow world” outside
the localization concept (Schroer & Wiesbrock, 2000). Local
algebras AðOÞ in QFT are monads and have no density matrix or
pure states6 at all; every global state restricted to such an algebra
will be rather singular. In fact all physical (i.e. finite energy) states
restrict to singular KMS states (i.e. one which cannot be written as
a density matrix state).

The reduced vacuum state assign a probability to the ensemble
of local observables contained in AðOÞ; this is a consequence of the
KMS (statistical mechanics-like) nature of the impure reduced
vacuum state. Unlike the probability interpretation, which Born
added to QM and which Einstein rejected (God does not throw
dice), the ensemble viewpoint of probability as in statistical
mechanics (which Einstein accepted) is intrinsic to QFT. KMS
states on the ensembles of O�localized observables are like
thermal states of statistical mechanics and not “Gedanken-ensem-
bles” as in case of Born's assignment of probabilities to individual
mechanical systems of QMwhich refers to the statistics of repeated
measurements. Einstein had no problems with probability of real
ensembles in statistical mechanics, but it is the at that time unknown
modular localization aspect which permits to recognize the ensemble
aspect of local observables.

There have been attempts to improve Jordan's approximations
(Duncan & Janssen, 2008) since the subvolume fluctuation pro-
blem is not solvable in closed form. The characterization of the
algebra of operators localized in a subvolume is a holistic problem;
the enclosure of the subsystem in a quantization box is not the
same as reducing the vacuum to the subvolume algebra. Dealing
with open subsystems is an “holistic” challenge in which the
knowledge of the global oscillators is of not much help. Standard
QFT does not provide a clear mathematical concept in order to
characterize the ensemble of operators which is localized in a
subvolume O. On way of doing this would be to smear the
quantum fields with O�supported testfunctions and use the
algebra which they generate. Even then one needs some knowl-
edge about the “modular Hamiltonian” which is related to the kind
of statistical mechanics associated with the KMS state correspond-
ing to the restricted vacuum. In certain cases one can guess it in
the form of a geometric transformation which leaves O invariant.
For a noncompact wedge region in Minkowski spacetime e.g.
W3 ¼ x; x34 x0j jf g this would be the wedge-preserving Lorentz
subgroup ΛW3 ðχÞ, for Jordan's model (a chiral subalgebra on a
lightlike interval, see Section 4) it is the interval-preserving
dilation subgroup of the Möbius group; but in the generic case
one has to refer to modular theory. What is important in the
historical review is not whether Jordan got this right, but rather
that in his attempt to counter Einstein he invented QFT.

In order to avoid any misunderstandings it should be empha-
sized that in saying that the concept of probability enters QFT in a
more natural way than in QM, one is not implying that this is
changing the epistemic aspects of the measurement theory in QT.
All the conceptual aspects of entanglement (including Bell's

inequality) remain valid. What QFT adds is a more radical realiza-
tion of these phenomena on a much smaller scale; as already
mentioned the scale of localization-caused vacuum entanglement
is that of the Unruh effect and Hawking radiation. The reality of
entanglement of particle states with respect to binary subdivisions
in QM is experimentally accessible in terms of quantum optical
arrangements, whereas the KMS impurity of the spacetime-
restricted vacuum (e.g. the Unruh effect) will presumably always
remain experimentally inaccessible (including even high energy
nuclear experiments).

Part of the problem is that it is nearly impossible to describe
precisely in terms of existing hardware how a perfect causal
localization can be realized; even for noncompact spacetime
regions as Unruh's Rindler wedges, the effect depends on the state
of uniform acceleration of the observer; observer-independent
manifestations appear only in the context of metric-induced event
horizons of black holes. Fortunately foundational principles do not
need to permit direct observational verification; they only have to
be conceptually consistent, incorporate the reality which existed
before their inception, and lead to new observable consequences.
In this respect, QFT, which only shares with QM the Hilbert space
and ℏ but not the causal locality principle, has been and promises
to continue to be the most inclusive successful physical theory.

One can entertain wonderful dreams of what may have
happened if important concepts would have appeared decades
earlier. But in the real world big conceptual jumps against the
prevalent ideas of the time (the Zeitgeist) are virtually impossible;
even for getting from inertial systems in Minkowski spacetime to
General Relativity it took Einstein many years and the same can be
said about the development of QM out of the old semiclassical
Bohr–Sommerfeld ideas. The problem for the case at hand is
aggravated by the fact that, up to the middle of the 1960s, there
did not even exist a mathematical framework of operator algebras
in which ideas about localization could have been adequately
formulated.

It is interesting to note that modular operator theory and its
physical counterpart of modular localization is the only theory to
whose discovery and development mathematicians (Tomita, Take-
saki, Connes) and physicists (Haag, Hugenholz and Winnink)
contributed on par. They first realized this at a 1965 conference
in Baton Rouge,7 with statistical mechanics of open systems and
the role of the KMS property representing the physical side (Haag,
1996). The study of the relation between modular operator theory
and causal localization in LQP started a decade later (Bisognano &
Wichmann, 1976), and its first application consisted in a more
profound understanding (Sewell, 1982) of the Unruh Gedankenex-
periment (Unruh, 1976). The terminology “modular localization” is
more recent and marks the beginning of a new constructive
strategy in QFT based on the modular aspects of localization of
states and algebras (Brunetti, Guido, & Longo, 2002; Schroer,
1999). In mathematics the theory was the decisive instrument
which led to Connes closure of the Murray–von Neumann project
of classifying von Neumann factor algebras.

The E–J conundrum represents in fact a precursor of the Unruh
Gedankenexperiment and, as the latter, can be fully resolved in
terms of the principle of modular localization. In fact in the special
case of Jordan's chiral current model (the historically first and
simplest model of a QFT), the solution of the E–J conundrum
amounts to a unitary isomorphism between a system defined by
the vacuum state restricted to the algebra AðIÞ localized in an

6 A state is a normalized linear positive functional on an algebra and only if this
algebra consists of all bounded operators in a Hilbert space B(H), states can be
represented by vectors (modulo phase factors).

7 The mathematicians worked on the generalization of the modularity of Haar
measures (unimodular) in group representation theory whereas the physicists tried
to understand quantum statistical mechanics directly in the thermodynamic
infinite volume limit (open system statistical mechanics) by using the KMS identity
instead of approaching this limit by tracial Gibbs states.
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interval I and an associated global statistical mechanics system at
finite temperature. Such isomorphic relations are referred to as
describing an “inverse Unruh effect” (Schroer & Wiesbrock, 2000)
and the Jordan model is the only known illustration. However in
both cases the KMS temperature is not something which one can
measure with a thermometer or use for “egg-boiling” (and there is
also no “boiling soup” of particle/anti-particle pairs) (Buchholz &
Solveen, 2013).

The attribute “holistic” will be used quite frequently in con-
nection with modular localization. This terminology has been
previously introduces by Hollands and Wald (2004) in connection
with their critique of calculations of the cosmological constant in
terms of simply occupying global energy levels (with a cutoff at
the Planck mass). In previous papers (Schroer, 2013), it refers to
the intrinsicness of localization which is connected with the
cardinality of phase space degrees of freedom and their subtle
local interplay. This distinguishes physical localization of quantum
matter from mathematical/geometrical concepts. In fact it pre-
sents a strong barrier against attempts of geometrization of QFT
and explains why the Atiyah–Witten attempt of the 1970s to
“geometrize” QFT did not lead to the breakthrough which many
people (including the author) hoped for.

The simplest illustration of the meaning of holistic consists in
the refutation of the vernacular: “(free) quantum fields are nothing
more than a collection of oscillators” which often students are told
in courses of QM. Knowing continuous families of oscillators in the
form of creation and annihilation operators a#ðpÞ does not reveal
anything about free quantum fields and their associated local
operator algebras. The free Schrödinger field and a free scalar
covariant field share the same global oscillator creation/annihila-
tion operators

aQMðx; tÞ ¼
1

ð2πÞ3=2
Z

eipx�ðp2=2mÞaðpÞ d3p; aðpÞ; anðp0Þ� �¼ δ3ðp�p0Þ

AQFT ðxÞ ¼
1

ð2πÞ3=2
Z

e� ipxaðpÞþeipxanðpÞ
� � d3p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þm2

p ; p¼ ðp;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þm2

q
Þ

ð2Þ

In both cases the global algebra is the irreducible algebra of all
operators BðHÞ, generated by the shared creation/annihilation opera-
tors. But the local algebras8 generated by testfunction-smearing with
finitely supported Schwartz functions suppfðxÞ �R of the fields and
its canonical conjugate at a fixed time in a spatial region R are very
different in both cases. In the relativistic covariant case they are
identical to the algebras AðORÞ, OR ¼R″ the causal spacetime
completion of R (which is also generated by smearing with
OR�supported spacetime smearing functions). According to what
was stated before, these algebras are of “monad” type and the
AðORÞ�restricted vacuum state is a KMS state; in the case of the
Schrödinger field the associated subalgebra BðHðRÞÞ is of the same
type as the global algebra; the QM vacuum continues to be an inert
state in the “smaller” factor Hilbert space HðRÞ.

Whereas the global QM algebra is simply the tensor product of
its factor algebras, the relation of the net of local algebras to its
AðOÞ “pieces” is a more holistic relation; although together with
its complement it generates the global algebra AðOÞ3AðOÞ0 ¼
BðHÞ, the global algebra B(H) is not a tensor product of the two.
The most surprising property which underlines the terminology
“holistic” is the fact that the full net of local operator algebras
which contains all physical informations can be obtained by
“modular tuning” of a finite number of copies of a monad in a

shared Hilbert space9; the reader who is interested in the precise
formulation and its proof is referred to Kaehler and Wiesbrock
(2001), see also Schroer (2010b). The fact that the global oscillator
variables are the same in both cases (2) does not reveal these
fundamental holistic differences of spacetime organization of
quantum matter which have very different physical consequences.
The present quantization formalism (Lagrangian, functional inte-
gral) does not shed light on those properties of QFT which solve
the Einstein–Jordan conundrum in a clear-cut way. If it comes to
ensemble properties of localized observables, the global aspects of
generating covariant fields (which have no definite localization
region) on which covariant perturbation theory is founded are of
lesser importance than the local operator algebras AðOÞ which are
generated by all smeared fields A(f) with sup pf �O. The emphasis
changes from covariance properties of fields to properties of
relative localization of operator algebras and this change finds its
appropriate mathematical form in the LQP (local quantum physics)
setting of QFT (Haag, 1996).

It is precisely this holistic aspect which renders any calculation
of the subvolume fluctuation difficult; the simplicity of global
oscillators is of no help here. A calculation in closed form is (even
in the absence of interactions) not possible, and the imposition of
covariance, which was the important step for obtaining the modern
form of perturbation theory, also does not provide guidance. For
renormalized perturbation theory one has clear recipes which were
extracted from the imposition of covariance, but this is of not much
help when one wants to find appropriate description of localized
fluctuation in open subsystems. Saying that the global aspects can
be described in terms of oscillators is almost as useless as trying to
understand the holistic structure of a living body in terms of its
chemical composition (in this analogy the chemical substances
correspond the global operators whereas the nature of live corre-
sponds to the organization of global oscillators into algebras of local
observables).

Although modular localization theory asserts the existence of
“modular Hamiltonians”, in its present state it does not provide a
generic method to explicitly construct them. Jordan's chiral model
is an exceptional case for which, similar to the Unruh Gedanke-
nexperiment, an explicit identification of the modular Hamiltonian
in terms of the spacetime symmetries of the model is possible.
Actually one may view Jordan's fluctuation problem as a prede-
cessor of the Unruh effect in other words: QFT was born with the
“thermal” localization aspects of the E–J conundrum which
includes a completely intrinsic pre-Born notion of ensemble-
probability; however the proximity of its date of birth to that of
QM prevented an in-depth understanding of differences beyond
the shared ℏ and the Hilbert space.

This begs the question how, with the understanding of founda-
tional properties of QFT still being that incomplete, it was possible
to achieve the remarkable progress in renormalized perturbation
theory. To phrase it in a more provocative historical context: how
could one arrive at the Standard Model without having first solved
the 1925 Einstein–Jordan conundrum? The answer is surprisingly
simple: to get from the old Wenzel–Heitler formulation of pertur-
bation theory, in which the vacuum polarization contributions
were still missing, to the Tomonage–Feynman–Schwinger–Dyson
perturbation theory for quantum electrodynamics (QED), one only
needed to impose covariance and “exorcise” some ultraviolet
divergences by finding plausible recipes. It was the internal
consistency of the result and not its derivation from Lagrangian

8 Technical points as the connection between fields and the algebras they
generate are not important in the present context and therefore will be omitted.

9 This number n is two for the simplest case of a chiral algebra, whereas for a
net in four spacetime dimension the correct modular positioning can be achieved
in terms of n¼7 copies. The emergence of the spacetime symmetries in Minkowski
spacetime as well as possible inner symmetries of quantum matter is a conse-
quence of this holistic tuning.
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quantization which made renormalized perturbation theory
successful.

Many years later there was also derivation of these renorma-
lization rules by starting from invariant free field polynomials
(without using Lagrangians quantization10) and invoking spacelike
commutativity in an inductive way (the causal perturbation
setting of Epstein & Glaser, 1973). But such conceptual refinements
(of reducing prescriptions to an underlying principle) had little
impact on the Zeitgeist; in any case it would not have helped to
obtain the foundational insight into modular localization which is
required in order to solve the E–J conundrum.

This lucky situation of making progress by playfully pushing
ahead and working once way through a yet conceptual incomplete
formalism with the help of consistency checks did not extend
much beyond Lagrangian quantization and renormalized pertur-
bation theory. As will be shown in Section 6, it is precisely this
setting which determined the fate of QFT for more than half a
century which is now being replaced by a more general setting
based on modular localization. The latter has not only removed
unnecessary restrictions from renormalization theory, but also led
to a different view about on-shell constructions (Section 5). When,
in the aftermath of the Lehmann–Symanzik–Zimmermann (LSZ)
scattering theory and the successful adaptation of the Kramers–
Kronig dispersion relations, the first attempts of S-matrix based
on-shell construction were formulated, the conceptual difficulties
of analytic aspects of on-shell properties were underestimated.
As one knows through more recent progress about modular
localization, an important aspect of the S-matrix, namely its role
as a relative modular invariant of wedge-localization, was missing.
As a result, the true nature of the particle crossing property was
misunderstood by identifying it with Veneziano's dual model
crossing which was then passed to string theory (ST).

The correct formulation of the on-shell crossing property
within a new S-matrix-based construction project and the solution
of the E–J conundrum are interconnected via the principle of
modular localization. It is the aim of this paper to show the power
of the latter by presenting the solution to these two problems.

The first attempts to formulate particle physics and obtain an
constructive access outside of quantization and perturbation
theory was the S-matrix in Mandelstam's project (Mandelstam,
1968). As we know nowadays, and as it will be explained in detail
in the present work, this failed as a result of the insufficient
understood on-shell analytic properties. Their connection to the
causality principle are much more subtle than those to the off-
shell correlation functions. In retrospect it is clear that with the
scant understanding of the central crossing property (and more
generally the conceptual origin of on-shell analyticity properties),
there was no chance in 1970s for Mandelstam's S-matrix based
particle theory project to succeed.

In retrospect it is also clear why this happened precisely when
Veneziano's mathematical construction of a crossing symmetric
meromorphic function in two variables was accepted as a model
realization of particle crossing for elastic scattering amplitudes.
It is appropriate in an paper, whose intention is to shed light on
still ongoing misunderstandings, to explain their origin in a
historical context.

The importance of the E–J conundrum in the development of
QFT can be best highlighted by following Galileio's example and
imagine a dialog between Einstein and Jordan about subvolume
fluctuations but placing it in the year 1927, after Max Born added
his probability interpretation to Heisenberg's and Schrödinger's
quantum mechanics.

Einstein: Dr. Jordan, I appreciate that you finally accepted my
invitation to come to Berlin and I am very interested to understand
why, after first criticizing my fluctuation calculations in my
statistical mechanics thermal blackbody radiation model, you
now claim that you find similar fluctuation components in your
new wave quantization at zero temperature.

Jordan: Thank you Professor Einstein for taking so much interest
in my work. The appearance of such a fluctuation spectrum in my
new setting of quantized waves in a vacuum state is indeed
surprising. Although my wave quantization of 2-dimensional Max-
well waves generalizes Heisenberg's quantization in some sense, the
fluctuation properties obtained by restricting the vacuum to a
subinterval leads to a very different situation from that expected in
his and Born's formulation of QM. It seems that my quantized
Maxwell waves cannot be subsumed into a quantum mechanics of
systems with an infinite number of oscillators.

Einstein: As you remember, I have some grave reservation
against associating a probability to an individual measurement
on a quantized mechanical system which I occasionally expressed
in the formulation “the Dear Lord does not throw dice”. But I never
had any problem with probability in statistical mechanics, in fact
my calculation of the Nadelstrahlung-component in the black
body fluctuation spectrum, which led me to the particle nature
of light on pure theoretical grounds, is based on the probability of
quantum statistical mechanics. Does the result of your subvolume
fluctuation calculation in the pure ground state of your field
quantization mean that this state appears impure if analyzed in
the setting of an open subsystem?

Jordan: Professor Einstein, I am glad that you raised this question.
I have been breaking my head over these unexpected consequences of
my new quantized field theory and I would be dishonest with you,
if I claim to understand these conceptual implications. But since the
main difference to mechanics is the causal propagation (which was
already implicit in the Nahewirkungsprinzip of Faraday and Maxwell
and which you then succeeded to generalize into your new relativity
principle in a Minkowski spacetime), I am inclined to suspect that the
ensemble aspect, which one needs in order to avoid the assignment of
a probability to an individual mechanical system (as proposed by my
adviser Prof. Max Born), has its origin in the quantum realization of
causal localization. Somehow this principle creates a natural ensemble
associated with its causal completion of a localization region, namely
the ensemble of all local observables attached to that spacetime
region. This is in contrast to QM which deals with individual
mechanical systems for which the association to an ensemble is a
useful mental construct for the interpretation of QM. I tried to
convince Prof. Born and my colleague Werner Heisenberg, who
despite their initial resistance finally agreed to permit me to present
my idees in a separate section of a joint paper which was published
2 years ago. But I was not able to remove their doubts. It would be
very helpful for me to obtain some support from your side.

Einstein: I need some time to think about this new situation.
Your conjecture seems to suggest that your new theory of quantum
fields, which is certainly much more fundamental than Heisen-
berg's and Schrödinger's quantized mechanics, comes with an
intrinsic notion of localized ensembles of observables and an
associated statistical mechanics type of probability. If one could
better understand how the less fundamental global quantum
mechanics can be related as a limiting case to your new funda-
mental quantum field theory in such a way that Born's postulated
probability is a relict of your local ensemble probability, this may
change my view and perhaps even influence my quantum physical
Weltanschauung. Let us remain in contact and keep me informed
about future clarifications on the points raised in our conversation.//

In this imagined dialog, which could have radically changed the
history of QFT, I avoided the use of advanced mathematical concepts
of modular localization for which there was nomathematical support10 The free fields do not have to fulfill Euler–Lagrange equations.
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in the 1920s. The E–J conundrum is best understood as a progenitor
of an Unruh-like Gedanken experiment.

The organization of this paper is as follows. In the next section
the vacuum polarization on the boundary of causal localization is
derived for the “partial charge”, which is a modern formulation of
Heisenberg's original observation. Section 3 sketches the issue of
modular localization and its KMS property with special emphasis
on the difference between a KMS (Carnot) temperature and that
measured by a thermometer. In Section 4 the KMS property is used
for the explicit construction of an isomorphism between the
thermal subvolume (interval in Jordan's chiral model) fluctuations
in Jordan's model with a corresponding statistical mechanics
model representing Einstein's side. Section 5 explains modular
localization and its relation with the Tomita–Takesaki modular
operator theory. The ongoing impact of modular localization on
on-shell constructions of QFT, with particular emphasis on the
connection of particle crossing with the KMS identity, is addressed
in Section 7.

The most important consequence of modular localization for
the ongoing research in particle theory is the generalization of
renormalized perturbation to interactions involving arbitrarily
high spin through the use of string-localized fields in Section 6.
In the case of spin s¼1 it leads to a much deeper understanding of
why the gauge theory requires the indefinite metric Krein space
setting and how modular localization allows a formulation which
remains throughout in the Hilbert space.

The same ideas which lead to unexpected progress also permit
to expose the misunderstandings which led to the dual model and
ST as presented in Section 7. In contrast to the stringlocal fields in
higher spin QFT the localization which string theorist attribute to
it is that of a chain of quantum mechanical oscillators (Born's
localization) which bears no relation to causal localization in
spacetime. Section 8 addresses some old and in the maelstrom
of time lost insights about the connection between the cardinality
of phase space degrees of freedom and causal localization. This
includes problems concerning dimensional changes which came
from ST but which can also be formulated in the setting of QFT.
The critique of the Maldacena conjecture, concerning the nature of
the AdS–CFT correspondence, addresses one of those problems.
The concluding remarks in the last section attempt to position the
present situation in the particle theory within the historical
context and the expectations about its future.

3. Vacuum polarization, area law

In 1934, Heisenberg (1934) finally published his findings about
vacuum polarizations (v.p.) in the context of conserved currents
which are quadratic expressions in free fields. Whereas in QM they
lead to well-defined partial charges associated with a volume V

∂μjμ ¼ 0; Qclas
V ðtÞ ¼

Z
V
d3xjclas0 ðt; xÞ

QQM
V ðtÞ ¼

Z
V
d3xjQM0 ðt; xÞ; QQM

V ðtÞΩQM ¼ 0 ð3Þ

there are no such sharp defined “partial charges” QV in QFT, rather
one finds (with gT a finite support smooth interpolation of the
delta function) (Requardt, 1976)

Q ðf R;ΔR; gT Þ≔
Z
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where the logarithmic divergence corresponds to n¼2.
The dimensionless partial charge Q ðf R;ΔR; gT Þ depends on the

“thickness” (fuzziness, roughness) ΔR¼ ε of the boundary and
becomes the f and g-independent (and hence t-independent)
conserved) global charge operator in the large volume limit.
The deviation from the case of QM is caused by v.p. Whereas the
latter fade out in the R-1 limit, they grow with the dimension-
less area ðR=ΔRÞn�2 for ΔR-0. The simplest calculation is in terms
of the two-point function of conserved current of a zero mass
scalar free field. In the massive case the leading term in the limit
ΔR-0 remains unchanged. We leave the elementary calculations
(not elementary at the time of Heisenberg) to the reader.

The presence of v.p. causes relativistic quantum fields to be
more singular than Schrödinger fields and requires the formula-
tion in terms of the Schwartz distribution theory as used in the
above smearing of the current with smooth finitely supported test
function. The LQP setting on the other hand avoids the direct use
of such singular objects in favor of local operator algebras. In such
a description the singular nature of vacuum polarization is not
directly perceived in the individual operators but rather shows up
in ensemble properties of operator algebras. It turns out that
under rather general conditions there exists between two monad
algebras a distinguished (by modular theory) intermediate type I1
algebra N (Haag, 1996)

AðORþΔRÞ*N*AðORÞ; H-
V
HðNÞ � HðN0Þ; η� VðΩ � ΩÞ

VAB0Ω¼ AΩ � BΩ; AAAðORÞ; B0AAðORþΔRÞ;

VNVn ¼ BðHÞ � 1 ð5Þ

i.e. there exists a unitary operator V which permits to write the full
Hilbert in terms of a tensor product such that AðORÞ �N,
AðORþΔRÞ0 �N0 where the “split vacuum” η is a state in the original
Hilbert space which corresponds to the tensor product of vacua.

In QM the unitary V would be simply the identity operator
expressing the fact that the vacuum is an auxiliary mathematical
state which remains physically inert under splitting, i.e. the QM
vacuum is not entangled under spatial subdivisions. In QFT it is a
state which on N � N0 is nontrivially entangled in the sense of
quantum information theory. However in the sharp localization
limit ΔR-0 the “quantum mechanical” type I1 converge towards
the monads AðORÞ;AðO0

RÞ which commute but do not tensor-
factorize. The limiting entanglement is of a very singular kind
which has no counterpart in quantum information theory and is
characteristic for subalgebras which do not admit density matrix
states as the monad. The situation is analogous to that encoun-
tered in finite temperature statistical mechanics in the thermo-
dynamic infinite volume limit when the tracial nature (the Gibbs
formula) of the state is lost and only the KMS property remains.11

The above described nontrivial behavior under splitting leads
to a nontrivial ΔR dependent localization entropy which is con-
sistent with the KMS impurity of the restricted vacuum. In fact,
since the vacuum polarization happens in a layer of size ΔR (the

11 Whereas the thermodynamic limit monad is approximated from the inside,
the split property approximates the local monad from the outside.
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“fuzzy” boundary) the entropy is a function of the dimensionless
area

EnðR;ΔRÞ ¼ split localization entropy

EnjΔR-0Cca; a¼ area

ðΔRÞd�2
for d42 ð6Þ

where the second line is the leading order in the sharp localization
limit which one expects if the “polarization clouds”, which
determine the singular behavior of smeared fields as Heisenberg's
partial charges (4), are the same as those which appear in the
above entropy argument.

Note that in contradistinction to the treatment in the literature
where the connection with the model of local QFT is lost by
introducing an imagined and ill-defined momentum space cut-
off,12 the implementation of the split property is a construction
within the QFT model.

The logarithmic behavior for d¼2 split entropy can actually be
rigorously derived (Schroer, 2011b) and is well known to con-
densed matter physicists. For Jordan's chiral current model used in
the E–J conundrum, the entropy can be directly obtained from the
isometry with a chiral statistical mechanics model (Section 4). This
situation is very special and has been termed “the inverse Unruh
effect (Schroer & Wiesbrock, 2000). For d¼1þ3 't Hooft has
obtained the area behavior in terms of the “brickwall picture”
('tHooft, 1996), but a rigorous derivation, solely based in the split
property of modular localization, is not yet available. Bekenstein's
area law results if one relates ΔR with the Plank length.

There exists a conjecture that even in the general case there
could remain a weak form of the “inverse Unruh effect” (Schroer &
Wiesbrock, 2000) in which the spatial volume factor is replaced by
the “volume factor” of a box with two spacelike and one lightlike
direction. In that case the two spacelike extensions would account
for the dimensionless area factor and the lightlike contribution
would be (as in the chiral Jordan model) logarithmic (Schroer,
2011b) so that the net result is a logarithmically modified area law.

Either behavior of localization-entropy shows that although
there are genuine infinities in QFT; they are limited to sharp
localization within a model and not a predicate of QFT; in case of
quantum fields they are controlled in terms of testfunction
smearing. Unlike the misunderstood ultraviolet divergencies in
the old formulation of perturbation theory, they have no relation
to the “ultraviolet catastrophe” i.e. they threaten in no way the
consistency of QFT; to the contrary, they are a direct consequence
of its most foundational modular localization property. In a certain
sense the divergence of thermodynamic infinite volume limit
correspond to the infinity obtained in the sharp boundary limit
(increasing sharpness of the boundary) ε-0.

With the notion of “localization temperature” and energy one
has to be much more careful than with the dimensionless
localization entropy. When one naively interprets the Unruh
temperature as that measured by a thermometer, one enters a
conceptual mine field. The equality of the thermometer (local)
temperature (related to the zeroth thermodynamic law with the
“Carnot temperature” of the second fundamental law of an KMS
equilibrium state is only correct in an inertial system, but the “egg-
boiling local temperature of the Unruh effect refers to an acceler-
ated observer. In fact the thermometer temperature in a vacuum
state remains zero; it is a “local temperature” which does not
depend on the Unruh trajectory (Buchholz & Solveen, 2013). The
same holds for other situations described by modular theory (next
section); although there is always a dimensionless modular
Hamiltonian and a dimensionless temperature β¼ 2π associated
with modular KMS states. The still ongoing hot topic about

“firewalls” (Papadodimas & Raju) is dangerously close to the Unruh
“cooking temperature” and more investigations about possible
differences between causal horizons (Unruh) and event horizons
of black holes are necessary for clarification.

Another useful conceptual warning in passing from classical
fields to quantum fields is to avoid to attribute a direct physical
meaning to fields, but rather to view them in a similar role as that
which coordinates play in the description of geometry. This is
facilitated by the fact that quantum fields are not directly mea-
sured (no experimentalist has measured a nuclear field); rather
the notion of a quantum field serves as a device to describe particles
which are related to a particular subset of quantum field i.e. the
same particles can be interpolated by many different fields. It has
turned out that to view fields in their role as coordinatizing or
generating local algebras is the most useful way of keeping track of
the differences between description-dependent fields from intrin-
sic particles. In this way particles do not correspond to individual
fields but rather to local field classes which carry the same
superselection charges. All structural properties of LQP and the
resulting general theorems can be expressed in terms of local nets
of operator algebras, but the present formulation of renormalized
perturbation theory still needs generating fields.

Note that the well-known entropy conjecture by Bekenstein,
based on equating a certain area behavior in classical general
relativity with quantum entropy, results formally from the above
area law by equating ΔR with the Planck length. Quantum gravity
is often thought of as that still elusive theory which explains why
and how the quanta of gravity can escape the consequences of
modular localization for sharp localization which are responsible
for the singular short distance aspects of causal localization.
If Bekenstein's conjecture really describes quantum aspects of
gravity (and not just quantum matter in curved spacetime), then
modular localization cannot be extended to quantum gravity.

As mentioned before the relation between ΔR and the entropy
is reminiscent of Heisenberg's quantum mechanical uncertainty
relation in which the uncertainty in the position is replaced by the
split distance ΔR within which the vacuum polarizations can
attenuate, so that outside the vacuum returns to play its usual
role (if tested with local observables in the causal complement of
ORþΔRÞ.

It should be stressed again that the probability interpretation,
which Born had to add to Heisenberg's and Schrödinger's formula-
tion of QM, is completely intrinsic to LQP. It is a consequence of the
“thermal” KMS property of ensembles of operators contained in a
localized algebra AðOÞ in O�restricted physical (finite energy
states). As such it is not different from the statistical mechanics
probability, which Einstein used in his fluctuation arguments in
terms of which he challenged the physical content of Jordan's thesis.
It is only with the modern concept of modular localization and the
hindsight of more than eight decades of QFT that one realizes how
close the E–J conundrum came to the intrinsic probability coming
from the quantum formulation of the Faraday–Maxwell–Einstein
causal locality principle in Minkowski spacetime. Einstein's problem
was the assignment of a probability to an individual mechanical
system (which requires to imagine it as a member of an ensemble for
which the probabilistic nature is seen in repeated measurements).
The fact that probability is intrinsic to QFT and that the vacuum
entanglement of sharp localization is more singular than that of
quantum information theory influences the discussions around
Bell‘s inequalities but does not invalidate them. The effects of the
(more radical form of) vacuum entanglement in QFT remain orders
of magnitudes below the quantum mechanical entanglement of
particle state which can be directly measured in terms of quantum
optical methods.

A particular radical illustration of the conceptual differences
between QFT and QM is the reconstruction of a net of operator12 One can cut off integrals but to cut off a model of QFT is ill defined.
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algebras from the relative modular position of a finite number of
copies of the monad (Schroer, 2010b). For chiral theories on the
lightray one needs two monads in a shared Hilbert space in the
position of a modular inclusion, for d¼1þ2 this “modular GPS”
construction needs three and in case of d¼1þ3 seven modular
positioned monads are sufficient to create the full reality of a
causal quantum matter world, including its Poincaré symmetry
(and hence Minkowski spacetime) from the abstract modular
groups (Kaehler & Wiesbrock, 2001). This possibility of obtaining
concrete models by modular positioning of a finite number of
copies of an abstract monad (indecomposable constructs without
inner structure) in a shard Hilbert space is the strongest “holistic
outing” of QFT; the reader is encouraged to look at this application
of modular theory (Kaehler & Wiesbrock, 2001). For d¼1þ1 chiral
models the modular positioning leads to a partial classification of
chiral theories as well as to their explicit construction of large
classes of models (Section 5).

Apart from d¼1þ1 factorizing (integrable) models, where
modular properties in the form of nuclear modularity were used
for existence proofs of models (Lechner, 2008), QFT has not yet
reached the state of maturity where such holistic properties can be
applied for classifications and existence proofs of families of
models and their mathematically controlled approximation. An
extension to curved spacetime would be very interesting; the
simplest question in this direction is the modular construction of
the local diffeomorphism group on the circle in the setting of
chiral theories.

4. Modular localization and its thermal manifestation

The aim of this section is to present the concept of modular
localizationwhich is the backbone of LQP and represents the intrinsic
formulation of causal quantum localization. Since, as mentioned
before, subalgebras AðOÞ localized in spacetime regions O with
O″⊊R4 are known to in a act cyclic and separating manner on the
vacuum (the Reeh–Schlieder property Haag, 1996), the “standard-
ness” condition for the validity of the Tomita–Takesaki modular
theory is always fulfilled for local subalgebras. This leads to a
uniquely defined Tomita operator SO whose properties will be the
main subject of this section.

It has been known for a long time that the algebraic structure
underlying free fields allows a functorial interpretation in which
operator subalgebras of the global algebra B(H) are the functorial
images of subspaces of the Wigner wave function spaces (second
quantization13).

Before presenting some mathematical details, it is useful to
recall some philosophical points. LQP avoids the parallelism to the
classical field theory which characterizes the Lagrangian quantiza-
tion approach of QFT and the closely related functional integral
representation. Accepting that QFT is more fundamental than the
classical field theory, the content of QFT should reveal itself in
terms of its own principles without the detor of a “quantization
parallelism” to the classical field theory.

In contrast to QM, the LQP setting of QFT de-emphasizes
individual operators in QFT in favor of ensembles of operators
which share the same spacetime localization region. These ideas
also follow more closely the situation in the laboratory, where the
experimentalist measures coincidences between events in space-
time. All the measured particle properties, including the nature of
spin and internal quantum numbers, were obtained by repetitions
and refinements of observations based on counters which are

placed in a compact spatial region and are maintained activated
for a limited time. Their detailed internal structure is generally not
known what matters is their localization in spacetime and the
sensitivity of their response. However without a precise mathe-
matical backup which matches these physical concepts, LQP
remains in the philosophical realm.

The role of covariant quantum fields in LQP is that of generators
of a net of local operator algebras fAðOÞgOAR4 which act in a fixed
Hilbert space. In the Wightman setting a field is a covariant
operator-valued distribution A(x) which is globally defined for all
xAR4. From its global definition one passes to (unbounded)
O�localized operators, formally written as Aðf Þ ¼ R

AðxÞf ðxÞd4x,
suppf �O, which according to Wightman's axioms define a
system of polynomial (generally unbounded) operator n-algebras
PðOÞ. Formally these unbounded operators can be associated with
an aforementioned net of (mathematically easier manageable)
bounded operators forming von Neumann algebras, which is the
starting point of Haag's LQP setting. The advantage is that one
obtains access to the well-developed mathematical theory of
operator algebras (omitting from now on “bounded”). Certain
causality aspects allow a more natural definition and more
profound understanding in the LQP setting. The mathematical
details, which allow to pass between Wightman's description to
the algebraic local nets of observables in the LQP setting and vice
versa, are tedious and still technically incomplete (Haag, 1996), but
this had little effect on progress.

Whereas both settings are different formulations of closely
related physical concepts, there is a significant distinction between
these settings and constructions based on Lagrangian or (the
closely related) functional integral based quantization methods.
Quantization is not a physical principle; whereas classical descrip-
tions often help to find a perturbative description (quantization) of
a QFT, there is no general correspondence. The fact that the
less fundamental QM which lacks causal localization and its
holistic consequences is capable to maintain an almost (up to
ordering prescriptions of operators) unique connection to classical
mechanics does not imply that such a close relation must continue
to hold in QFT. The strong link between classical mechanics and its
quantum counterpart finds its best-known expression in the fact
that Lagrangian quantization (canonical quantization) and func-
tional quantization (path integrals) enjoy solid mathematical
support from measure theory but not in QFT.

All this breaks down in interacting QFT with realistic short
distance behavior.14 Apart from d¼1þ1 integrable models
(Section 5), for which rigorous methods of LQP led to existence
proofs (Lechner, 2008, 2000), there is of course renormalized
perturbation theory; but since perturbative expansions in the
coupling strengths (which are consistent on the level of poly-
nomial relations) inevitably lead to divergent series, they are not
the right objects for a mathematically controlled approach to QFT.
In fact there exists not even a mathematical argument that they
define an asymptotic approximation in the limit of vanishing
coupling to an existing model of QFT, although the use of low
order perturbative results led in many cases to quite spectacular
agreements with observations. Whereas the setting of QM has
reached its closure a long time ago, the conceptual/mathematical
flanks of QFT remain open.

The causal perturbation setting of Epstein & Glaser (1973)
avoids the ultraviolet divergencies of the Lagrangian or functional
setting by implementing causal locality in terms of time-ordered
products in an inductive way. A specific model is defined in terms
of its free field content and the starting point is a first-order

13 Not to be confused with quantization; to quote a famous saying by Ed
Nelson: “quantization is an art, but second quantization is a functor”.

14 Free field short distance behavior of polynomially coupled scalar fields is still
in the reach of measure-theoretical functional methods (Glimm & Jaffe, 1972).
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interaction density in form of a Lorentz-invariant (scalar) Wick-
polynomial. The scaling degree of the interaction density is
determined in terms of the scaling degrees of the participating
fields and their derivatives. If the scaling degree of the interac-
tion defining first-order polynomial in terms of free fields does
not surpass dints:d: ¼ 4 one obtains a renormalizable model in
which the short distance dimensions of quantum fields remain
bounded, independent of the number of iterative steps (order of
perturbation).

The problem with this setting is its limitation with respect to
the spin of pointlike free fields in a Hilbert space setting. The short
distance dimension of massive pointlike free fields in Hilbert space
increases with spin as ds:d: ¼ sþ1. Hence a m40, s¼1 Proca
potential with ds:d: ¼ 2 does not admit any renormalizable inter-
action in Hilbert space and the infrared divergencies of its m¼0
limit are well-known additional obstacles of perturbation theory.
Wigner's 1939 classification of particles in terms of positive energy
representations led to a clear statement about the field content of
covariant ðm¼ 0; sZ1Þ representations: there are covariant point-
like field strengths15 but no covariant pointlike potentials. This is
the famous clash between Hilbert space positivity and pointlike
localization. The conventional way out is that of keeping the
pointlike structure and allowing indefinite metric so-called Krein
spaces instead of Hilbert spaces.

This problem is not present in the classical Maxwell theory; in
that case the use of vectorpotentials contains a redundancy which
affects the connection of Cauchy data and their causal propagation
and is conveniently taken care of in terms of the concept of gauge
transformations and gauge invariance (the return to field strengths
and currents). Lagrangian quantization and functional integral
prescriptions for gauge theories lead out of the Hilbert space; in
fact pointlike interaction-free massless vector potentials are well
known to require a Krein space formulation (the Gupta–Bleuler
formalism and its BRST extension). Since the Hilbert space setting
is the foundational pillar of QT, quantum gauge theory in the
presence of interactions of massive or massless vectormesons is an
undesired but inevitable compromise which is suggested by
Lagrangian quantization. Since classical field theory does not know
anything about Hilbert space positivity, there is a serious obstacle
to quantization for interacting sZ1 interactions and gauge theory
is a compromise which only describes the vacuum sector which is
generated by the subalgebra of gauge invariant pointlike local
fields acting on the vacuum states) and leaving the important
charge-creating operators and the physical particle-like states they
create from the vacuum outside the physical range of the quantum
gauge setting.

This makes it desirable to turn to another description which the
previously mentioned alternative suggests: abandon pointlike
localization and keep instead the Hilbert space. Since this is incon-
sistent with the quantization of pointlike classical gauge theory,
it is not surprising that such an alternative requires a radical
change of the Epstein–Glaser causal perturbative setting (Epstein
& Glaser, 1973). Although this formalism does not depend on
quantization of a classical field structure,16 it still uses pointlike
generating fields in an essential way. The safest procedure is to try
to extract an information from the foundational localization
principles of LQP by asking the following structural questions:
what is the tightest localization which can be derived solely from the
mass gap property?

The type of models for which such a question could be relevant
is interacting massive vectormesons. As mentioned before point-
like interactions of such fields are nonrenormalizable, and since
the new Hilbert space setting shows that the concept of renorma-
lizability is intimately related to the short distance aspects of
localization. The weakening from point- to string-localization is
the result of the restrictive Hilbert space positivity which is absent
in the Krein space setting of gauge theory.

Interestingly it is not necessary to use weaker than string-
localized fields in order to describe a QFT; this is part of a theorem
by Haag (1996): all LQP with a mass-gap (which are known to
admit scattering theory) can be generated by spacelike semi-
infinite stringlocal fields. Covariant generating stringlocal fields
Ψ ðx; eÞ, e2 ¼ �1 are localized on xþRþ e and commute for space-
like separated strings (appropriately modified for Fermions). In
Section 6 the string-extended E-G perturbation theory will be
exemplified in massive gauge theories. Whereas the local obser-
vables (field strengths, currents) remain pointlocal and the inter-
acting physical matter fields are stringlocal, the S-matrix turns out
to be e-independent. Massive vectormesons also permit a coupling
to neutral matter (scalar Hermitian fields H).

These couplings reveal what was known to some researchers
for a long time: the Higgs mechanism about a mass-creating
symmetry breaking is not supported by QFT; the intrinsic property
of all couplings of massive vectormesons to matter (independent
of whether the latter is charged or neutral) is the “Schwinger–
Higgs screening” of the Maxwell charge which is directly related to
the field strength of the massive vectormeson. Although this is
consistent with the BRST gauge setting, the new Hilbert space
setting using renormalizable couplings of stringlocal massive
vectormesons lead to these results without having to rely on
unphysical Krein space methods (Section 6). Computations need
not any more be based on successful but (from the quantum
viewpoint) somewhat miraculous descriptions. A surprising new
structure which results from the Hilbert space positivity for
renormalizable interactions of massive sZ1 stringlocal fields is
the appearance of lower spin “escort” fields. In the case of massive
vectormesons this is a stringlocal neutral scalar ϕ field which share
many properties with the Hermitian H fields of the Higgs model
apart from the fact that they have no relation to any mass-
generating symmetry breaking (Section 6).

The fundamental idea which is behind the ongoing radical
changes for interaction involving stringlocal fields is a much
deeper understanding of quantum causal locality in the algebraic
operator setting of modular localization. Individual quantum fields
never played a similar distinguished physical role as they do in
classical field theory. As mentioned before they are not directly
measured (measuring a hadronic field?) and the particles which
are identified with counter events are always associated with an
infinite class of (composite) fields which carry the same super-
selected charge and are relatively local with respect to each other.
Whereas in QM it makes sense to distinguish in terms of
elementary particles and their bound states, such a hierarchy is
rather meaningless in QFT; the omnipresence of vacuum fluctua-
tions only respects the superselected charges but couples all states
which have the same such charge. The fields within one super-
selected class are distinguished by their short distance scale
dimensions, and the renormalizable Lagrangian couplings high-
light fields with low ds:d:. but the particle field relation is based on
infinite timelike separations (time-dependent scattering theory)
for which low ds:d: values are irrelevant. QFT is a quantum theory
in which everything which according to the superselection rules can
be coupled is actually coupled (there is always a process in which
this coupling is activated). This explains why methods of quantum
mechanics are rather useless in QFT but at the same time this is
the prize to be paid for a fundamental theory. Modular localization

15 Massive pointlike potentials and their associated field strengths have the
same ds:d: ¼ sþ1, but whereas the zero mass limit of field strengths exists, that of
potentials does not.

16 In particular it does not depend on whether the quantum fields are solutions
of Euler–Lagrange equations.
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theory brings all these foundational properties (which still remain
somewhat hidden in the perturbation theory in terms of indivi-
dual fields) into the forefront.

The central issue in LQP refers to two physically motivated
requirements on the local net of operator algebras

AðO1Þ;AðO2Þ½ � ¼ 0; O14oO2 Einstein causality

AðOÞ ¼AðO″Þ causal completeness

AðO0Þ ¼AðOÞ0 Haag duality ð7Þ

The first line is a condensed notation for the commutativity of
operators from spacelike separated regions; it is only required for
observable fields. The commutation property for non-observable
operators, as those coming from spinor fields or fields carrying
superselected charges, is determined by the local representation
properties of the observables (the superselection theory to their
associated observable subalgebras, Haag, 1996).

The causal completeness property (7) is a local adaptation of the
old time-slice property (Haag & Schroer, 1962). In classical relati-
vistic field theory the field values in the relativistic “causal shadow”

(or causal completion) V ″ (two-fold causal complement of V) is the
region in which the classical field values are uniquely determined in
terms of the (properly defined) initial values in a finite volume V at
fixed time. Its quantum adaptation in the LQP setting is the
algebraic causal completeness property. Often particle theoreticians
only consider the simpler Einstein causality property and ignore
causal completeness. But there are situations which are consistent
with Einstein causality but violate causal completeness.17 In fact in
Haag and Schroer (1962) the simplest model, a so-called general-
ized free field with a suitable continuous mass distribution was
used as an illustrative example for a physically unacceptable
Einstein-causal field. Whereas in the setting of Lagrangian quanti-
zation causal completeness is the formal consequence of the
quantization of causally propagating relativistic fields, this property
needs special attention in situations in which classical analogs are
not available as e.g. ideas coming from string theory.

This affects in particular relations between QFTs in different
spacetime dimensions. The fact that in some cases they are backed
up by a mathematical isomorphism does not imply that they are
physically acceptable. One such trend-setting case is the Malda-
cena conjecture which originally arose in string theory. Its math-
ematical basis is an algebraic isomorphism (Rehren, 2000) which
extends the well-known equality of the spacetime conformal
symmetry of a conformal field theory (CFTn) in n spacetime
dimensions with the spacetime symmetry of an anti-de-Sitter
space in nþ1 dimensions (AdSnþ1) to a mathematical isomorph-
ism which between suitably chosen local subalgebras on both
sides. But it turns out that this relation only preserves Einstein
causality but violates the causal completeness requirement; if one
starts from an AdS theory which fulfills both the resulting
conformal field theory fulfills Einstein causality but violates causal
completeness and a similar problem exists if one uses the
isomorphism in the opposite direction; a physical correspondence
requires more than a mathematical isomorphism between certain
localized subalgebras.

Unfortunately the knowledge about these important properties
(the relevance of causal completeness) which was attained in the early
1960s (Haag & Schroer, 1962) has been lost within the string-theory
community, otherwise Maldacena would not have been able
to convince a world-wide community that the mathematical
AdSnþ1⟷CFTn isomorphism can be lifted to a physical correspon-
dence. Only holographic projections onto a n�1 null-surface lead to a

right “thinning out” of degrees of freedom (loss of information). As a
consequence of a loss of some informations one cannot return to the
original theory; nevertheless most informations are in the holographic
projection.

There exist however situations in certain quantum field the-
ories, which contain massless sZ1 in which for multiply con-
nected spacetime regions the Haag duality is violated in a specific
way; the prototype is the quantum Aharonov–Bohm effect for the
net of algebras generated by the quantum electromagnetic field
strength (Schroer, 2011a). In the case of zero mass field strengths
for sZ1 this is directly related to the clash between pointlike
localization of potentials and the positivity of Hilbert space and its
resolution in terms of stringlocal potentials (Schroer-b).

Mathematically it is very easy to construct Einstein-causal
theories which violate causal completeness and as a consequence
(apart from the aforementioned topological exceptions) lead to
pathological physical properties with respect to their “degrees of
freedom” behavior. Well-known cases in addition to the men-
tioned Maldacena conjecture arise from embedding lower dimen-
sional quantum field theories and its reverse: Kaluza–Klein
dimensional reductions.

As a result of a subtle relation between the cardinality of phase-
space degrees of freedom with localization (split property, causal
completeness, etc.), the nuclearity property (introduced by Haag,
1996) in conjunction with modular theory (modular nuclearity)
became an important concept for the classification and nonper-
turbative construction of models of QFT (Lechner, 2008; Schroer,
2013).

After having presented some of the physical requirements of the
LQP formulation of QFT, we now pass to a brief description of its
main mathematical support: the Tomita–Takesaki modular operator
theory. This theory has its origin in the operator-algebraic aspects of
group representation algebras from which Tomita took the terminol-
ogy “modular” (originally referring to properties of Haar measures). A
conference in the US (Baton Rouge, 1967), which was attended by
mathematicians (Tomita, Takesaki, Kadison, etc.) and mathematical
physicists (Haag, Hugenholz, Winnink, Borchers, etc.), marks the
beginning of the Tomita–Takesaki modular operator theory as a joint
project (Borchers, 2000). The participating physicists had already
obtained important partial results of that theory through their
project of formulating quantum statistical mechanics directly in the
thermodynamic limit (statistical mechanics of open systems) (Haag,
1996). In their new way of thinking, the Kubo–Martin–Schwinger
property (originally an analytic shortcut for computing Gibbs traces)
assumed a conceptual role in the new formulation of thermal
equilibrium states for open quantum systems. Although these ideas
originated independently, this conference united them; there is
hardly any area in which the contribution of mathematicians and
physicists have been that much on par as in modular operator
theory/modular localization.

One reason for this perfect match was that the area of physical
application of modular theory widened the scope of statistical
mechanics and, combined with causal localization, became the
most important mathematical/conceptual tool of LQP. The basic
fact which led to this new connection was the Reeh–Schlieder
theorem (Haag, 1996) which secures the validity of the “standard-
ness” requirement for the applicability of the Tomita–Takesaki
theory. Standardness of a pair ðA;ΩÞ (algebra and state) means
that the action of the operator algebra A on the state vector Ω
generates the Hilbert space (cyclicity of Ω) and that there are no
annihilators of Ω in A (Ω is separating)

cycl: : AΩ ¼H; separ: : AΩ¼ 0↷A¼ 0; AAA
The Reeh–Schlieder theorem guaranties the validity of this prop-
erty for any pair ðAðOÞ;ΩÞ;O″ �R4; in fact this even holds if the
vacuum is replaced by any finite energy state. The importance of

17 In quantum physical terms a completeness violating situation exhibits a
“poltergeist” behavior: new degrees of freedom (which were not present in AðOÞ)
enter AðO″) from “nowhere”.
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the relation between localization and the T–T theory was noted a
decade after then Baton Rouge conference by Haag (1996); these
authors found that in the context of localization in a wedge region
O¼W the Tomita–Takesaki theory makes contact with known
geometrical/physical objects.

The general T–T theory is based on the existence of an
unbounded antilinear closable involution S with a dense domain
domS in H which contains all states of the form AΩ, in case of a
standard pair (Doplicher & Longo, 1984; Summers). Whereas the
cyclicity secures the existence of its dense domain, the absence of
annihilators of Ω in A guaranties its uniqueness

SOAΩ¼ AnΩ; AAA� BðH; S¼ JΔ1=2 ¼ Δ�1=2J

J antiunit:; Δit mod: unitary; σtðAÞ ¼ AdΔitA ð8Þ
The existence of a polar decomposition in terms of a antiunitary J
and a positive generally unbounded operator Δ follows from the
closability of S (in the following S stands for the closure). The
modular unitary gives rise to a modular automorphism group of the
localized algebra A.

The physical interpretation in massive theories is only known
for O¼W ¼wedge regions, which are Poincaré transforms of the
standard t–zwedge W0 ¼ z4 jtj; xAR2
 �

. In that case the modular
objects are the unitary transformation representing the
W-preserving Lorentz (boost) subgroup Δit

W ¼ UðΛW ð�πtÞÞ and
the reflection on the edge of the wedge J which is, up to a π-
rotation within the edge, equal to the TCP operator. Since in a
theory with a complete particle interpretation (to which the
considerations of this paper are restricted, unless stated other-
wise) the interacting TCP operator and its incoming (free) counter-
part are known to be related by the scattering operator Sscat (Jost,
1963), we obtain for all J for arbitrary W (Schroer, 1999)

JW ¼ Sscat JW ;in for all W

This expresses a property of Sscat which turns out to be indis-
pensable for the constructive use of modular localization in QFT,
namely Sscat is a relative modular invariant between the interacting
and the associated free (particle) wedge algebra. This property was
recently used within a more physical derivation (Mund, 2001) of
the Bisognano–Wichmann theorem which reduces the interacting
case in theories with mass gaps and a complete particle inter-
pretation to that of free fields (see below).

The relative modular invariance of Sscat is the crucial property
which accounts for the analyticity of on-shell objects as Sscat and
the related formfactors. These on-shell analytic properties find
their important manifestation in the particle crossing property. It is
also the starting point of the algebraic construction of integrable
QFT (Schroer, 1999). The connection between algebraic and analy-
tic properties is much more subtle for on-shell objects as the
S-matrix and formfactors than for off-shell correlation function.
Since most of these properties were not understood in the 1960s,
it is not surprising that Mandelstam's project of formulating
particle physics as a quantization-avoiding on-shell project failed
on the lack of understanding of the relevant on-shell analytic
properties.

The misunderstandings about the particle crossing property in
the construction of the dual model, which later entered string
theory, have their origin in confusions about the meaning of
localization in QFT as opposed to QM. In Section 7 these mis-
understandings will be analyzed in the light of recent progress.

Since it is not possible to present a self-consistent complete
account of the mathematical aspects of modular localization and
its physical consequences in a history-motivated setting as the
present one, the aim in the rest of this section will be to raise
awareness about their physical origin.

It has been known for a long time that the algebraic structure
associated to free fields allows a functorial interpretation in which

operator subalgebras of the global algebra B(H) are the functorial
images of certain real subspaces of the Wigner space of one-particle
wave functions (the famous so-called “second quantization”18), in
particular the spacetime localized algebras are the images of
localized real subspaces. This means that the issue of localization
to some extend can be studied in the simpler form of localized
subspaces of the Wigner particle representation space (unitary
positive energy representations of the P�group).

These localized subspaces can be defined in a intrinsic way
(Brunetti et al., 2002) i.e. without quantization, only using opera-
tors from the positive energy representation U of the proper
Poincaré group Pþ ðdet ¼ þ1Þ on the direct sum of two copies of
the Wigner representation u of the connected component (proper
orthochronous P↑

þ ) on the one-particle space H1. For simplicity of
notation the transformation formulas are limited to the case of a
spinless charged particle

H1 : φ1;φ2
� ¼ Z

φ1ðpÞφ2ðpÞ
d3p
2p0

; φ̂ðxÞ ¼ 1

ð2πÞ3=2
Z

eipxφðpÞd
3p

2p0
ð9Þ

UðgÞðφ1 	 φ2Þ ¼ uðgÞφ1 	 uðgÞφ2; uða;ΛÞφðpÞ ¼ eipauðΛ�1pÞ
Θ� TCP; Θðφ1 	 φ2Þ ¼ Cφ2 	 Cφ1; CφðpÞ ¼ φðpÞ ð10Þ

Any Pþ transformation can be generated from U(g) and Θ. For
representations with s40 the Lorentz group acts through Wigner
rotations (Wigner's “little group”) on the “little Hilbert space”
which in the massive case is the 2sþ1 component representation
space of rotations. The massless case leads to a 2-dimensional
Euclidean “little space” whose degenerate representation (with
trivially represented “little translations”) form a two-component
little helicity space, whereas faithful representation acts in an
infinite dimensional Hilbert space (infinite spin) (Mund, Schroer, &
Yngvason, 2006). The Lorentz transformations as well as Θ act also
(through representations of the little group) on the little Hilbert
space.

It is precisely through the appearance of this little Hilbert space
that the problem of causal localization of states (wave functions)
cannot be simply solved by Fourier transformation and adding
positive frequency contributions of particles with those of negative
frequency from antiparticles. Whereas in the case of the two
classes of finite little spaces (the massive and zero mass finite
helicity class) of positive energy Wigner representation, their
“covariantization” was easily achieved in terms of group theoretic
methods (Weinberg, 2000) and led to local pointlike generating
wave functions and fields, this third infinite spin class posed a
series obstacle. Attempts to convert its members into covariant
pointlike wave functions and corresponding fields remained
unsuccessful and there was no understanding of the origin of this
failure.19 Weinberg (2000) dismissed this large positive energy
representation class by stating that nature does not make use out
of it. Since all important physical properties are connected to
aspects of localization which are precisely those properties which
at that time remained poorly understood, this dismissal could be
premature, in particular in times of dark matter.

The localization problems of the infinite spin class were finally
solved (Brunetti et al., 2002) with the help of modular localization,
a concept which for different problems was already used in
Schroer (1999). In fact the main theorem in that paper states
(Brunetti et al., 2002) that all positive energy wave functions are

18 Not to be confused with quantization; to quote a famous saying by Ed
Nelson: “quantization is an art, but second quantization is a functor”.

19 Reference Yngvason (1970) is an exception in that certain aspects of the
localization problem were already noted.
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localizable in noncompact spacelike cones and only the first two
classes permit the sharper localization in double cones (the causal
shadow of a 3-dim. sphere). Since the (topological) core of
arbitrarily small double cones is a point and that of arbitrary
narrow spacelike cones a semi-infinite spacelike string, the
remaining problem consisted in the actual construction of the
generating fields of these representation; this was achieved in
Mund et al. (2006). The result can be described in terms of
operator-valued distributions Ψ ðx; eÞ which depend in addition to
the start x of the semi-infinite string also on the spacelike
direction e; e2 ¼ �1. They are covariant under simultaneous trans-
formations of x and e and fulfill Einstein causality for spacelike
separated strings

Ψ 1ðx1; e1Þ;Ψ2ðx2; e2Þ½ �gr ¼ 0; x1þRþ e〉〈x2þRþ e2 ð11Þ

where gr stands for graded (fermionic strings anticommute).
The modular localization of states uses the following construction.

With a wedgeW ¼ xjx34 x0j jð Þ there comes a wedge-preserving one-
parametric group of Lorentz-transformation ΛW ðχ ¼ �2πτÞ where χ is
the hyperbolic boost parameter and ΘW denotes the x0�x3 reflection.
The latter differs from the total reflection Θ by a π-rotation rW around
the x3 axis (in the x1�x2 plane) and therefore acts on the wave
functions as JW ¼UðrW ÞΘ. Both transformations ΛW and JW commute.
Since the generators of one-parametric strongly continuous unitary
groups are self-adjoint operators, there exists an “analytic continua-
tion” in terms of positive unbounded operators with dense domains
which decrease with the increase of distance from the real axis. This
forces the W-localized wave functions to have certain analyticity
properties in the momentum space rapidity θ, p0; p3

� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þp2?

q
ðchθ; shθÞ which relate the analytic continuation of particle

wave function to the complex conjugate of the antiparticle wave
function.20 Using the notation Δiτ

W � UðΛW ð�2πτÞÞ, the commutation
with the antiunitary JW leads to

SW ¼ JWd1=2W ¼ d�1=2
W JW ; S2W � 1 acts on H1 	 H1

SWψ ¼ ψ ; KW � fφAdomSW ; SWφ¼ þφg; SWiφ¼ � iφ

KW “is standard” : KW \ iKW ¼ 0; KW þ iKW dense in H1 	 H1

ð12Þ
where ψ denotes the localization-independent S-conjugate wave
function (the complex conjugate for the case at hand).21 The properties
are straightforward consequences of the commutation between the
boost and the associated reflection (Brunetti et al., 2002). The
important point here is that S relates wave functions to their
conjugates in a way which involves analytic continuation where the
analyticity came from spacetime W-localization.

The properties in (12) result simply from the commutativity of
ΛW ðχÞwith the reflection J on the edge of the wedge; since J is anti-
unitary it commutes with the unitary boost, there will be a change
of sign in its action on the analytic continuation of u. Hence it has
all the properties of a modular Tomita operator. The K-spaces KðOÞ
for causally closed subspaces localized in O can be obtained by
intersections i.e. \W*OKðWÞ; this intersection may however turn
out to be trivial (see below) if the region is “too small”.

The surprise resides in the fact that the transformation of
wave functions to their S-conjugate ((12), second line) does not
only encode the information about two geometric objects: a

one-parametric modular group leaving a wedge invariant and a
reflection on that wedge into its opposite, but (and at this point
the positive energy property of the Wigner representation
becomes relevant Brunetti et al., 2002) it also contains the
information about the spacetime localization of the wave function.
This is certainly something which has no counterpart in QM;
it points to an incomplete understanding of the foundations of QFT
which becomes fully revealed in the relation between localized
subalgebras and modular operator theory in the presence of
interactions.

The connection with causal localization is of course a property
which only appears in the physical context. The general setting of
modular real subspaces is a Hilbert space which contains a real
subspace K �H which is standard in the sense of (12). The abstract
S-operator is then defined in terms of K and iK .

The above application to the Wigner representation theory of
positive energy representations22 also includes the infinite spin
representations which lead to semi-infinite string-localized wave
functions. In this case there are no pointlike covariant wave
function-valued distributions which generate these representa-
tions; they are genuinely string-localized (which the superstring
representation of the Poincaré group is not; so beware of mis-
leading terminology!). The application of the above-mentioned
second quantized functor converts the modular localized sub-
spaces into a net of O�indexed interaction-free subalgebras AðOÞ.
Interacting field theories can clearly not be obtained in this way.
The relation between particles and fields becomes much more
subtle in the presence of interactions and this applies even to
models which have a complete particle interpretation i.e. in which
the particles related to fields via the LSZ large time behavior of
fields (the LSZ scattering formalism, Haag, 1996) lead to the
identification of the Hilbert space as a WignerFock particle space
(Section 7).

The algebraic setting in terms of modular localization also gives
rise to a physically extremely informative type of inclusion of two
algebras which share the vacuum state, the so-called modular
inclusions ðA� B;ΩvacÞ where modular means that the modular
group of the bigger Δit

B compresses (or extends) the smaller algebra
(Kaehler & Wiesbrock, 2001). A modular inclusion automatically
forces the two algebras to be of the monad type. The above-
mentioned “GPS construction of a QFT” from a finite number of
monads positioned in a common Hilbert space uses this concept in
an essential way. It is perhaps the most forceful illustration of the
holistic nature of QFT.

There are two properties which always accompany modular
localization and which are interesting in their own right. Both are
related to the statistical mechanics nature of impure AðOÞ�restricted
vacuum:

� KMS property: By ignoring the world outside O one gains
infinitely many KMS modified commutation properties with
modular Hamiltonians K̂ associated to the bO restricted
vacuum

〈AB〉¼ Be�KA
D E

; Δ¼ e�K ; A;BAAðOÞ
infinitely many bK for bO*O

In contrast to the inert factorizing vacuum of QM in the Fock
space (second quantization) description, the spatially restricted20 If there exists an operator creating a particle, the negative frequency part

associated with the antiparticle annihilation must be related to the positive
frequency part of the antiparticle creation of its hermitian adjoint.

21 Although the action of SW is diagonal, the definition of the JW needs the
antiparticle doubling of the Wigner space.

22 The positive energy condition is absolutely crucial for obtaining the
prerequisites (12) of modular localization.
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QFT vacuum fulfills infinitely many KMS relations associated with
modular Hamiltonians of larger spacetime regions:

� Area law for localization-entropy, see (6)

Entr¼ f
area
ε2

� �
; ε¼ split size

As mentioned in the previous section, one needs to invoke the
so-called split property in order to approximate the singular KMS
state by a sequence of density matrix states; this is similar to the
construction of the thermodynamic limit state in statistical
mechanics. In contrast to the approximation of the latter in terms
of box-quantized finite volume Gibbs states, the split formalism
for open subsystems is a part of the (presently computational
rather inaccessible) modular localization theory. It is in particular
not clear whether the density matrix from the split property leads
to a plain dimensionless area law f Carea=ε223 as in (6) or to a
logarithmically modified area law (Schroer, 2011b). For chiral
conformal theories on the lightray there is a rigorous derivation
of the localization entropy for an interval with vacuum attenuation
length ε (surface fuzziness) from the well-known linear length
l-1 behavior (the “one-dimensional volume factor” l). They are
related as ln ε�1 � l
 kT . This inverse Unruh effect plays an
important role in the full understanding of the E–J conundrum
and will be presented in the next section.

Great care needs to be taken in identifying the modular
localization “temperature” with that measured with a thermo-
meter. This is because the notion of thermometer temperature is
based on the zeroth thermodynamic law (the local temperature in
Buchholz & Solveen, 2013), whereas the KMS temperature refers to
the second law according to which it is impossible to gain energy
from equilibrium states by running a Carnot cycle (the absolute
temperature). In inertial systems those two definitions coalesce
(after proper normalization), whereas in a accelerated systems
(used e.g. in the Unruh Gedankenexperiment to achieve the
Rindler-wedge localization) this is not the case.

A closer examination shows (Buchholz & Solveen, 2013) that
the conclusion about “egg-boiling” and particle radiation claimed
to be observed by an accelerated observer are incorrect, a fact
which has been ignored in the literature on the Unruh effect. The
correct local temperature, different from the Carnot temperature,
does not depend on the acceleration and since it vanishes at
spacelike infinity, it vanishes everywhere. Although the black hole
situation is different, the application of Einstein's equivalence
principle suggests caution about the relation of a rescaled modular
temperature with that measured by a thermometer. This includes
also the presently very popular ideas about firewalls which are
allegedly created by restricting generically locally normal states to
a causal/event horizon.

In order to facilitate the reader's accessibility to philosophical
and historical aspects, but also to maintain a lighthearted touch in
dealing with issues which by some are considered to be con-
troversial, the following will be presented in the form of Galileio's
famous dialogs between Sagredo and Simplicio. Since fundamental
properties of nature are expected to be based on simple physical
principles, the role of the presenter of foundational viewpoints in
this dialog is Simplicio.

Sagredo: Dear friend Simplicio, I noticed that you have some
critical opinions about the topic of extra dimensions and dimen-
sional reductions. Can you explain your arguments against these
extremely popular ideas?

Simplicio: Kaluza and Klein observed that in classical field theories
and quasiclassical approximations one may relate models in different
spacetime dimensions by appropriately reinterpreting the field con-
tent. In this way the combined gravitationþelectromagnetism may be
obtained by dimensional reduction from a five-dimensional pure
gravity theory. However the recent more foundational understanding
of the issue of causal localization in its precise form of modular
localization of quantum matter reveals that the localization aspects are
a characteristic part of quantum matter and one confronts grave
problems if one tries to reduce spacetime dimensions. A first indica-
tion comes fromWigner's theory of positive energy representations of
the Poincaré group which has a functorial relation to quantum matter
in the absence of interactions. The latter depend in an essential way on
the representation theory of Wigner's “little group” which changes
with spacetime dimension. The fact that dimensional regularization
can be used as a technical trick in renormalization theory and that in
case of spinless matter Wilson's dimensional ε-expansion led to
reasonable approximate results for critical indices should not be taken
as an indication that causal quantum matter can be “transplanted” by
an imagined dimensional reduction.

Sagedo: But there are rigorous relations between theories
in different spacetime dimensions, as the famous AdS�CFT
correspondence.

Simplicio: The AdSnþ1�CFTn correspondence is indeed a math-
ematical isomorphism between the algebraic structure of QFT on
two different spacetimes which extends the prior known equality
of their symmetry groups; in fact it is the only known case in
which two spacetime manifolds in different dimensions share the
same symmetry group. What prevents this mathematical iso-
morphism from defining a physical correspondence is that it does
not preserve an important aspect of causality. Starting from a
causal AdS theory the corresponding CFT maintains the spacelike
Einstein causality but violates the causal completeness property.
There are more degrees of freedom in the algebra of the causal
closure AðO″Þ than there are in AðOÞ. For an observer living in such
a world there are degrees of freedom in O″ which according to the
causal completeness property should have been already present in
O. A QFT in which new degrees of freedom come apparently from
nowhere is physically not acceptable. In the opposite direction, i.e.
started from a causal CFT, it was shown by Rehren (2000) that the
resulting AdS theory does not have enough degrees of freedom in
order to support the existence of nontrivial algebras of observables
for compact localization regions; in such situations nontrivial
algebras only exist for noncompact spacetime localization regions
in the AdS spacetime.

The intuitive picture behind this violation of causal complete-
ness is that the cardinality of degrees of freedom of causal
quantum matter depends on the spacetime dimensionality and
hence the concept of causal quantum matter cannot be separated
from spacetime. The algebraic stuff which the above isomorphism
generates from physical matter is not the expected causal quan-
tum matter after having applied the isomorphism. This shows that
Maldacena's conjecture, claiming that the isomorphism connects
two physical theories, is not correct. This failure of causal com-
pleteness is symptomatic for all attempts of relating QFTs via
dimensional reduction.

The AdS–CFT isomorphism shown that even under optimal
mathematical conditions such ideas run into serious problems with
causal localization. It is worthwhile to mention that there is only
one relation between QFTs to which the present critique does not
apply; this is the holographic projection onto null-surfaces (Schroer,
2011b). The important point here is that in an projection (instead of
an isomorphism) the cardinality of degrees of freedom is reduced to
that which is appropriate for the lower dimensional null-surface.

Sagredo: The classical Kaluza–Klein dimensional reduction
idea entered particle theory when it became clear that the high

23 This is suggested by the vacuum polarization clouds of smeared fields in the
limit of a sharp cut-off smearing function (see previous section).
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dimensional solutions of string theory remain academic unless
one finds a way to extract properties which are relevant for the
real world. The attempts to adjust the dimensional reduction in
classical field theory to the requirements of QFT led to the idea to
compactify a spacetime coordinate and “curl it up” to a tiny circle
so that the resulting QFT appears as one which lives on a reduced
spacetime. Therefore my question: is a such a dimensional curling
up also flawed?

Simplicio: It is correct that for QFTs which permit a Euclidean
description one can formally compactify a coordinate. Physically
this means that one passes from the vacuum expectation values to
expectation values in a thermal state whose inverse temperature is
proportional to the radius of the circular compactified coordinate.
What is however not correct is to relate this thermal QFT with
increasing temperature to a Klein–Kaluza reduction. There is
simply no classical analog of increasing thermal fluctuations;
passing to a thermal state with a high temperature has little to
do with a dimensional reduction a la Kaluza–Klein.

The continued uncritical use of the dimensional reduction idea
is more of a sociological problem; as long as the protagonists and
leading defenders of string theory accept dimensional reduction as
a way which allows to obtain properties of real particle theory
from theories with extra dimensions, the members of the string
theory community will continue to use it with the result that the
understanding of local quantum physics will becomes increasingly
metaphoric.

Of course particle physics at its foundational frontiers was
always speculative and errors are sometimes unavoidable, but the
old “Streitkultur” between equals at the time of Pauli, Landau,
Feynman, Schwinger Jost, Källen and many others prevented a
long term solidification of incorrect ideas.

Sagredo: Thank you my dear friend for your enlightening
comments.//

5. The E–J conundrum, Jordan's model

With the locally restricted vacuum representing a highly impure
state with respect to all modular Hamiltonians Hmodð �OÞ, �O+O on
local observables AAAðOÞ ¼AðO″Þ, a fundamental conceptual
difference between QFT and QM has been identified. QM (type
I1 factors) is the conceptual home of quantum information the-
ory,24 whereas in case of localized subalgebras of QFT a direct
assignment of entropy and information content to a monad, if
possible at all, can only be done in a limiting sense. The present
work shows that although QFT started with this conceptual
antagonism in the E–J conundrum, its foundational understanding
only began more than half a century later and is still far from its
closure.

For this reason it is more than a historical retrospection to re-
analyze the E–J conundrum from a contemporary viewpoint. In a
modern setting Jordan's two-dimensional photon25 model is a
chiral current model. As a two-dimensional zero mass field which
solves the wave equation it can be decomposed into its two u,v
lightray components

∂μ∂μΦðt; xÞ ¼ 0; Φðt; xÞ ¼ VðuÞþVðvÞ; u¼ tþx; v¼ t�x

jðuÞ ¼ ∂uVðuÞ; jðvÞ ¼ ∂vVðvÞ; jðuÞ; jðu0Þ� �� 1
ðu�u0 þ iεÞ2

TðuÞ≕j2ðuÞ :; TðvÞ≕j2ðvÞ :; jðuÞ; jðvÞ½ � ¼ 0 ð13Þ
The scale dimension of the chiral current is dðjÞ ¼ 1, whereas

the energy–momentum tensor (the Wick-square of j) has dðTÞ ¼ 2;
the u and v worlds are completely independent and it suffices to
consider the fluctuation problem for one chiral component. The
logarithmic infrared divergence problems of zero-dimensional
chiral dðVÞ ¼ 0 fields arise from the fact that the zero mass field
V, different from what happens in higher dimensions.26 are really
stringlike instead of pointlike localized. In fact the V is best
pictured as a semi-infinite line integral (a string) over the current
(Schroer, 2011c); this underlines that the connection between
infrared behavior and string-localized quantum matter also holds
for chiral models on the lightray. It contrasts with QM where the
infrared aspects are not related to the infinite extension of
quantum matter but rather with the range of forces between
particles. Exponentials of string-localized quantum fields involving
integration over zero mass string localized d¼1þ3 vectorpoten-
tials share with the exponentials of integrals over d¼1þ1 currents
expiαV the property that their infrared behavior requires a
representation which is inequivalent to the vacuum representation
of the field strength or currents; the emergence of superselection
rules (Maxwell charges) is one of the more radical consequences of
string-localization.

The E–J fluctuation problem can be formulated in terms of j
(charge fluctuations) or T (energy fluctuations). It is useful to recall
that vacuum expectations of chiral operators are invariant under
the fractionally acting 3-parametric acting Möbius group (x stands
for u, v)

UðaÞjðxÞUðaÞn ¼ jðxþaÞ;UðλÞjðxÞUðλÞn ¼ λjðλxÞ dilation
UðαÞjðxÞUðαÞn ¼ 1

ð� sin παþ cos παÞ2
j

cos παxþ sin α

� sin παxþ cos πα

� 	
rotation

ð14Þ
The next step consists in identifying the KMS property of the

locally restricted vacuum with that of a global system in a
thermodynamic limit state. For evident reasons it is referred to
as the inverse Unruh effect, i.e. finding a localization-caused
thermal system which corresponds (after adjusting parameters)
to a heat bath thermal system. In the strong form of an isomorph-
ism this is only possible under special circumstances which are
met in the Einstein–Jordan conundrum, but not in the actual
Unruh Gedankenexperiment for which the localization region is
the Rindler wedge.

Theorem 1 (Schroer (2013)). The global chiral operator algebra
AðRÞ associated with the heat bath representation at temperature
β¼ 2π is isomorphic to the vacuum representation restricted to the
half-line chiral algebra such that

ðAðRÞ;Ω2πÞffiðAðRþ Þ;ΩvacÞ
ðAðRÞ0;Ω2πÞffiðAðR� Þ;ΩvacÞ ð15Þ
The isomorphism intertwines the translations of R with the dilations
of Rþ , such that the isomorphism extends to the local algebras

ðAðða; bÞÞ;Ω2πÞffiðAððea; ebÞÞ;ΩvacÞ ð16Þ

This can be shown by the modular theory. The following proof
extends prior work by Borchers and Yngvason (1999). Let A

24 Another subject which would have taken different turn with a better
appreciation of the problems in transferring notions of quantum information
theory to QFT is the decades lasting conflict about the problem of “black hole
information loss”.

25 This terminology was quite common in the early days of field quantization
before it was understood that that in contrast to QM the physical properties depend
in an essential way on the spacetime dimension. Jordan's two-dimensional photons
and his later neutrinos (in his “neutrino theory of light” Schroer, 2011c) bear no
relation to objects in the real world.

26 The V are semi-infinite integrals over the pointlike j0s, just as the stringlike
vectorpotentials in QED are semi-infinite integrals over pointlike field strength
(Schroer, 2011a).
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denote the Cn algebra associated to the chiral current j.27 Consider
a thermal state ω at the (for convenience) modular temperature 2π
associated with the translation on the line. Let M be the operator
algebra obtained by the GNS representation and Ω2π the state
vector associated to ω. We denote by N the half-space algebra ofM
and by N 0 \ M the relative commutant of N inM. The main point
is now that one can show that the modular groups M;N and
N 0 \ M} generate a “hidden” positive energy representation of
the Möbius group SLð2;RÞ=Z2 where hidden means that the actions
have no geometric interpretation on the thermal net. The positive
energy representation acts on a hidden vacuum representation for
which the thermal state is now the vacuum state Ω. The relation of
the previous three thermal algebras to their vacuum counterpart is
as follows:

N ¼Að1;1Þ; N 0 \ M¼Að0;1Þ; M¼Að0;1Þ ð17Þ

M0 ¼Að�1;0Þ; Að�1;1Þ¼M3M0

Mða;bÞ ¼Aðe2πa; e2πbÞ ð18Þ
Here M0 is the “thermal shadow world” which is hidden in the
standard Gibbs state formalism but makes its explicit appearance
in the so-called thermo-field setting i.e. the result of the GNS
description in which Gibbs states described by density matrices or
the KMS stated resulting from their thermodynamic limits are
described in a vector formalism. The last line expresses that the
interval algebras are exponentially related.

In the theorem we used the more explicit notation

Mða;bÞ ¼ ðAða; bÞ;ΩthÞ ¼ ðAðe2πa; e2πbÞ;ΩvacÞ

Moreover we see that there is a natural space–time structure
also on the shadow world i.e. on the thermal commutant to the
quasilocal algebra on which this hidden symmetry naturally acts.
Expressing this observation a more vernacular way: the thermal
shadow world is converted into virgin living space.28 In conclu-
sion, we have encountered a rich hidden symmetry lying behind
the tip of an iceberg, of which the tip was first seen by Borchers
and Yngvason.

Although we have assumed the temperature to have the
Hawking value β¼ 2π, the reader convinces himself that the
derivation may easily be generalized to arbitrary positive β as in
the cited Borchers–Yngvason work. A more detailed exposition of
these arguments is contained in a paper Looking beyond the
Thermal Horizon: Hidden Symmetries in Chiral Models (Schroer &
Wiesbrock, 2000).

In this way the semi-infinite interval (�1; �LÞ of a thermal
system in a one-dimensional interval ð�L; LÞ of length 2L (one-
dimensional “box”) passes to the split interval ε (the size of
Heisenberg's vacuum polarization cloud) ε� e�2πL. As a result
the thermodynamic L-1 corresponds to the limit of sharp
localization ðe�2πL; e2πLÞ -L-1ð0;1Þ on the vacuum side. From this
one draws the conclusion that the thermal heat bath entropy for
large L passes to the localization-entropy in the vacuum state for
small split distance ε

EnkT ¼ 2πCL¼ � 1
2π

ln εCEnloc ð19Þ

Though it is unlikely that a localization-caused thermal system
is isomorphic to a heat bath thermal situation in higher

dimensions, there may exist a “weak” inverse Unruh situation in
which the volume factor corresponds to a logarithmically modified
dimensionless area law i.e. ðR=ΔRÞn�2 lnðR=ΔRÞ where R is the
radius of a double cone and R=ΔR¼ ε its dimensionless surface
roughness; the volume in this case is that of a box with two
transverse- and one lightlike-directions is the counterpart of the
spatial box so that the volume factor V corresponds to a box where
one direction, the one responsible for the logarithmic factor, is
lightlike. But the analogy with the area proportionality of vacuum
fluctuations in Heisenberg's partial charges Q ðR;ΔRÞ favors the
area law which also agrees with the result from ’t Hooft's proposal
of a brickwall picture ('tHooft, 1996).

Although the thermal aspect of a restricted vacuum in QFT is a
structural consequence of causal localization, the general identifi-
cation of the dimensionless modular temperature with an actual
temperature of a heat bath system, or, which is equivalent, the
modular “time” with the physical time is not correct; the modular
Hamiltonian does not describe the inertial time for which the local
temperature defined in terms of the zeroth thermodynamic law
agrees with the “Carnot temperature” of the second law (Buchholz
& Solveen, 2013).

Properties of states in QFT depend on the nature of the algebra: a
monad does not have pure states or density matrices, but only admits
rather singular impure states as singular (non Gibbs) KMS states. The
identification of states with vectors in a Hilbert space up to phase
factors becomes highly ambiguous and physically impractical outside
of QM. The state in the form of a linear expectation functional on an
algebra and the unique vector (always modulo a phase factor)
obtained by the intrinsic GNS construction (Haag, 1996) leads always
to a vector representation, but this depends on the particular state
used for the GNS construction. In QM the algebras are always of the B
(H) type where this distinction between vector states and state
vectors is not necessary.

6. Particle crossing, on-shell constructions from modular
setting

An important new insight into “particles and fields” comes
from a derivation of the crossing property of particle physics from
the modular properties of wedge-localization. The formfactor
crossing states that the n-particle-to-vacuum matrixelement of a
local operator B is analytically related to the connected part of the
formfactors of B between k incoming and n–k outgoing particles in
terms of the following identity:

0 Bj jp1;‥pn
� �in ¼ out �pkþ1‥; �pnjBjp1;‥pk

� �in
con

BAAðOÞ; ODW ; p ¼ antiparticle of p ð20Þ
Here the momenta �p on the backward mass–shell refer to the
anti-particles of the n–k crossed particles of the original n-particle
state where the transition to the negative momenta involves an
analytic continuation within the complex mass–shell. The analy-
ticity following from principle of modular wedge-localization is
however not in the s; t;u Mandelstam invariants associated to the
momenta, but rather in the rapidity θ variables. It turns out that
the better-known crossing properties of the S-matrix do not have
to be considered separately, they can be related to those of
formfactors by the use of the LSZ reduction formalism. The
nontrivial aspect is the possibility to relate a scattering amplitude
to that of its crossed form by an analytic continuation which
remains on the complex mass shell.

The physical content of formfactor crossing is that the different
k to n–k formfactors are analytically related to one master
formfactor which may be taken to be the n-particle to vacuum
formfactor. The only known non-perturbative general derivation of

27 One can either obtain the bounded operator algebras from the spectral
decomposition of the smeared free fields j(f) or from a Weyl algebra construction.

28 In Haag (1996) it is shown how to extract the shadow world description
from the density matrix (Gibbs states) formalism with the help of the canonical
GNS construction.
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formfactor crossing uses modular theory,29 to be more precise the
modular theory of a wedge-localized subalgebra. Before a sketch of
its derivation will be given, some remarks about its conceptual
relation to other consequences of modular localization of wedge
regions may be helpful. The conceptual proximity of the particle
crossing property to the Unruh (1976) effect through the shared
wedge localization is somewhat unexpected. Whereas the latter
together with the Einstein–Jordan subvolume fluctuations will
probably remain a “Gedankenexperiment” which illustrates con-
sequences of vacuum entanglement, the particle crossing has
observational consequences (Epstein, Glaser, & Martin, 1969) and
constitutes an important concept of high energy particle physics.
This changes the conceptual setting of crossing from that attrib-
uted to it in the dual model and ST, a topic which will be taken up
in Section 7.

The modern conceptual understanding of crossing came from
the recognition that in models of QFT with a mass gap and a
complete particle interpretation the S-matrix is more than a global
operator of scattering theory, it also possesses a less conspicuous
local property namely it is a relative modular invariant which
intertwines between the interacting wedge algebra AðWÞ and its
interaction-free incoming counterpart constructed from the
incoming free fields AðWÞin. Namely the two modular reflections
are related through (Schroer, 1999, 2013)

JW ¼ JW ;inSscat or SW ¼ SW ;inSscat using S¼ JΔ1=2 ð21Þ
a relation which can be traced back to Jost's proof (Jost, 1963) of
the TCP theorem and the fact that JW is only different from Jost's
TCP by a π-rotation within the edge of the wedge (which commu-
tes with the Poincaré invariant Sscat).

Another idea from modular wedge-localization which is used
in the derivation of formfactor crossing is emulation of interacting
wedge-localized states (state vectors obtained by applying inter-
acting smeared fields Bðf Þ with suppf �W to the vacuum Ω) in
terms of interaction-free wedge-localized states obtained by
applying operators Ain(f) to the vacuum (Schroer, 2013, 2012).
Emulation involves different algebras acting in the same Hilbert
space and sharing the same P�goup representation.

To get some technicalities out of the way, let us first formulate
the free field KMS relation in the way we need it for later purpose.
With B a W-smeared composite of a free field, the modular KMS
relation for wedge-localized free fields reads

BAð1ÞAð2Þ
D E

¼ Að2ÞΔBAð1Þ
D E

; Δit ¼ UðΛð�2πtÞÞ

Að1Þ≕Aðf 1Þ‥Aðf kÞ :; Að2Þ≕Aðf kþ1Þ‥Aðf nÞ:
ΔAð2Þnj0〉¼ ΔSAð2Þj0〉¼ Δ1=2JAð2Þj0〉 ð22Þ
A smeared free field can be written in terms of creation/annihila-
tion operators integrated with wavefunctions which are the mass–
shell restriction of the Fourier transforms of W-supported test
functions (for economy of notation f will also be used for the
Fourier transform)

Aðf Þ ¼
Z

ðf ðpÞanðpÞþ f aðpÞbðpÞÞ
d3p
2p0

; pAHm

Aðf Þn ¼
Z

ðf aðpÞbnðpÞþ f ðpÞaðpÞÞd
3p

2p0
ð23Þ

where fa is the wavefunction of the antiparticle. We take the
wedge W in the 0–3 directions, so that it is left invariant by Λ0–3

Lorentz boosts, and parametrize the mass–shell momenta in terms
of W-affiliated rapidities. It is well known that the Fourier

transforms of W-supported testfunctions lead to wavefunctions f
(p) which are boundary values of functions f ðpðzÞÞ, holomorphic in
the rapidity strip in such a way that the analytic continuation of
the particle wave function to the other side of the strip is equal to
the complex conjugate of the antiparticle wavefunction

pðzÞ ¼ ðmshz;mchz; p? Þ; 0o Imzoπ

f ðpðθþ iπÞÞ ¼ f aðpðθÞÞ ð24Þ
Rewriting the KMS relation (22) in terms of particle states we

obtainZ
‥
Z

0 Bj jp1;‥pn
� �

f 1ðp1Þ‥f nðpnÞ
d3p1
2p0;1

‥
d3pn
2p0;n

þcontr:

¼
Z

‥
Z

ðΔ1=2J pkþ1‥pn

�� �
;B p1;‥pk
�� �Þf ðp1Þ‥f ðpnÞd3p12p0;1

‥
d3pn
2p0;n

þcontr:

ð25Þ
where the round bracket in the second line denotes the scalar
product between the bra and ket vectors and contr. stands for the
contraction terms between two Wick-products. They contain a
lower number of particles and hence do not contribute to the
n-particle terms. The third line in (22) was used inside the inner
product in order to rewrite the right hand side of the KMS relation
as a matrix element of B between particle states.

To pass to the crossing relation (20) we must show that one can
omit the integration with the dense set of strip-analytic wavefunction.
Since formfactors in interacting models are generally distributions, this
is not possible without knowing that the formfactors are locally square
integrable; in this case the relation on a dense set of wave functions
implies its validity on all locally L2 integrable functions and hence (20)
follows. Here B is any composite of a free field.

In the presence of interactions the extraction of the particle
crossing from the KMS relation is more demanding. Particles are
related to (incoming/outgoing) free fields, whereas the fields in
the KMS relation are interacting. The crossing relation (20) which
we want to derive contains in and outgoing particles which are
associated with in/out free fields. We need to know a relation
between incoming and interacting wedge localized states. Using
the notation: AðWÞ;AinðWÞ for the interacting and incoming free
field wedge-local algebra and recalling that both algebras share
the same representation of the Poincaré group, one obtains from
the equality of the W-preserving Lorentz boosts the equality of the
domains of their Tomita operators domSAðWÞ ¼ domSAinðWÞ. This
means that for a vector state created by applying a wedge-local
operator from AinðWÞ to the vacuum there will be a corresponding
uniquely defined operator in AðWÞ operator which, applied to the
vacuum, creates the same vector. Existence and uniqueness is
secured by the modular theory applied to the wedge region
(Borchers, Buchholz, & Schroer, 2001). We refer to this bijection
between wedge local operators as emulation of wedge localized free
fields within the interacting wedge algebra (Schroer, 2012, 2013) and
denote the emulated image by a subscript AðWÞ
f 1;…; f k
�� �¼ Ainðf 1Þ…Ainðf kÞ : 0j i

¼ ð: Ainðf 1

…Ainðf kÞ :ÞAðWÞ 0j i; suppf �W ð26Þ

where, as before, the f inside the bracket state vectors are the
wave functions associated with the W-supported testfunctions.

The KMS relation for interacting fields, from which the particle
crossing is to be derived, reads now (Schroer, 2010a)

B Að1Þ
in

� �
AðWÞ

Að2Þ
in

� �
AðWÞ

� �
¼ A2

in

� �
AðWÞ

ΔB A1
in

� �
AðWÞ

� �
Δ Að2Þ

in

� �n

AðWÞ
0j i ¼ Δ1=2JAð2Þ

out 0j i; J ¼ Sscat Jin ð27Þ

The identification of the right hand side with a (analytically
continued) particle formfactors is similar to the free case; the

29 For a special case (elastic scattering) Bros, Epstein, & Glaser (1965) derived
crossing of the S-matrix within the rather involved setting of functions of several
analytic variables.
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difference is the presence of the scattering matrix which converts
an incoming bra-state into an outgoing state

BAð1Þ
in p1;…pk
� 

AðWÞjpkþ1;…pn
D Ein

Cout �pkþ1;…�pn Bj jp1;…pk
� �in

ð28Þ

The equivalence sign expresses the fact that the equality according
to (27) only holds after integration with wavefunctions from a
dense set of W-localized wave functions, and the Ψ stands for a
state obtained by applying an emulated k-particle operator to an
n–k incoming state. It depends on n on-shell particle momenta but
is not an incoming n-particle state (þ contributions from contrac-
tions)30; the product of emulations of free field states is not the
emulation of the product of the latter. In order to relate the action
of an “k emulat” on a n–k particle state one needs an additional
idea.

There exists a concept which achieves this: the analytic on-shell
order change. It arose in the setting of integrable models (Babujian,
Fring, Karowski, & Zapletal, 1999) and consists in an analytic
interchange of particle momenta within formfactors which, in
the presence of interactions, is different from the kinematical
interchange in terms of statistics. For simplicity of notation we
restrict to d¼1þ1 in which case on-shell formfactors are fully
described by rapidities θ. We define a new object (denoted by a
superscript an) in a special configuration

Bjθ1…θnh ian � Bjθ1;…; θnh iin for θ14⋯4θn ð29Þ

Using (bosonic) particle statistics, formfactors can always be
written in this naturally ordered form. An analytic ordering change
along a certain path leads from the natural order to a different
formfactor function which depends not only on the new order but
also on the path of the analytic continuation which was used to
achieve it. The resulting object is still on-shell, but one generally
does not know its interpretations (or representation) in terms of
particle states.

Fortunately for the derivation of the momentum space crossing
one does not have to know the particle content after the analytic
changes. If the formfactors are locally square integrable one can,
by using wave functions with ordered θ-supports, always “filter
out” the natural order. This is achieved by passing from wedge-
local wave functions, which are spread (27) over θ-line, to wave
functions supported in naturally ordered θ-intervals. In other
words the on-shell analytic ordering property permits to reduce
the derivation of the crossing property in the presence of interac-
tions to that of the interaction-free case; the presence of interac-
tions would only show up in the unknown contributions from
different orders. Before we attempt to algebraize the analytic
ordering idea it is helpful to take a look at the simpler case of
integrable models.

Integrable models permit an explicit illustration of the previous
arguments, including an operator-encoding of analytic ordering
changes into a representation of the permutation group (with the
analytic transpositions being defined in terms of the 2-particle
elastic scattering matrix). In fact the emulated free fields31 turn
out to be identical to the Fourier transforms of the Zamolodchikov
operators which obey the Zamolodchikov–Faddeev algebra (see
(30) below).

This simplicity has its mathematical origin in restrictive
domain properties of emulats which characterize integrability

(Borchers et al., 2001). Emulats in general QFT only inherit the
invariance property of their domains under the wedge-preserving
subgroup. The requirement that the domain is also invariant under
translations turns out to be extremely restrictive (Borchers et al.,
2001). In d41þ1 the definition of integrability in terms of
domain properties of PFG's forces the S-matrix to be trivial
Sscat ¼ 1, whereas in d¼ 1þ1 it allows nontrivial S-matrices which
are suitable combinatorial products of elastic 2-particle S-matrices
which fulfill the bootstrap properties (matrix-valued scattering
functions).32 In other words the connected higher particle scatter-
ing contributions vanish, which is the standard definition of
integrability in terms of properties of the S-matrix (the infinite
number of conservation laws is a consequence). The elastic
S-matrices are given in terms of (possibly matrix-valued) scatter-
ing functions which have to obey certain analytic properties in
order to come from a field theory; these scattering functions
permit a classification.

Using these scattering functions as structure functions
in a Zamolodchikov–Faddeev algebra (Zamolodchikov &
Zamolodchikov, 1979) one obtains the creation/annihilation com-
ponents of wedge-localized temperate PFGs. At this point one
realizes that the above abstract definition in terms of domain
properties of PFGs coalesces with the standard definition of
d¼1þ1 integrability. Such models are susceptible to solutions in
closed form and are therefore called “integrable”. Compared with
the classical integrability which requires to find a complete set of
“conservation laws in involution” (and where integrable systems
exist in every dimension), integrability in QFT is limited to
d¼1þ1.

The so-called “bootstrap-formfactor construction program”

relates the scattering functions to explicitly computed formfactors
(Babujian et al., 1999). The last step consists in showing that these
formfactors really belong to an existing model of LQP. In order to
achieve this one has to establish the nontriviality of double cone
localized intersections of wedge-local algebras. This is a very
nontrivial step which has been accomplished in terms of the use
of modular nuclearity in the work of Lechner (2008). The same
author also showed how (in the absence of bound-states ) one can
construct the wedge-algebra generating PFG's in terms of defor-
mations of free fields (Lechner, 2000). The existence proof for
some integrable models is considered to represent a progress
compared to the old existence proofs which were limited to
unrealistic short distance restrictions in the form of superrenor-
malizability (Glimm & Jaffe, 1972).

This simplicity of integrable S-matrices (the absence of con-
nected parts for n42) keep integrable models in the proximity of
interaction-free models. Hence it is not so surprising that their
wedge-generators (the Zamolodchikov–Faddeev algebra genera-
tors) can be obtained by deformations of free fields instead of the
more complicated emulation (Lechner, 2000).

For the convenience of the reader and for later use we add
some details on the algebraic structure of emulated free fields for
integrable models

Ainðf Þð ÞAðWÞ ¼
Z
C
f ðθÞZnðθÞ dθ; C ¼ ∂strip; p¼mðchθ; shθÞ

strip¼ zj0o Imzoπf g; ZðθÞ � Znðθþ0ıπÞ

Znðz1ÞZnðz2Þ ¼ Sðz1�z2ÞZnðz2ÞZnðz1Þ; zAC ð30Þ

Since integrable models preserve the particle number in scatter-
ing processes, the n-fold application of the creation parts ZnðθÞ to the
vacuum are n-particle states. Identifying the velocity-ordered particle

30 A outgoing free creation operator applied on a n�1 incoming state is not an
n-particle state. Similarly the action of emulated incoming fields on an incoming
state is an infinite superposition of incoming particle states even though the
emulated momenta are on-shell.

31 In earlier publications the special case of an emulated incoming field was
referred to as a vacuum-polarization-free-generators (PFG) (Borchers et al., 2001).

32 In d¼1þ1 the cluster factorization does not distinguish a nontrivial elastic
scattering amplitude from Sscat ¼ 1.
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state with the incoming states

Znðθ1ÞZnðθ2Þ…ZnðθnÞ 0j i ¼ θ1; θ2…θnj iin; θ14θ24⋯4θn

anal: transpos: 0 Bj jθ2; θ1;…θnh iin ¼ Sðθ1�θ2Þ 0 Bj jθ1; θ2;…θnh iin
ð31Þ

the old degenerate representation related to (bosonic) statistics has
been encoded into the natural order while the other orders describe
analytic changes inside formfactors. For integrable models the
transposition of two adjacent θ uses the two-particle S-matrix.

It follows from repeated application of (31) that the analytic
change of a θ through a k-cluster of θ on its right hand side will be
a product of scattering functions which rewritten in terms of the full
kþ1 S-matrix corresponds to a grazing shot S-matrix defined as
(Schroer, 2014)

Sg:s:ðθ; θ1;…θkÞ ¼ Sk θ1;…θkð Þ�1Skþ1ðθ; θ1;…θkÞ ð32Þ

This grazing shot concept has been used to generalize the proper-
ties of integrable emulations to the generic situation (Schroer,
2012, 2013) by converting the idea of analytic changes of ordering
into an algebraic structure; in this sense this is an attempt to
generalize the structure of the Zamolodchikov–Faddeev algebra.

The first attempt of an on-shell construction of particle theory
after the failure of the S-matrix bootstrap was that by Mandel-
stam. It ignored the subtlety of analytic on-shell properties by
trying to guess their structure based on a postulated double
spectral representation for elastic scattering amplitudes (the
Mandelstam representation) instead of a derivation from the
foundational causal locality principles of QFT. It finally came to
an end when Mandelstam supported the incorrect idea of identi-
fying the meromorphic function of Veneziano's dual model with
the particle crossing of scattering amplitudes (more in Section 7).

The idea of the present work is suggested from properties of
the modular wedge localization and consists in relating on-shell
analytic order changes to the action of emulats. For two relatively
naturally ordered clusters, the analytic ordering idea for the left
hand side in (28) reads

BAð1Þ
in θ1;…θkð ÞAðWÞjθkþ1;…θn

D Ein
¼ Bθ1; θ2;…θnh iinþcontr:

for ðθ1;…θkÞ4 ðθkþ1;…θnÞ ð33Þ

i.e. all θ in left hand cluster are larger than the those on the right
hand side. The contractions result from the incoming Wick
product Að1Þ

in ðθ1;…θkÞ acting on the n–k particle state; they are
delta function contact terms in rapidity space and hence do not
contribute if all θ are different. Fortunately other orders are not
needed for the crossing relation, but they contain the dynamic
information and enter which is important for the full under-
standing of crossing and enter any constructive approach which
tries to generalize what has been learned from integrable models.

That the ordering prescription is crucial for the derivation of
the standard form of the LSZ property is corroborated by the
derivation of the time-dependent LSZ reduction formula from the
foundational properties of QFT (Buchholz & Summers, 2005). In
that derivation overlapping wave functions have to be avoided
because through such overlaps threshold singularities enter into
the problem. This result supports the picture of analytic changes of
moving through new threshold singularities at points of coales-
cence of two θ. It is an indication that ordering changes of two θ
lead to nontrivial changes which affect the derivation of the LSZ
formula and the crossing relation. The present arguments suggest
that both these changes should have their explanation in a better
understanding of the consequences of modular localization for
wedge-local algebras in QFT. From a modern viewpoint it is clear
that the conceptual tools for its solution were simply not available
at the time of its proposal.

The ideas about PFGs and of wedge-localized particle states in
terms of emulated fields can (and in my opinion should) be viewed
as an extension of Wigner's representation-theoretical approach
for noninteracting particles and its functorial relation (“second”
quantization) with quantum fields but now in the presence of
interactions. The conceptual distance between the functorial
particle-free field relation and emulation in the presence of
interactions is immense. Modular localization, as a mathematical
precise formulation of the causal locality principle of LQP, is the
only intrinsic property which has the necessary conceptual pug-
nancy to eventually solve this field–particle problem in the
presence of interactions.

7. Impact of modular localization on gauge theories

It is well-known that the Hilbert space formulation for renor-
malizable couplings of pointlike fields is limited to spin so1.
For s¼1 vectorpotentials, one is forced to use a Krein space
formulation, either in the form of the Gupta–Bleuler formalism,
or for massive gauge theories in terms of the ghost field formalism
of the Becchi–Rouet–Stora–Tyutin (BRST) operator gauge setting.
Usually textbooks on QED do not explain that this deviation from
the Hilbert space setting of quantum theory comes from an
incompatibility of pointlike zero mass vectorpotentials with the
positivity of Hilbert space (closely related to quantum probability)
which leads to limitations of viewing models of QFT as obtained by
quantizing classical gauge theories. In fact this problem arises for
all massless sZ1 tensor potentials; only their associated pointlike
field strengths are fields acting in a Hilbert space. This problem of
loss of the Hilbert space setting for interactions which use point-
like vectorpotentials is the origin of gauge theory.

For our aim to present a new formulation which permits to
describe the full theory in Hilbert space, it is helpful to recall first
some facts about the BRST gauge setting. We will use the so-called
BRST operator formalism as it can be found in Scharf's book
“Gauge theory, a true ghost story” (Scharf, 2001), but present it
in a form which highlights analogies between the nilpotent
cohomological BRST s-formalism in Krein space and the d-opera-
tion on differential forms of the new Hilbert space setting which
requires the use of stringlocal field (the SLF formalism).

The BRST description of massive vectormesons relates the
physical Proca field AP

μ with ∂μAP
μ ¼ 0 with short distance dimen-

sion dP ¼ 2 to an unphysical field in Krein space AK
μ with dK ¼ 1 and

a negative metric scalar Stückelberg field ϕK with dsd ¼ 1. The idea
is to compensate the highest short distance singularity in terms of
the d¼2 derivative ∂μϕK ; for this compensation one needs the
opposite sign of the ϕK two-point-function; this just uses the well-
known (already before gauge theory) short-distance softening
effect of indefinite metric which is of cause inconsistent with
quantum physics but helpful for renormalization. The idea of
gauge-invariance is to formulate a restriction which permits at
least to return to a “smaller” physical setting. The relation which
intuitively achieves this is of the form

AK
μ ðxÞCAP

μðxÞþ∂μϕK ;↷∂μAK
μ ðxÞþm2ϕK C0 ð34Þ

The equivalence sign is meant to indicate that relation between
the Krein space vectorpotential and its physical Proca counterpart
is not yet an operator equality but rather a relation which requires
a cohomological interpretation. The reader recognizes in the
second relation the Lorentz condition; by relating physical states
with suitably defined equivalence classes of Krein states these
relations represent cohomological equivalences. In the following
we restrict the formalism to massive vectormesons; in this case
the space is a Fock–Krein particle space and the BRST formalism
can be formulated in terms of indefinite metric free fields.
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The BRST formalism extends the Krein space setting by addi-
tional indefinite metric free fields: the ghost and anti-ghost fields
u; ~u fields; this permits the reformulation of the content of (34) as
operator equalities in terms of a nilpotent ghost charge Q which in
turn allows the definition of a nilpotent s-operation

sAK
μ ¼ ∂μu; sϕK ¼ u; s ~u ¼ �ð∂AK þm2ϕK Þ

sBK ¼ Q ;BK
h i

grad
; Q ghost charge; s2 ¼ 0 ð35Þ

where the graded commutator is an anti-commutator if B contains
an odd number of ghost fields u; ~u. The first line leads to
sðAK

μ �∂μϕK Þ ¼ 0 which according to (34) is consistent with the
physical nature of the Proca field. As shown in Scharf (2001), Aste,
Scharf, & Duetsch (1997), and Duetsch, Gracia-Bondia, Scheck, &
Varilly (2010) this leads to an operator formulation of renormaliz-
able gauge theories for massive33 vectormesons coupled to charge-
carrying- or neutral matter fields. The S-matrix in such a setting is
characterized by sS¼ 0; for details we refer to the cited papers.

The action of the s via the graded commutator with the ghost
charge defines the quantum gauge symmetry transformation so
that gauge-invariant operators are annihilated by the action of s.
As mentioned the limitation of the operator gauge formalism
shows up in the attempt to construct physical matter fields34

which couple to vectormesons. The well-known nonrenormaliz-
ability of pointlike massive vectormeson interactions in a Hilbert
space indicates that pointlike physical fields are more singular
than Wightman fields (operator-valued tempered distributions).
The literature on the BRST formalism contains no informations
about their construction. An illustration can be found in Fröhlich,
Morchio, & Strocchi (1979a) where its was shown that the use of
unphysical matter fields leads to the wrong result that the
Maxwell charge (associated to the identically conserved Maxwell
current jμ ¼ ∂νFμνÞ of the gauge-variant matter field vanishes which
contradicts rigorous results about states created by physical matter
fields acting on the vacuum. Buchholz (1982) has used an appro-
priated formulation of the quantum Gauss law in order to prove
that physical charge-carrying operators cannot be better localized
than in arbitrarily narrow spacelike cones whose cores are semi-
infinite spacelike strings.

Some more comments on the BRST operator gauge formalism
and its relation to classical gauge theory may be helpful. The
terminology gauge “principle” is sometimes misunderstood as a
special physical property of s¼1 fields. Its role is however of a pure
technical kind; working with a formulation in a Krein space, one
needs to extract from such an unphysical description physical data
referring to objects which act in a Hilbert space; in the past there
has been simply no renormalizable formalism in terms of pointlike
fields in a Hilbert space setting.

The BRST gauge formalism in Krein space achieves its limited
validity in the vacuum sector (generated by the local gauge-
invariant fields) by constructing a “symmetry” which involves in
addition to the Krein space counterparts of matter fields also
“ghost” and anti-ghost operators (35). This formal symmetry
(sometimes referred to as a local gauge symmetry) is by itself not
a physical symmetry in the usual sense; even though its formal
invariants are the physical local observables whose application to
the vacuum state generate the Hilbert space of the vacuum sector.
Important physical fields, as those which transfer electric charge,
remain outside the quantum gauge formalism. Neither does one

know a physically useful generalization of gauge symmetry to
higher spin. Indefinite metric spaces entered QFT through quanti-
zation of QED (the Gupta–Bleuler formalism), and the BRST setting
resulted from generalizing the gauge formalism to interactions
involving massive vectormesons.

Before describing some of the conceptual-mathematical details
of the new setting it is helpful to recall how physical stringlocal
charge-carrying matter fields have been formally envisaged in the
BRST gauge setting. The formal expressions in the Krein space
setting are well known

φðx; eÞ ¼ φK ðxÞ expig
Z 1

x
AK
μ ðxþλeÞeμ dλ; eμeμ ¼ �1; ð36Þ

they already appeared in publications of Jordan and Dirac during
the 1930s. But anybody who (besides playing formal games) tried
to obtain a perturbative computational control on the basis of such
nonlocal composite formal expressions within renormalized per-
turbation theory knows that this is an impossible task.

The new SLF formalism solves this problem by converting it
from its head to its feet; instead of trying to represent physical
charge-carrying fields in terms of pointlike gauge-variant fields in
a Krein space setting, it bases renormalized perturbation theory
direct on stringlocal fields in the Hilbert space. In this way the
stringlocal physical fields become the basic fields in terms of
which renormalized perturbation theory is formulated (Schroer,
2011a; Schroer-b). For free massive pointlike potentials (Proca
potentials) the short distance dimension dProca ¼ 2 poses no
problems. The problems start if such fields interact, since it is
impossible to define an interaction density which stays within the
power-counting limit dint ¼ 4; all interactions of Proca fields are
nonrenormalizable.

In classical field theories Hilbert space positivity plays no role;
the vectorpotential is a perfectly legitimate and useful classical
object; the fact that many different vectorpotentials correspond to
the same field strength and the formalization of this observation
in terms of the introduction of a classical gauge group does not
change this. However the quantum Hilbert space structure and in
particular its positivity property (related to the quantum probability)
has no classic analog from which it could arise via the quantization
parallelism, This changes the whole game; for zero mass quantum
vectorpotentials there is a clash between covariant pointlike zero mass
vectorpotentials and the Hilbert space positivity; this clash extends to
s41 tensorpotentials,35 whereas the associated observable pointlike
quantum field strengths remain pointlike fields in the Hilbert space. In
fact stringlike potentials Aμðx; eÞ arise by integrating pointlike field
strengths over semi-infinite spacelike lines in the direction e (see
below) starting at the spacetime point x. This process can be extended
to higher spin field strengths (for s¼2 the linearized Riemann tensor);
each time the short distance dimension improves by one unit until the
process ends at a covariant (e is a Lorentz vector) stringlocal sibling of
dimension dstring ¼ 1 of a pointlocal tensor potential which has
dpont ¼ sþ1; some details will be presented later on.

Whereas the clash in the zero mass case already occurs for free
tensorpotentials36 and hence is of a kinematic nature, the weak-
ening of pointlike localization in the massive case is a dynamic
phenomenon which manifests itself in a subtle connection between
renormalization and locality in the sense that nonrenormalizability
of certain fields implies that they do not exist as pointlike

33 The free field transformation rules (35) refer to the incoming free fields of
scattering theory. In massless gauge theories as QED the ghost charges depend on
the coupling (Duetsch & Scharf, 1999).

34 The gauge-variant matter fields have no physical content and it is also not
possible to extract physical matter fields in a perturbative setting.

35 Example: for s¼2 the tensorpotential is the gμν and the associated field
strength is a tensor field with four indices (the linearized Riemann tensor).

36 The counterpart of vectorpotentials to higher spin. E.g. for s¼2 the field-
strength is a 4-index tensor (the linearized Riemann tensor) and the associated
tensorpotential is the 2-index gμν tensor.
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Wightman fields but that their perturbative interactions becomes
renormalizable if formulated in terms of stringlike Wightman
fields.

The indefinite metric gauge formalism for pointlike massless
tensorpotentials can be related via quantization to the classical
pointlike formalism, but it is not immediately clear what is the
tightest localization which is consistent with the Hilbert space
positivity. The before mentioned structural theorem for localiza-
tion in QED suggests that it should be semi-infinite stringlike.
There is a powerful general theorem which states that in theories
with mass gaps and pointlike observable algebras the generating
fields (fields act always act in Hilbert space unless otherwise
stated), which carry superselection charges, are generically string-
local (Buchholz & Fredenhagen, 1982); in other words, in order to
generate the operator algebras of QFT, one does not need generat-
ing fields which live e.g. on spacelike hypersurfaces. Stringlike
Ψ ðx; eÞ fields are covariantly localized on a semi-infinite spacelike
string: xþRþ e, e � e¼ �1. In this new setting pointlike fields Ψ ðxÞ
are considered as special e-independent cases. By definition local
observables are always pointlike generated (currents, field
strength, etc.).

It is the main point of this section to abandon the gauge
description in favor of a Hilbert space formulation; for sZ1 this
requires to replace pointlocal vectormesons by their stringlike
counterpart. The Krein space gauge setting and the SLF Hilbert
space formulation meet on the level of local observables where the
property of gauge invariance corresponds to e-independence,
whereas the Hilbert space setting provides the missing higher
sectors beyond the vacuum sector which cannot be generated by
local observables but need stringlike generating operators (e.g.
the physical electron fields). The gauge setting arises naturally
from the Lagrangian quantization of the classical electromagnet-
ism, whereas stringlocal vectorpotential have no Euler–Lagrange
description.

Fortunately perturbative QFT does not depend on an Euler–
Lagrange description. The Epstein–Glaser (E–G) formulation
(Epstein & Glaser, 1973) of perturbation theory (causal perturba-
tion theory) accepts Lorentz-invariant interaction densities in
terms of covariant fields independent of whether these fields are
of Lagrangian origin or results of representation-theoretic
(Wigner) local quantum physical constructions. However the use
of covariant stringlocal fields requires a nontrivial extension of the
E–G inductive construction from pointlike to stringlike crossings;
such an extension has been achieved in recent but yet unpublished
work by Mund (2014a).

The Hilbert space positivity restricts the existing pointlike
formulation to so1. According to the aforementioned theorem
(Buchholz & Fredenhagen, 1982) generating fields of LQP in
theories with a mass gap are at most string-localized. In the
following it will be shown that nonrenormalizable couplings
involving massive pointlike sZ1 fields can be rewritten in terms
of stringlocal Wightman fields. We believe that perturbative
nonrenormalizable pointlike couplings which cannot be converted
into stringlike renormalizable couplings (see next section) do not
define models consistent with principles of QFT.

Our SLF setting requires to describe interactions of zero mass
vectormesons (QED, QCD) as limiting cases of massive interac-
tions; in the limit only the stringlocal Wightman fields survive;
their presence is essential for the understanding of physical
consequences of infrared divergencies and they are the only
physical fields which carry a nontrivial Maxwell charge. As already
mentioned a nonperturbative proof of string-localization as the
tightest possible localization of charged fields which carry a
nontrivial Maxwell charge is based on the quantum Gauss law
(Buchholz, 1982). In contradistinction to massive strings in differ-
ent directions which are unitarily equivalent, charged QED strings

are “rigid”; in particular they lead to a spontaneous breaking of
Lorentz covariance (Fröhlich, Morchio, & Strocchi, 1979b).

The new SLF setting bases renormalized perturbation theory
direct on stringlocal physical fields (Schroer, 2011a; Schroer-b).
For free massive pointlike potentials (Proca potentials) the short
distance dimension dProca ¼ 2 poses no problems. They start if such
fields interact since it is impossible to define an interaction density
which stays within the power-counting limit dint ¼ 4, i.e. all
interactions of Proca fields are nonrenormalizable.

The first hint into which direction to look comes from the
observation that there are two other fields which belong to the
localization class of the Proca field and have the short distance
dimension d¼1 instead of (2). They are constructed from the Proca
potential in terms of the following definitions:

FμνðxÞ≔∂μAP
ν ðxÞ�∂νAP

μ ðxÞ; Aμðx; eÞ≔
Z 1

0
FμνðxþλeÞeμ dλ

ϕðx; eÞ≔
Z 1

0
AP
μ ðxþλeÞeμ dλ; e2 ¼ �1 ð37Þ

All three covariant free fields are written in terms of the same
basic Wigner s¼1 creation/annihilation operators a#ðp; s3Þ,
s3 ¼ �1;0;1; unlike in the BRST setting no additional Stückelberg
degrees of freedom are introduced, so that the Hilbert space
remains identical to that which the Proca field generates from
the vacuum.37 In the presence of interactions the stringlocal scalar
ϕ may potentially interpolate particles of any integer spin (Mund
et al., 2006), including s¼0

p; s3 ϕ
�� ��0� �

a0; �srs3rs ð38Þ
Which boundstate particles actually appear in addition to the
“elementary” s¼1 vectormeson and the matter field with which it
interacts depending on the interactions of massive vectormesons
with other matter or among themselves.

The important point here is that the covariant string-local
nature of ϕ permits a linear interpolation, whereas covariant
pointlike fields achieve this only by forming (nonlinear) composite
fields (Mund et al., 2006). Solely zero mass stringlocal fields
maintain the standard connection between spinorial indices and
physical spin38 s¼ h

�� �� which is the same as that for pointlike
massive fields; in particular they have no ϕ “escorts”. The semi-
infinite line integrals in (37) lowers the dimension by one unit, so
that the stringlocal potential and its stringlocal escort field permit
to define formal interaction polynomials within the power-
counting restriction. The string-localization shows up in the
commutation relation; bosonic strings commute if and only if
the entire strings xþRþ e are spacelike relative to each other.

Between the pointlocal Proca field and its stringlike relatives
there exists a (easy verified) linear relation

Aμðx; eÞ ¼ AP
μ ðxÞþ∂μϕðx; eÞ; dsdðAμÞ ¼ 1; dsdðϕÞ ¼ 1; dsdðAP

μÞ ¼ 2

ð39Þ
In contrast to the equivalence relations (34) in the Krein space,
these relations are bona fide operator equations in Hilbert space
which (in case of free fields) are direct consequences of the above
definitions. The ϕ are similar to the Stückelberg fields in the BRST
gauge setting (34) but in contrast to the letter they are physical i.e.
they interpolate physical states. In the free field case these escort
fields (of stringlocal vectorpotentials) ϕ generates the same s¼1
Wigner particle as Aμ, but in the presence of interactions they may
potentially interpolate any integer spin particle, including a scalar

37 This renders the SLF setting more similar to the Ginsberg–Landau phenom-
enological theory of superconductivity than the relation of the latter to the Higgs
mechanism for which the “fattened” vectormeson need the presence of the Higgs
particle.

38 For massless pointlike fields the relation excludes tensorpotentials.
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bound state. The compensation of the most singular part (in the
present case of the Proca field) by the derivative of a lower
dimensional field (39) is the mechanism by which later on the
singular nonrenormalizable pointlike interaction density will be
converted into its less singular renormalizable stringlocal
counterpart.

In contrast to the role of the scalar Higgs field, which must be
added to the zero-order field content, the Hermitian stringlocal
scalar ϕ0s are inexorable companions (intrinsic escorts) of renor-
malizable massive vectormesons. Together with the Proca field
they disappear in the massless limit in which the relation (39)
breaks down and only stringlocal vectorpotentials remain.

Before presenting illustrative second-order perturbative model
calculations in the new SLF Hilbert space formulation, it is helpful
to know how the local equivalence class relation between point-
and string-local fields can be extended to the matter fields.
Looking at the “gauge theoretic appearance”39 of (39) it is not
surprising that this relation takes the form of a gauge transforma-
tion

ψðxÞ ¼ e� igϕðx;eÞψðx; eÞ ð40Þ
The g-dependent exponential dependence on the physical ϕ field
changes the renormalizable stringlocal matter field; the result is a
very singular pointlike field with unbounded short distance dimen-
sions (non-polynomial increase in momentum space). Such fields
have been introduced in Jaffe (1967); they are more singular40

than operator-valued Schwartz distributions (Wightman fields)
and indicate their presence in terms of a breakdown of renorma-
lizability. Any attempt to calculate them directly (i.e. without using
the relation to their stringlocal renormalizable siblings) will lead
to the well-known problems of nonrenormalizable perturbation
theory with infinitely many counterterm parameters, whereas
their calculations as objects within the renormalizable stringlocal
perturbation theory will maintain the same number of parameter
as those appearing in the stringlike formulation. In fact they
provide a very singular “coordinatization” of the same physical
situation. In particular they do not allow the construction of
localized operator algebras by smearing with arbitrary compact
spacetime supported smooth testfunctions.

The intrinsic nature of the stringlocal physical ϕ fields strengthens
the analogy with the massive gauge fields in the Ginsberg–Landau
theory of superconductivity. In contradistinction to the Higgs mechan-
ism, which adds additional degrees of freedom (namely the extrinsic
Higgs fields) in the belief that vectormesons need them in order to be
massive, the SLF setting describes massive vectorpotentials coupled to
charged matter without adding degrees of freedom, just as the
quantum mechanical theory of superconductivity describes short
range vectorpotential without requiring additional degrees of freedom.
What is not clear at this point but will become evident in the
following subsections, is that these scalar stringlocal fields, which
together with the other two fields (39) are members of the same
relative localization class, play a crucial role in the interaction of
massive vectormesons with matter.

It is interesting to note that the local equivalence class picture
permits a generalization in which the linear relation between s¼1
free fields is a special case a more general relation for integer spin
s41 fields

Aμ1…μn ðx; eÞ ¼ AP
μ1…μn

ðxÞþ∂μ1ϕμ2…μn
þ∂μ1∂μ2ϕμ3…μn

þ⋯þ∂μ1…∂μnnϕ

The left hand side represents a stringlocal spin s¼n tensor
potential associated to a pointlike tensor potential with the same

spin. The ϕ0s s¼ n� i; i¼ 1;…;n are tensorial stringlocal fields of
dimension d¼ n� iþ1. Each ϕ “peels off” a unit of dimension so
that at the end one is left with the desired spin s stringlocal d¼1
counterpart of the tensor analog of the Proca field. The main
problem of using such generalizations is to identify those cou-
plings which guaranty the existence of sufficiently many (gener-
ally composite) local observables generated by pointlike
Wightman fields (operator-valued Schwartz distributions). This
may be important in attempts to generalize the idea of gauge
theories in terms of SLF couplings involving massive s41 fields.

The two-point functions of the above s¼1 stringlocal fields are
e-dependent

Φ1ðx; eÞΦ2ðx0; e0Þ
� �¼ 1

ð2πÞ3=2
Z

e� ipðx� x0 ÞMΦ1 ;Φ2 ðp; e; e0Þ
d3p
2p0

MAP
μ ;A

P
ν
¼ �gμνþ

pμpν
m2 ; Mϕ;ϕ ¼

1
m2�

ee0

ðpe� iεÞðpe0 þ iεÞ

MAμ ;Aν
¼ �gμν�

pμpν
ðpe� iεÞðpe0 þ iεÞþ

pμeν
pe� iε

þ pνe
0
μ

pe0 þ iε
ð41Þ

Besides these three diagonal expectations there are also mixed e-
dependent two-point functions of which only

MAμ ;ϕ ¼ � i
e0μ

pe0 þ iε
� pμee

0

ðpe� iεÞðpe0 þ iεÞ

� 	
ð42Þ

will be needed later on. The ε-prescription defines the distribu-
tions as boundary values of analytic functions. A systematic
derivation of such relations in the context of the intertwiner
formalism for stringlike fields (Mund et al., 2006) will appear in
Mund & Schroer (2014a). The appearance of e-dependent time-
ordered correlations complicates analytic perturbative calculations
as compared to the BRST setting.

But the extra computational effort is unavoidable, because it is
the only possibility to construct correlation function involving
physical zero mass matter fields since the latter exclusively exist as
stringlocal objects41 and the massive vectormeson theories offer a
natural covariant way (without ad hoc cutoffs) to analyze the
infrared behavior. Such constructions are necessary if one wants to
show that confinement is a property of zero mass gluon-matter
interactions. In fact the expected result is that m-0 limiting
correlations vanish if besides pointlike observable (composite)
fields they also contain stringlocal gluons/quarks; the only
expected exception is quark–antiquark pairs with an e which
matches the direction of the spacelike separation between the
pair (a stringlike bridge). One knows from infrared problems in
QED that the leading logarithmically divergent contributions must
be re-summed before one takes zero mass limits (Yenni, Frautschi,
& Suura, 1961).

One should also note that the apparent simplicity of the
pointlike BRST perturbation theory as compared to the Hilbert
space setting is deceiving; the difficult part in the gauge setting is
not the perturbation theory itself, but rather the extraction of the
physical results. Physical operators, as the S-matrix, inevitably
contain unphysical fields, and to compute their matrixelements
between physical particle states is a nontrivial and even ill-defined
task since the physical space is not simply a subspace but rather
results from a cohomological construction. The s-invariant BRST
S-operator in the Bogoliubov formulation depends not only on the
physical matter operators but also on the unphysical AK

μ and ϕK

free fields and even if one finds a way to compute scattering
amplitudes by “sandwiching” S between physical Wigner particle

39 This is not a gauge transformations between fields of the same kind, but
rather an equation which connects string-and point-like fields which are members
of the same localization class.

40 In fact they only allow smearing with a dense class of localized testfunctions.

41 Even the singular pointlike fields of the massive case disappear in the
massless limit.
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states it is not clear whether it would agree with the scattering
amplitudes which are calculated by doing the same with Sphys
obtained from the Hilbert space formulation where such problems
do not occur. The only secure result of the gauge approach is the
physical nature of the gauge-invariant local observables, but from
those alone it is not possible to derive the S-matrix.

7.1. SLF perturbation theory involving massive vectormesons

For the perturbative study of interactions of massive vectorpo-
tentials with charged matter, one needs to establish the validity of
relations as (39) and (40) in every order of perturbation theory.
The zero-order matter fields are pointlike but, as a result of their
interaction with the stringlocal vectorpotential, they become
stringlike in higher orders, in fact they turn out to be even “more
stringy” than the vectorpotentials which mediate the interactions.
The important idea which permits to establish these relations in
every order within the Stückelberg–Bogoliubov–Epstein–Glaser
(SBEG) setting of renormalized perturbation theory will be
referred to as “adiabatic equivalence” (AE) since it involves the
adiabatic limit in which the spacetime-dependent compact sup-
ported coupling gðxÞ of the SBEG functional formalism approaches
the spacetime-independent everywhere constant physical cou-
pling strength g; this will be explained in the sequel.

Before we turn to concrete model illustrations of perturbation
theory in terms of stringlike fields, a historical remark about the
origin of these ideas may be appropriate. It had been known for a
long time that Wigner's infinite spin representations of the
Poincaré group cannot be generated by pointlike wave functions
(Yngvason, 1970). Further progress had to await the concept of
modular localization, which first appeared in the context of
integrable models (Schroer, 1999). Of significant importance was
the systematic application of modular localization to positive
energy Wigner representations in Brunetti et al. (2002). In that
paper it was shown that all such representations permit a causal
localization in (arbitrary narrow) spacelike cones. Since the core of
such a conic region is a semi-infinite spacelike string, the only
remaining computational problem was the construction of covar-
iant fields Ψ ðx; eÞ which are causally localized on xþRþ e, e2 ¼ �1
and generate operator localized in (arbitrary narrow) spacelike
cones (Mund et al., 2006). This finally led to a solution of the age-
old problem concerning the field content of Wigner's “infinite
spin” representation class.

It then turned out that the construction of stringlocal fields is
also useful for the pointlike localizable representations since it
resolves the clash between pointlike localization and the Hilbert
space positivity for zero mass sZ1 fields which one encounters in
passing from pointlike field strength to their associated
potentials.42

The use of stringlike potentials also lowers the short distance
dimension; instead of dsd ¼ sþ1 for pointlike spin s fields, one can
always construct a free stringlike field with dsd ¼ 1 for all s. This
allows us to convert interactions between massive nonrenorma-
lizable pointlike fields into renormalizable interaction involving
their stringlocal analog. It also shows that this conversion can be
used in the opposite direction; the stringlike renormalization
theory permits to construct well-defined (but more singular)
higher order pointlike interaction densities via the detor of
renormalizable stringlike Wightman fields; this roundabout way
cannot prevent the singular (non-Wightman) nature known from
direct use of pointlike perturbation theory with first-order inter-
action densities beyond the power-counting limit dintr4, but at

least the number of parameters stays the same as in its stringlike
counterpart.43

Although modular localization was important for the under-
standing of the role of stringlocal fields and their role in the
reformulation of gauge theory, their renormalization theory can
nowadays be carried out without direct use of modular methods.
The latter remain present in the background; they furnish the
conceptual-mathematical fundament for the ongoing changes in
QFT. They shows in particular that the perturbative use of SLF in
the Hilbert space is more than a computational substitute of the
BRST gauge formulation; in fact, it is the only perturbative
formulation in which the full field content (and not just the local
observables of the gauge-invariant vacuum representation) com-
plies with the physical principle of causal localization in a
Hilbert space.

After having explained the philosophy behind SLF, we will now
illustrate these ideas in three different models. As a preparatory
step the reader is first reminded of the SBEG setting of perturba-
tion theory. Its central object is Bogoliubov's perturbative
operator-S-functional which generates the time-ordered products
associated with the scalar interaction density Lðx Þ. The scattering
matrix Sscat and the quantum fields are then defined in terms of
the adiabatic limit of the following definitions

SðgLÞ �
X
n

in

n!
TnðL;…; LÞðg;…; gÞ≕Tei

R
LðxÞgðxÞ; Sscat ¼ lim

gðxÞ-g
SðgLÞ

ψgðf Þ≔SðgLÞ�1
X
n

in

n!
Tnþ1ðL;…; L;ψÞðg;…; g; f Þ; ψðf Þ ¼ lim

gðxÞ-g
ψgðf Þ

ð43Þ
Here gðxÞ-g is the adiabatic limit in which the spacetime-
dependent coupling approaches the coupling constant and the
S-matrix and the fields become covariant. A sufficient condition is
the existence of mass-gaps, which is satisfied if all fields in the
Lorentz-invariant interaction density are massive (Haag, 1996).
Since quantum fields are not operator-valued functions but rather
operator-valued distributions, the definitions of the S-matrix and
quantum fields must be subjected to renormalization which has to
be carried out order by order.

In the case of massive scalar QED (Mund, 2014b; Schroer-b) we
have two L0s, a pointlike interaction LP and its stringlike counter-
part L

LPðxÞ ¼ jμðxÞAP
μðxÞ ¼ Lðx; eÞ�∂μVμ

Lðx; eÞ ¼ jμðxÞAS
μðx; eÞ; Vμ ¼ jμðxÞϕðx; eÞ; jμðxÞ≕φnðxÞi ∂

2

μφðxÞ:
SðgLPþ fψÞCSðgLþ fψSÞ
AP
μðxÞ ¼ AS

μðx; eÞ�∂μϕðx; eÞ; ψPðxÞ ¼ e� igðxÞϕðx;eÞψSðx; eÞ ð44Þ

The LP is the singular pointlike Proca interaction, whereas L is the
new stringlike interaction which, as a result of dsdðAS

μÞ ¼ 1, stays
within the power-counting limit of renormalizable couplings; both
L0s act in the Hilbert of the free fields which were used in the
definition of LP. The vector Vμ contains the previously introduced
intrinsic escort field ϕ of AS, and ∂μVμ with dsdð∂μVμÞ ¼ 5 plays a
similar role with respect to LP as ∂μϕ in (39) with respect to AP

μ ,
namely it “peels off” the highest short distance dimension from LP

and converts it into the renormalizable dsd ¼ 4 interaction density
L.44 The highest divergence is now carried by the derivative ∂μVμ

term which, integrated with gðxÞ, becomes a boundary term and
hence vanishes (in massive theories) in the adiabatic limit gðxÞ-g.
In this way one arrives at the equality (up to problems of

42 A corresponding result holds for massless higher halfinteger integer spin
fields with sZ3=2.

43 The growth of the number of independent counterterms parameters with
the perturbative order in the direct pointlike setting renders nonrenormaliable
interactions rather useless.

44 For convenience of notation we omit the superscript S for stringlocal objects.
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normalization) of the first-order pointlike scattering matrix with
its string counterpartZ

LPd4x¼
Z

Ld4x or LPC
AE

L ð45Þ

which defines the concept of “adiabatic equivalence” of the two
interactions.

For notational conveniences, and also in order to maintain
formal analogy to the BRST formalism, one views Aμðx; eÞ and
ϕðx; eÞ as zero forms in e, with de denoting the differential operator
which maps n-forms into nþ1 forms so that d2e ¼ 0. Then the basic
relation of string-independence (39) reads

deðAμðx; eÞ�∂μϕðx; eÞÞ ¼ 0; u≔deϕ
deðLðx ; eÞ�∂μVμðx; eÞÞ ¼ 0; Q μ ¼ deVμ ð46Þ
and the last relation, in which the de acts on composites, is a
consequence of the de action on the basic free fields. For all
interactions of massive vectormesons with matter such pairs L,
Vμ exist. The content of the bracket in the second line is simply the
lowest order nonrenormalizable pointlike interaction; for massive
QED see (44).

The differential form calculus is formally similar to the nilpotent
s-operation of the cohomological BRST gauge formalism (see
below). Its conceptual role remains however quite different; in
the case at hand the differential formalism separates pointlocal
observables from stringlocal fields in the Hilbert space, whereas
the main purpose of the BRST s-operation is to allow the return
from an unphysical Krein space to a quantum theoretical Hilbert
space in which (only) gauge invariant observables act. Operators as
(36), which in the BRST terminology may be called “gauge
invariant nonlocal matter fields”, are outside the range of the
perturbative gauge formalism, whereas in the SLF setting they
define the basic renormalizable matter fields of perturbation
theory. In contrast to the nilpotent s-operation, which is needed
for the construction of a Hilbert space, the de acting on classical
differential zero forms is directly related to the physical localiza-
tion properties.

If the T-products would not involve distributions with singula-
rities at coinciding points as well at string crossings which impede
to pull the ∂μ through the T, higher order string independence
relations as

ðdeþde0 ÞðTLL0 �∂μT VμL
0 �∂0νTL Vν0 þ∂μ∂0vTV

μVν0 Þ ¼ 0 ð47Þ
would be an automatic consequence. This relation may be some-
what simplified by splitting it (using the symmetry in x; e2x0; e0)
into

deðTLX 0 �∂μTVμX0Þ ¼ 0; X0 ¼ L0;Vμ0 ð48Þ
The ambiguities of time-ordering at point or string-crossings make
the fulfillment of these relations a nontrivial renormalization
problem. Their validity as distributional relations, including coa-
lescent x0s and string crossings, would imply the string-
independence of the second-order scattering matrix, since all
derivative terms lead to vanishing boundary terms in the AE limit.

The vanishing of the bracket in (47) also provides a second-
order definition of a T-product of singular “pointlike”45 interac-
tions TLPðxÞLPðx0Þ, which in the standard pointlike setting would be
outside the range of renormalization theory

TLPLP
0
C
AE

TLL0; TLPLP
0 � TLL0 �∂μT VμL

0 �∂0νTL Vν0 þ∂μ∂0vTV
μVν0 ð49Þ

The derivative terms, which in massive theories lead to vanishing
surface contributions after integration over spacetime, account for

the fact that this e; e0 independent definition of a second-order
pointlike interaction leads to the same scattering matrix as its
stringlike counterpart. Renormalization means the construction of
a time-ordering which fulfills e-independence in the sense of (49).

This is conveniently done by decomposing the time-ordered
products in terms of Wick-ordered products. The resulting opera-
tor contributions can be ordered according the number of con-
tractions. The term with no contraction obviously fulfills the above
identity. The so-called tree-contribution contains one contraction;
for contractions containing the time-ordering of derivative of
fields this leads to a renormalization problem. The only massive
vectormeson coupling in which this problem is absent is massive
spinor QED (Mund, 2014b). Loop contributions are as usual
absorbed in mass- and coupling-renormalization.

The interesting new phenomena of SLF in the Hilbert space
happen in the “tree”-component. In the following this problem
and its solution will be sketched for three models: scalar massive
QED, its chargeless counterpart (coupling to a Hermitian field H)
and some comments on the massive Yang–Mills coupling (inter-
acting massive gluons). In the following three subsections we will
be content with the calculation of the second-order S-matrix. The
calculation of off-shell correlation of quantum fields and the
relation between singular pointlike and renormalizable stringlike
matter fields (40) will be left to a separate publication.

For new interesting problems of mathematical physics arising
from stringlocal perturbation theory, in particular problems
related to the extension of Epstein–Glaser causal renormalization
theory to string-crossings, we refer to forthcoming work by Mund
(2014a).

7.2. Scalar massive QED

According to the traditional view, massless scalar QED is a
pointlike model with two coupling parameters46; it is known to be
renormalizable in the unphysical pointlike BRST Krein space
setting. Unlike its classical counterpart, this quantum gauge
description is severely restricted; the positivity requirements of
the Hilbert space clash with the pointlike localization and quan-
tum gauge theory is the result of a compromise; the description is
limited to local observables which constitute the gauge invariant
part, physical matter fields remain outside.

As a consequence, quantum gauge theory is not capable to
provide a spacetime description of collisions between electrically
charged particles; however there exist calculational successful
infrared regularized momentum space recipes for photon-
inclusive cross sections. There is presently no spacetime under-
standing of collision theory analogous to that provided by the LSZ
scattering theory47 in case of models with mass gaps. The tradi-
tional point of view is that zero mass interactions are simpler than
their massive counterparts; but this refers to purely formal aspects
of renormalization theory and ignores the physical-conceptual
problems. The latter point into the opposite direction.

The problems of infraparticles in QED (Buchholz, 1986) and
confinement in QCD still belong to the conceptual demanding
unsolved problems of particle theory, whereas the incorporation
of renormalization problems of its massive counterparts can be
achieved by extension of the renormalization theory to the new
SLF setting in the Hilbert space. Apart from some remarks at the
end of next section, the construction of massless limits and new
ideas to tackle infrared problems will be left to a separate
publication.

45 The TLPLP
0
is generally not pointlike as an interaction density, since there

remain e-dependent contact terms which only vanish after integration (i.e. in the
AE limit).

46 The electromagnetic coupling and a parameter related to a quadrilinear
scalar field coupling.

47 The large-time LSZ limits vanish for infraparticle fields (Schroer-b).
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The defining first-order stringlocal interaction density of mas-
sive scalar QED

Lðx; eÞ ¼ gAμðx; eÞjμðxÞ ¼ LPþ∂μVμ

jμ ¼ φn∂μ
2

φ; Vμ ¼ ϕjμ ð50Þ

is according to (47) de-equivalent to its pointlocal counterpart LP.
This secures the e-independence of the first-order S-matrix in the
AE limit. In these equivalences the stringlocal intrinsic escort fields
ϕ which appears explicitly in Vμ play an essential role. Whereas
the first-order relation is a result of the definition of a “stringlocal”
interaction, the second-order relation (47) is a nontrivial restric-
tion on the renormalization.

One defines a reference time-ordering T0 of two-pointfunctions
of derivatives of the complex scalar field φ by taking the deriva-
tives outside the two-point function e.g.

T0∂μφnðxÞ∂0νφðx0Þ
� �¼ i

∂μ∂0ν
2πð Þ4

Z
d4pe� ipx 1

p2�m2þ iε

On the other hand the time ordering in Epstein and Glaser's
renormalization approach permits delta function counterterms of
the same scaling degree as the integrand, for the present case

T∂μφnðxÞ∂0νφðx0Þ
� �¼ T0∂μφnðxÞ∂0νφðx0Þ

� ��aigμνδðx�x0Þ ð51Þ

where a is a free parameter.
If we were to treat the defining first-order interaction Aμj

μ as
involving a pointlike Aμ field in the Krein space of pointlike
massless vectorpotentials, the interaction is renormalizable in
the perturbative inductive Epstein–Glaser renormalization setting
where it leads to two counterterms. The first counterterm (51)
appears in the second-order tree approximation and amounts to a
modification of the interaction through a second-order contact
term (all operator products are meant to be Wick-ordered)

aAμðxÞAμðxÞφnðxÞφðxÞ ð52Þ
with an independent coupling parameter a. There is an additional
quadrilinear counterterm with a coupling parameter of the form

b φnðxÞφðxÞ� 2 ð53Þ
which appears for the first time in fourth order; these two
counterterms exhaust the possibilities of counterterm structures
(primitively divergent contributions in the Feynman graph set-
ting), which means that the renormalized theory is 3-parametric.

To recuperate local observables acting in a Hilbert space (at the
expense of charge-carrying matter fields which remain unphysical
fields in the Krein space) one has to extend the Krein space
formulation by ghost operators as explained in the previous section;
in this way one arrives at the BRST gauge formulation which fixes
the parameter a in (52) to a numerical value a¼1 according to the
rules of a formal “gauge symmetry”. By itself this term has no
direct physical interpretation apart from its role in the extraction
of local observables from an unphysical description. For the formal
description and the perturbative calculations of the two-
parametric massive scalar QED one needs the full BRST “ghost
program”, even though the physics is only contained in the small
subalgebra generated by “gauge invariant” local observables. The
gauge symmetry is a technical trick and not a physical symmetry;
in particular its spontaneous breaking is physically meaningless.

In the SLF Hilbert space setting on the other hand, the second
order with the correct value of a is “induced” from the model-
defining first-order A � j interaction; it is simply the result of the
implementation of locality in Hilbert space setting. No additional
principle as gauge symmetry has to be invoked in order to fix a
to its correct numerical value; models QFT are realizations of
the foundational causal localization principle. The difficult task is
to trace the richness of models back to different physical

manifestations of this principle. The induction mechanism exists
only for higher spins sZ1, for lower spins the renormalization
theory is the well-known counterterm formalism of pointlike
interactions.

For the case at hand this is done as follows. From the results in
the previous section we know that the second-order locality
requirement for the S-matrix in the presence of stringlike fields
amounts to the vanishing of the de operation on the renormalized
tree component

de TA � jA0 � j0 �∂μTϕjμA
0 � j0� 

1� con
¼ 0

�Ae≔de T0A � jA0 � j0 �∂μT0ϕjμA
0 � j0� 

1� con
¼Neþ∂μNe;μ;A¼ AeþAe0

ð54Þ
and a similar expression in which the unprimed and primed x; e
are interchanged; the total anomaly A from the one-contraction
terms is simply the sum of the two contributions. They originate
from the divergence of propagators

∂μ T0∂μφnðxÞ∂0νφðx0Þ
� �¼ � i∂0νδðx�x0Þþreg

∂μ T0∂μφnðxÞφðx0Þ� �¼ � iδðx�x0Þþreg ð55Þ

where reg stands for the regular contributions which results from
applying the wave operator to the free field φnðxÞ inside the time
ordering. The anomaly contribution is not the only delta contribu-
tion, the T0LL

0 also contributes since according to the rules of
minimal scaling we are required to introduce a counterterm (51)
with an undetermined parameter a. For two derivatives the T0

passes to a T which contains a free renormalization parameter a
(51) whereas we keep T ¼ T0 for φ propagators with a lower
number of derivatives. The T propagators also appear in the
φ-contractions of the tree contribution TLL0j1� con. Instead of pre-
senting the lengthy but straightforward calculation of the N0s we
only present the result

N¼ 2δφnφA � A0;Nμ ¼ δφnφðϕA0
μþϕ0AμÞ ð56Þ

where the δ stands for δðx�x0Þ.
By inspection one now realizes that the choice a¼ 1 in (51)

leads to a compensation of the N-anomaly with the normalization
term from TLL0. The Nμ contributes to the renormalization of the
TVμL

0 operator but does not contribute to the renormalization of
the second-order S-matrix. As a consequence of the identity
de∂μϕ¼ deA

μ there are no delta anomaly- contributions from
ϕ�Aν contractions. One obtains the expected second-order quad-
ratic in Aν contributions which in the gauge formalism results from
imposing gauge invariance

TLL0 ¼ T0LL
0 þ2iδðx�x0ÞL2; L2 ¼ 2φnðxÞφðxÞA � A0

S¼
Z

igL�1
2
g2L2

� 	
�g2

1
2
∬ T0LL

0 þhigher

¼ ig
Z

L�∬
g2

2
TLL0 þhigher ð57Þ

The separate e; e0 dependence is a consequence of the independent
directional fluctuations i.e. reminder that e is not the gauge
parameter of the noncovariant axial gauge but rather the fluctuat-
ing string variable of a covariant stringlocal potential. Since the
anomaly contributions are Wick-ordered quadrilinear terms there
is no problem with setting e¼ e0; the only problematic aspect is to
identify the e0s in propagators. In momentum space scattering
amplitudes one can always avoid the dangerous e-directions by
choosing the e¼ e0 such that the denominator in the propagator
does not vanish. Then the formalism guaranties that each con-
tribution to a 2-particle scattering amplitude is well-defined and
their sum (the scattering amplitude) is the e-independent sum of
these contributions is guarantied by the formalism (the string-
independence of the S-matrix).
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In (57) the last equation has absorbed the L2 contribution into a
redefinition of the T-product. This is a notational simplification for
tree contributions of arbitrary high order which the gauge
description does not suggest. As mentioned in (49) the SLF setting
permits a “backdoor” construction of pointlike interaction densi-
ties; their momentum space behavior corresponds to what one
expects from the pointlike counterterm formalism but, different
from the latter it introduces no new undetermined coupling
parameters. For such computations it is necessary to use the Nμ

for the renormalization of the TVμL
0 derivative terms. This obser-

vation is restricted to pointlike interaction densities of arbitrary
order but does not yet extend to field correlations; for the latter
one has to extend the Bogoliubov S-matrix formalism, a step
which is well known for pointlike fields, but still needs to be
elaborated for stringlocal fields.

The structure of the definition (49) shares with the naive
expression obtained from second-order pointlike perturbation
theory the large momentum increase, but the mass–shell restric-
tion of the former leads to the cancelation of leading high
momentum contributions which is the momentum space counter-
part of the on-shell “peeling property” in x-space. This difference
between off-shell correlations and the on-shell lowering of the
p-increase has no counterpart in the pointlike Feynman formalism.
As everything which is different from the standard pointlike
formalism, its origin is the powerful Hilbert space positivity which
starts to assert itself in massive sZ1 interaction; as such it is a
completely new phenomenon with no counterpart in the Krein
space gauge setting.

7.3. Couplings to Hermitian fields and the Higgs model

Although having no counterpart in classical theory, one may
ask whether it is possible to couple a massive vectormesons to a
Hermitian scalar fields H as kind of “charge-neutral” counterpart
of massive scalar QED. A second-order BRST operator gauge
treatment of such a situation which is suitable for a comparison
with our SLF setting has been given by the University of Zürich
group (Scharf, 2001 and references therein) and more recently in
Duetsch et al. (2010). It is appropriate to briefly recall their results
before presenting the solution in the SLF Hilbert space setting.
For comparison it is helpful to reformulate their derivation in
analogy to our Hilbert space formulation (Mund & Schroer, 2014a).

The first-order pair L, Vμ which corresponds to the lowest
pointlike interaction with a Hermitian field H is48 (ϕScharf �mϕ)

LP ¼mðAP � APHþcH3Þ ¼ L�∂μVμ with:

L¼m A � AHþ1
2
A � ðϕ ∂

2
HÞ�m2

H

2
ϕ2HþcH3þu ~uH

� 	
Vμ ¼m AμϕHþ1

2
ϕ2∂μ

2
H

� 	
ð58Þ

where the superscripts K on Aμ, ϕ; L and Vμ have been omitted for
notational convenience (for the notation see (35)). The mass factor
m (the vectormeson mass) has been introduced in order to keep
track of the overall “engineering dimension” den ¼ 4. Even though
the conceptual content of the Hilbert space approach is quite
different from the gauge theoretical approach, there are close
formal correspondences between the differential form de formal-
ism with the BRST nilpotent s-operation. Instead of starting with
pointlike trilinear interaction LP and converting it into an L and a
divergence of a Vμ, there is the more general looking possibility to
start with a trilinear Ansatz for a stringlike L̂ within the power-
counting restriction and find the correct L and V which fulfills
the string-independence string-independence deðL�∂VÞ ¼ 0 in a

unique way (up to a contribution in V whose divergence vanishes).
We may call this the first-order “induction”.

We now pass to the second-order implementation of the BRST
s-symmetry (the operator form of gauge invariance in the Krein
space). The appearance of a u ~uH term, which only vanishes on
Kers/Ims, has no counterpart in the SLF setting; it simply does not
occur in the Hilbert space setting. Again one computes the
anomalies of the one-contraction (1�c) contributions of the s
operation according to the rules (35) and compensates them with
corresponding normalization terms by choosing the free normal-
ization parameter in TLL0 in such a way that, in analogy to massive
QED they match the well-defined anomaly A. The induced counter-
terms which together with the T0-product define the renormalized
T-product (Qμ≔sVμ)

A¼ sT0LL
0 �ð∂μT0QμL

0 þðx⟷x0ÞÞ ¼ sNþNμ

with TLL0 ¼ T0LL
0 þC; TQμL

0 ¼ T0VμL
0 þCμ

For the calculation of the renormalized S-matrix we only need the
one-contraction (tree) component of the anomaly. As has been
shown in (Scharf, 2001, p. 147) this leads to four induced delta
function anomaly terms N¼ δðx�x0ÞL2 with

L2 ¼ AAH2þAAϕ2�1
4
m2m2

Hϕ
4�1

2
m2

Hϕ
2H2þcH3þc0H4 ð59Þ

Here the c0 is an additional coupling which, although still free in
second order, is needed for the compensation of anomalies in third
order which leads to the value c0 ¼ �1

4ðm2
H=m

2Þ. In other words the
Mexican hat potential is fully induced by the gauge s-invariance of
the S-matrix. There is no place for symmetry breaking shifts in
field space.

Again the sum of the local second-order term ðg2=2ÞL2 is not
physical by itself, but the sum

g2

2

Z
L2ðxÞd4xþ

1
2
∬ T0LðxÞLðx0Þd4xd4x0

� 	
ð60Þ

is the second-order contribution to the gauge-invariant S-matrix.
As in (57) the form of the induced interaction L2 depends again on
the definition of the T0 with which the anomalies were computed;
and as in the previous case of scalar massive QED one can absorb
the quadratic terms in A in (59) into a change T0-T . What
remains is the quadrilinear H-ϕ potential which together with
the A-independent terms from L1 can brought into the form of a
Mexican hat potential as shown in Scharf (2001). But here this is a
result of a second-order gauge induction and not of a symmetry-
breaking interaction; the numerical coefficients of the induced
potential are ratios of the masses and do not depend on a
symmetry-breaking field shift. Together with the first-order
H�ϕ contributions they can be written in the form of a Mexican
hat potential.

Contrary to the destruction of gauge invariance by a numerical
field shift in the gauge-dependent field of scalar QED and subsequent
adjustments in terms of special gauges, the induced Mexican hat
potential results from the preservation of gauge invariance for the
coupling of a Hermitian field to a massive vectormeson using the
BRST gauge invariance of the S-matrix through the relation sS¼0.
Since all operators are massive there are no infrared problems.
As a result the second-order inductions of a Mexican hat potential
from the implementation of the BRST s gauge invariance is totally
different from the introduction by hand of a Mexican potential
whose purpose is the (impossible task) to break the gauge
symmetry in order to generate a mass. The work of the university
of Zürich group (Scharf, 2001; Aste et al., 1997) should have caused
the ringing of bells with respect to the Higgs issue, but it was
ignored.48 A term AP∂H2 turns out to be a total derivative since ∂AP ¼ 0.
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In the SLF setting the calculation proceeds in a similar fashion.
The e-independence first-order argument results in

L¼m A � ðAPHþϕ∂HÞ�m2
H

2
ϕ2HþcH3

� 	
Vμ ¼m AP

μϕHþ1
2
ϕ2 ∂

2

nH
� 	

ð61Þ

Again the m factors keep track of the engineering dimension.
Different from the previous case there are off-diagonal propaga-
tors between A;AP and ϕ. It turns out that the best way to handle
this problem is to use one AP instead of only A0s; this can be done
as long as the power-counting restriction dintr4 is obeyed. Apart
from the absence of the u ~uH term and the difference in normal-
ization between the negative metric ϕK and the physical escort
field ϕ, the algebraic steps of the implementation of second-order
string independence in the spacetime de differential form calculus
are following the same steps as those of the nilpotent s calculus.
Therefore it is not surprising that also the results are accordant.
One expected difference is the appearance of both e and e0 in the
Mexican hat potential; this is similar to the second-order expres-
sion of the previous massive scalar QED model. The appearance of
in e; e0 asymmetric term in addition to the symmetric Mexican hat
contribution is however unexpected. This term vanishes on the
diagonal e¼ e0. There is no problem to let the directions coalesce
in the Wick-ordered Mexican hat potential, the problem is the
propagator of the tree-component. For each momentum space
region this is possible by choosing e¼ e0 such that the denomi-
nator does not vanish. This suffices to insure that each contribu-
tion to the second-order tree approximation is well defined and by
construction the result of adding up the various contributions is
independent of any e. The full second-order contribution will be
presented in a joint paper with Mund (Mund & Schroer, 2014a).

The calculation in the stringlocal Hilbert space setting confirms
the results of the BRST gauge setting. This confirmation is
important because the physical content of the gauge formalism
is restricted to the gauge-invariant local observables but the
S-matrix is a global object.

As mentioned before, it is not necessary to go through detailed
calculation if one only wants to see the inconsistency of the Higgs-
mechanism with the principles of QFT. From a conceptual viewpoint
the fast way is to argue that couplings of massive vectormesons to
any matter cannot produce conserved currents with diverging
charges (the spontaneous broken symmetry condition). Their “Max-
well charge” is always screened and in case of only Hermitian matter,
the identically conserved Maxwell current is the only current. In zero
order i.e. for a free massive vectormeson one has

∂μFμν ¼ jMaxwell
ν �m2AP

μ ð62Þ
and higher order corrections can be computet by using the SBEG
renormalization theory for fields. It is somewhat strange that the
followers of the Higgs mechanism did not at least check the zero-
order Maxwell current of a massive vectormeson and verify that its
charge is screened and not spontaneously broken. In the following
table all possible situations related to conserved currents have been
collected

screening : Q ¼
Z

j0ðxÞd3x¼ 0; ∂μjμ ¼ 0

spont:symm:�breaking :

Z
j0ðxÞd3x¼1

symmetry :

Z
j0ðxÞd3x¼ finitea0 ð63Þ

In order to avoid any misunderstanding, the present critique is
not directed against discoveries made by metaphoric arguments;
many discoveries, including Dirac's important idea of antiparticles,
were based on incorrect models or theories (the hole theory).

Metaphoric observations are valuable placeholders but start to be
harmful if in due time they are not replaced by arguments
compatible with the foundational principles of QFT. The idea that
QFT can say something about the masses of elementary particles
(masses of the interaction-defining fields) is incorrect; its causality
principles are expected to determine masses of bound states
which are interpolated by composite fields but for there descrip-
tion one still has to rely on methods of lattice approximations.

The case of Goldstone's spontaneous symmetry breaking is no
exception. The definition of a spontaneous symmetry breaking is
the existence of a conserved current whose charge (the would be
generator of a symmetry ) cannot generate a symmetry because
the integral over the zero component of the current diverges.
The Goldstone theorem says that this can only happen if the
energy momentum spectrum starts at zero; for self-interacting
bosons its content is more specific in that there must be a zero
mass Goldstone boson which couples to the conserved current and
prevents the convergence of the integral over the zero component
of the current for large distances. The shift in field space is not the
definition but only a mnemonic trick (a “pons asini”) to find a
model of self-interacting scalar fields whose first-order interaction
leads to such a current; the intrinsic observable properties of such
a situation (the correlation functions) do not contain a field shift
but only scalar fields and their physical masses. Nevertheless it is
within the range of metaphorical tolerance to say that “the shift
breaks the symmetry”. The problem with the Higgs mechanism is
that this metaphor created the idea if a spontaneous mass creation
which is not compatible with the structure of QFT.

The situation of coupling of massive vectormesons to matter is
totally different. In that case there is the Schwinger–Swieca theorem
which says that the charge of the Maxwell current is screened and in
the H-model this is the only current. This case involves sZ1 for
which is known that the coupling of massive vectormesons in the
Hilbert space leads to nonrenormalizable interactions as a result of
violation of the power-counting bound for interacting d¼2 Proca
potentials. The trick for s¼1 is to use the BRST Krein space gauge
setting but this severely limits the confiable range of validity to the
small subset of gauge invariant observables (the vacuum sector). The
new Hilbert space formulation requires to replace the pointlike by
stringlocal vectorpotentials and in this way secures the physicality of
all operators; the important field operators are stringlike. But it
makes good sense to use stringlike operators to generate particle
states because the difference between point-and stringlocal disap-
pears on the level of particle states; there simply are no point- and
stringlike particles. Different from the Goldstone situation where the
issue is the construction of a first-order interaction (in terms of free
fields which already have the masses of the physical particles) which
leads to a lowest order current with the Goldstone properties, the
lowest renormalizable order in the s¼1 situation must be con-
structed according to the above L�∂V requirement (the s respec-
tively the de invariance) whose validity must be insured in higher
orders. In both cases there appears a second-order induced Mexican
hat potential, but in contrast to the Goldstone case this has no
relation with a symmetry-breaking field shift.

To discover something important together with the correct and
final theoretical explanation is an unreasonable requirement on the
discoverer (in this case Peter Higgs), this is rather the responsibility
of the particle theoreticians who use the observation. Critique is the
live-blood of any highly speculative theoretical research especially if
it takes place on the frontiers of particle physics. Interestingly a
critical view was already around at the time of Higgs' discovery:
namely Schwinger's suggestion that currents of massive vectorme-
sons lead to “screened charges” and Swieca's subsequent proof
which led him to the terminology “Schwinger–Higgs screening”
(Swieca, 1976), see also Buchholz & Fredenhagen (1979). Unfortu-
nately these early attempts were ignored and vanished in the
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maelstrom of time. Schwinger did not mention that in massive
gauge theories there are two currents: the Maxwell current and
the particle-antiparticle counting current which only coalesce in
the massless limit. For H-couplings there is no counting current and
the coupling disappears (decomposes into free fields) in the
massless limit.

The arguments against spontaneous mass creation (the "Higgs
mechanism") do in no way rule out that a H-field may be
necessary for other foundational reasons. Whereas the calculations
in this section show that this is not the case in massive abelian
gauge theory, the gauge invariance of the second order S-matrix
for selfinteracting massive vectormesons requires the presence of
a H-field. In other words in order to obtain a consistent theory of
electroweak interactions it is not sufficient to pass from the Fermi
theory to one in which the interaction is mediated by massive
vectormesons and the photon. Consistency as a nonabelian gauge
theory reqiuires also the presence of a H-field as a kind of
"dynamical escort" of massive selfinteracting vectormesons. The
new stringlocal Hilbert space setting, in which all fields are
physical, is expected to reveal more about the connection with
the foundational causality principles of QFT.

7.4. Self-interacting massive gluons and remarks on confinement

For abelian massive gauge theories in the SLF Hilbert space
formulation there are no structural theoretical reasons for enlarging
the field content beyond the matter fields to which one wants to
couple the massive vectormesons since its escort fields do not create
any additional degrees of freedom. This is less clear in case of self-
interacting massive gluons. Although the arguments against the
consistency of the Higgs mechanism are generic (independent of
the kind of vectormeson interactions), there could be other consis-
tency requirements coming from the foundational modular localiza-
tion properties in THE Hilbert space which make it necessary to
introduce additional degrees of freedom. Present calculational
attempts indicate that this is not the case; to exclude such situations
higher order calculations are necessary (Mund & Schroer, 2014b).

The escort fields ϕ fields do not count in this balance since they
are part of the Hilbert space formalism for all higher spin interac-
tions; they are already present in the interaction-free case where
they enter the relation between the pointlike Proca potential and its
stringlike sibling. The masses of self-coupled massive vectormesons
are totally independent and the mass of each escort is equal to that of
the stringlocal vectormeson which it escorts. On the other hand the
masses of coupled H-fields are independent and (as all masses,
except for that of the A-dependent escorts which must be identical to
the A masses) are part of the interaction-defining free field content.

In the remainder of this subsection we will present the first-order
stringlocal Y–M interactions which are obtained from the
deðL�∂V Þ ¼ 0 argument which also determines the first-order point-
like interaction density LP with its dsd44 scaling degree. For
simplicity we take the equal mass Oð3Þ Y–M model. The starting
point is the reduction of the power-counting violating d¼5 dimen-
sion pointlike interaction LP by peeling off the highest dimension
5 and in this way obtaining a d¼4 stringlike interaction density L

LP ¼
X

εabcF
μν
a AP

b;μA
P
c;ν ¼ L�∂μVμ or dεðL�∂μVμÞ ¼ 0 ð64Þ

L¼
X3
1

εabc Fμνa Ab;μAc;νþm2APμ
a Ab

μϕc

n o
; Vμ ¼

X
εabcF

μν
a ðAb;νþAP

b;vÞϕc

ð65Þ
Actually we could have started with the most general trilinear Ansatz
for L̂ in terms of A and ϕ. Since there are four such terms, this Ansatz
would contain four different types of yet undetermined
f iabc; i¼ 1;…;4. Then asked the question would be whether within

this general Ansatz for L̂ there exists a V̂ μ such that

deðL̂�∂μV̂ μÞ ¼ 0 ð66Þ

The only solution (up to additional divergence free contributions to
Vμ) of this requirement in the case of equal masses turns out to be
the first line of (64). Defining the content of the bracket as LP we
realize that the first-order stringlocal S-matrix is equal to the first-
order pointlike counterpart since the two different first-order inter-
action densities are adiabatically equivalent (the boundary term from
the divergence of Vμ vanishes in the adiabatic limit)Z

LP ¼
Z

L; LPC
AE
L ð67Þ

This is the beginning of an extremely restrictive induction mechanism
which has no counterpart in the nonrenormalizable pointlike sZ1
setting. For the full Lie-algebra structure (64) one has to proceed to
the induced second order which will be done in Mund & Schroer
(2014b).

These observations generalize those which were already made in
the abelian case in Section 6.2; the locality principle together with
Hilbert space positivity leads to restrictions between couplings which
are analogous to those of classical gauge theory (the geometry of
fibre bundles). Here they are simply the result of the Hilbert space
positivity which for interactions which couple sZ1 fields requires
the use of string-localization. There is absolutely no need for any
support from the fibre-bundle setting of classical gauge theory; QFT
does not need any “crutches” from classical field theory such as those
which are provided by the classical-quantal parallelism of quantiza-
tion. Any quantum fields obtained from covariantizing Wigner's
classification of positive energy representation of P can be coupled
to a scalar density which defines the first-order interaction density of
a QFT and in case its short distance dimension falls within the power-
counting range dsdr4 the interaction density is on the best way to
define a renormalizable model of QFT. The above “self-induction”
mechanism also works for unequal masses; in this case the f 0s
depend also on mass-ratios.

The potentially most important consequence of the Hilbert space
SLF formulation is a profound insight into hitherto incompletely or
not understood infrared phenomena as “infraparticles” and confine-
ment. Concerning the latter, the remarks that one finds in the
literature do not go beyond the statement that the perturbative
expressions for the massless gauge-variant correlations of gluon- or
quark-fields are infrared divergent and that this indicates the break-
down of perturbation theory. But the behavior of pointlike gauge-
variant matter fields in a BRST gauge setting is physically irrelevant;
what one needs is an understanding of the infrared property of
massless limits of massive stringlocal gluon correlations and the only
way to do this is offered by the SLF formalism in Hilbert space, a task
which is outside the physical range of gauge theory. One expects that
all correlations vanish which contain besides pointlocal composites
also gluon/quark fields; in fact this seems to be the only way in
which the localization principles of QFT can realize confinement.
Pointlike physical fields never lead to confinement.

The infraparticle situation is slightly more accessible . The
Yennie–Frautschi–Suura (YSF) proposal (generalizing previous
model calculations by Bloch and Nordsiek) introduces an ad hoc
infrared regularization ε in terms of which the scattering ampli-
tudes involving charged particles are logarithmically divergent for
ε-0. The leading logarithmic divergencies are then summed up to
a coupling-dependent power behavior containing factors λf ðgÞ

which vanishes for λ-0. The vanishing of the scattering amplitude
shows that the LSZ scattering theory is not the correct concept for
obtaining nontrivial scattering information for “infraparticles”; in
fact the presence of milder cut-type singularities which replace
the one-particle mass shell poles confirm that such milder
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singularities cannot counteract the large-time dissipation of wave
packets in the LSZ time-dependent scattering theory so that one
obtains zero for t-1. Low order perturbative calculations also show
that the vanishing can be prevented by passing from scattering
amplitudes to photon inclusive cross sections before letting λ-0. This
limit constructions should be viewed as a perturbative analog of
recent more abstract representational proposals to describe charged
states (Buchholz, 2013; Buchholz & Roberts).

Although both QED and Y–M gluons couplings lead to string-
local fields without singular pointlike counterparts, their mathe-
matical structure and physical manifestations are very different.
Interacting vectorpotentials in QED are integrals over pointlike
observable zero mass field strength whereas this property is lost in
massless Y–M interactions. This implies in particular that massless
gluon strings cannot be approximated by local observables. Such
objects are inherently nonlocal in an irreducible sense. This severe
nonlocality cannot occur in so1 models, even global objects as
charges (integrals over pointlike currents) can always be approxi-
mated by compact localized matter. The emergence of Inherently
noncompact fields from collisions of ordinary matter would create
havoc with causality; this only can be avoided if they remain
virtual objects whose use is necessary in order to formulate the
interaction density but disappear in the correlation functions.
Confinement in the sense of vanishing correlation functions which
contain in addition to pointlike composites also irreducible string-
like gluons solves this problem in a radical way.49

The definition of interacting zero mass vectormesons as limits
of their much simpler massive counterparts in terms of their
correlation functions (from which one may reconstruct the opera-
tor formulation) accounts for the fact that the limit represents an
inequivalent representation in which the Wigner–Fock structure
of the Hilbert space is lost. Structures which are expected to be
independent of the mass, as the Callen–Symanzik beta-function
βðgÞ, should be computed in the massive case since a direct
perturbative derivation of the Callen–Symanzik is not possible
due to the presence of infrared divergencies. A derivation of the
C–S relations for stringlocal and hence renormalizable massive
vectormesons should be possible and provide a proof (and not
only a consistency argument based on additional assumptions
outside mathematical control50) of asymptotic freedom and in this
way close that old but unfinished subject.

The above confinement scenario presents an interesting contrast
to another kind of stringlocal matter: the QFT of Wigner's zero mass
“infinite spin” positive energy representation class. Actually the
understanding of the importance of string-localization for the con-
ceptual progress of QFT started with a paper (Mund et al., 2006) in
which the main point was the presentation of the QFT behind this
mysterious 1939 Wigner representation. As a positive energy repre-
sentation it shares properties as the stability of matter and coupling
to the gravitational field with the massive and massless finite helicity
representations. It turns out that the infinite spin Wigner representa-
tions contain no pointlike covariant wave functions at all and there
are convincing arguments that the associated net of local algebras
admits no compact localized subalgebras generated by composite
pointlike fields; such representations describe noncompact matter
par excellence.

Whereas gluon or quark matter cannot emerge from collisions of
normal matter (which interacts in a compact region), Wigner's
noncompact free infinite spin matter, once it got inside our universe,
cannot be registered in earthly particle counters. In fact it is totally
inert apart from gravitational manifestations (Schroer-a). This means

that the presence of such inherent noncompact matter would change
the gravitational balance of normal matter in a galaxy. When
Weinberg wrote his book on QFT he rejected the infinite spin matter
because “nature does not make use of it”; at that time its strange
noncompact localization properties were not yet known, apart from
the fact that all attempts to describe this matter in terms of pointlike
covariant fields had failed. Although its property of eluding registra-
tion in particle counters would still cause stomachaches with high
energy physicists, it seems that astrophysicists should like such inert
matter whose only arena of action are galaxies.

It may be helpful for the reader to use again Galileo's method of
codification in terms of a dialog between Sagredo and Simplicio.

Sagredo: Dear friend Simplicio, are you still claiming that the
abelian Higgs mechanism is only a metaphor for the coupling of
Hermitian (chargeless) scalar fields to massive vectorpotentials i.e. the
neutral analog of the massive scalar QED? And would this mean that
the mass of the massive vectormeson and the Hermitian Higgs field in
the simplest (abelian) coupling does not originate from a spontaneous
symmetry breaking of the scalar two-parametric QED51 in terms of a
“field shift” (the “gauge-breaking” defining Mexican hat potential)? Is
the picture of a distinguished particle whose interaction does not only
create the mass of the vectormeson but also its own mass (often
referred to as the self-creating “God particle”) inconsistent with the
principles of QFT?

Simplicio: This is more or less my point of view, but I would suggest
to look at the present situation in a historical context. History is more
lenient, in particular it explains how the protagonists of the “Higgs
mechanism” were led to their ideas within the prevalent Zeitgeist
which dominated the post QED particle theory. For a long time (and to
a certain extend even nowadays) its was believed that interactions of
zero mass vectormesons are simpler than those involving their
massive counterpart (spinor or scalar QED) and that therefore one
should try to understand the massive interaction by starting from
massless models and think about ideas of how to generate masses.

Sagredo: But isn't this true, are massless propagators and their
use in Feynman loop integrations not much simpler than integra-
tion involving massive propagators; and above all isn't “massive
QED” nonrenormalizable because any coupling of a massive
vectorpotential (a Proca field) would lead to power-counting
violating interactions of short distance scale dimensions dint44?

Simplicio: Not quite, at least if you recall what QFT is about, namely
to understand particle theory in terms of the foundational localization
principle of QFT. The most basic structure of quantum physics is the
Hilbert space positivity and this is violated in both cases. In QED the
violation enters explicitly through the use of pointlike massless
vectorpotentials which only exist in indefinite metric Krein spaces,
and its massive counterpart is nonrenormalizable as a result of the
short distance dimension d=2 of the Proca potential and only becomes
formally renormalizable by the use of a d¼1 potential (together with a
negative metric scalar Stückelberg field) in Krein space. The required
formalism is the BRST gauge setting which is somewhat more
elaborate than the QED Gupta Bleuler formalism. In both cases the
physics is reduced to the vacuum sector which the gauge-invariant
observables generate by acting on the vacuum state. This restrictive
nature of the quantum gauge formalism (i.e. its limitation to the
vacuum sector) is shared between the massive and massless case, but
the infrared problems from massless vectormesons come on top of
these limitations.

Sagredo: Yet people compute scattering amplitudes, which
certainly cannot be obtained within the vacuum sector of gauge
theories. How can one understand this?

49 Only quark–antiquark pairs separated by a finite string can avoid confine-
ment since their compact nature avoids the problem cause by noncompact matter.

50 The assumption that in deriving the Callan–Symanzik equation one can
separate low from high momenta.

51 Different from spinor QED which only has one coupling parameter, the
application of the standard pointlike renormalization formalism to a scalar gauge
coupling leads to an additional quadrilinear self-coupling of the matter field.
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Simplicio: This is indeed a sore point of quantum gauge theory
which has no analog in classical gauge theory. Strictly speaking the
S-matrix should be computed from the LSZ limit of fields, but there is
a formalism which goes back to Bogoliubov which represents the nth
order S-matrix in terms of formal spacetime integrals over time-
ordered products of the (first-order) interaction density. The Krein
space gauge setting uses this formalism within the BRST operator
formulation and claims that the BRST condition sS¼0 in terms of the
nilpotent BRST s-operation insures that the resulting S lives in the
Wigner–Fock space of physical particles. But this requirement cannot
be formulated within the vacuum sector of the local observables, so
the conceptual clarity remains less than perfect.

Sagredo: All these problems arise because one tried to resolve
the conceptual clash between sZ1 pointlike interactions and
Hilbert space positivity at the expense of the Hilbert space in
favor of keeping the pointlike field formalism for tensor potentials.
Can one not take the other direction by letting the Hilbert space
positivity decide which is the tightest covariant localization con-
sistent with it?

Simplicio: Yes one can, provided one is prepared to make a new
conceptual investment of the same caliber as that which led from the
old (Wentzel, Heitler) noncovariant perturbation theory to that of post
WWII covariant QED which included vacuum polarization (loop
contributions). It turns out that the clear answer to your question is
to use covariant stringlocal fields localized on spacelike lines xþRþ e.
But this is much easier said than done, it amounts to a nearly
revolutionary change of QFT of almost all of its perturbative aspects
except of its causal localization principle which becomes strengthened.
This is not surprising because people did not opt for gauge theory
because they were unaware of the physical importance of the Hilbert
space positivity but rather as a result of lack of apparent alternatives.
There were hints in what direction to look at by Mandelstam and
DeWitt but they consisted in the restriction of the formalism to field
and missed the short distance improving stringlocal potentials. Others
observed that the axial gauge is, together with the noncovariant
Coulomb gauge, consistent with Hilbert space positivity, but failed to
treat the e-variable as a fluctuating spacetime variable by assigning to
it the role of a gauge parameter which is the same in all fields. This
misunderstanding caused serious renormalization problems of short-
mixed with long-distances which finally led to the abandonment of
this gauge.

The correct understanding came in a roundabout way from the
solution of the localization problem related to the infinite spin Wigner
representation by methods of modular localization (Brunetti et al.,
2002; Mund et al., 2006). The related free field theory turned out to
describe noncompact localized “stuff”: not only potentials but all
covariant fields are stringlocal. From here arose the idea that all
massless sZ1 free potentials are covariant relatives in the Hilbert
space of the noncovariant Coulomb (radiation) representations.
Though the price to pay in terms of localization is surprisingly little
since the smallest causally closed noncompact localization region is an
arbitrarily narrow spacelike cone whose core is a semi-infinite string,
to deal with the renormalization theory in the Hilbert space of
stringlocal fields with independent directional fluctuations is a quite
unaccustomed new problem.

Physicists of the older generation as the principle protagonist
of the BRST formulation Raymond Stora conisdered that gauge
theory as a (surprisingly successful) placeholder for a future
Hilbert space formulation. One expects that the restrictive Hilbert
space positivity leads to new insights outside the range of gauge
theory (a different view of the “Higgs mechanism”, the ability of
Y–M interactions to exist without the classical fibre-bundle
“crutches”, a deeper and more specific understanding of what
hides behind infrared divergencies as the confinement problem).

Sagredo: Are their any new physical concepts which have no
counterpart in the pointlike setting?

Simplicio: Yes there are several. One remarkable new aspect is
the appearance of “escorts” of stringlocal massive vectorpoten-
tials; these are stringlocal scalar Hermitian fields ϕ (one for each
massive vectormeson). Its name refers to the fact that (unlike a
H-field) it has the same mass and the same coupling strength as the
vectormeson, but (also unlike the H) it does not add new degrees of
freedom to those which are already contained in the stringlocal
vectormeson i.e. it is a kind of “massive gluonium field”. In the
abelian Higgs model, whose physical content in the Hilbert space SLF
description is just the unique renormalizable A � AH coupling, this
first-order interaction density induces a second-order Mexican hat
like potential in H and ϕ. Naturally the numerical coefficients depend
only on the ratio of the two masses of the massive A and the H. The
new Hilbert space SLF setting turns the Higgs mechanism from its
hat to its feet: instead of spontaneously creating masses with the
help of a symmetry-breaking Mexican hat potential the renormaliz-
able interaction between massive A and H fields associated with a
string-independent S-matrix induces a second-order Mexican hat
potential. Its form depends on the masses of the defining free fields
and the requirement that the Hilbert space S-matrix should be
independent of the e0s (i.e. it should be a kind of global counterpart
of the local observables).

Whereas the shift in field space in Goldstone's model is a
quasiclassical device whose physical aim is to prepare a situation
in which a conserved current is prevented from leading to a global
charge, its application to the gauge-dependent scalar field of QED
is not supported by any physical idea. Quantum gauge “symmetry”
(misleadingly also called “local symmetry) is, contrary to classical
theory in which Hilbert space positivity is not an issue, not a
physical quantum symmetry but rather a prescription how to
extract a vacuum representation of local observables from an
unphysical setting in Krein space. Renormalized perturbative QFT
is also not able to incorporate metaphors about the origin of
masses. The hope that by formally breaking a symmetry one may
save parameters (as compared to using the physical masses in the
definition of the model-defining first-order interaction) only lead
to frustration upon realizing that such formal devices do not
reduce the number of parameters of electroweak interactions; all
ways of breaking correspond to all possibilities of choosing
masses. One avoids all physically meaningless manipulations by
studying directly renormalizable couplings of Hermitian H fields to
massive vectormesons in the BRST gauge setting instead of break-
ing the latter for couplings of complex scalar to massless vector-
mesons. In this way one realizes that its characteristic intrinsic
physical property is the Schwinger–Swieca–Higgs charge screen-
ing and not the ssb Higgs mechanism.

Sagredo: If it is that simple as you presented it, namely a kind of
neutral counterpart of the Maxwell theory of charged matter, why
was such a coupling not studied before Higgs?

Simplicio: Thinking in terms of quantizing Maxwell fields
coupled to charge-carrying quantum-matter the generalization
to massive vectormesons appears natural; but the idea of coupling
neutral (Hermitian) H-fields is quite removed from Lagrangian
quantization of classical fields,52 in particular since such “charge-
less” interactions are only possible with massive vectormesons
and disappear for m-0 i.e. have no counterparts in classical
electromagnetism. The first indications of what may be different
with massive vectormesons came from Schwinger (1963) who
suggested that in such a case the charge is “screened” (vanishes);
as a model which only exists in the screening phase he proposed
the d¼1þ1 rigorously solvable “Schwinger model” (Schroer &
Jorge, 2010). In a subsequent structural (nonperturbative) proof of

52 More precisely of classical fields obtained by reading quantum fields (Dirac
spinor, …) and their quantum symmetries back into the classical realm.
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charge-screening by Swieca (1976) it became clear that in cou-
plings of massive vectormesons to complex matter there are two
conserved currents namely the identically conserved Maxwell
current from the divergence of the massive field strength
jμ ¼ ∂νFμν and the particle–antiparticle counting current of com-
plex fields; they only coalesce in the massless limit. Swieca
emphasized that in case of a self-conjugate H-field the Maxwell
charge (the only conserved charged in the abelian Higgs model) is
screened and not spontaneously broken; for this reason he used
the terminology Schwinger–Higgs mechanism in his publications.

Unfortunately the Higgs mechanism of spontaneous mass
generation was proposed by several authors at the same time
with identical computational recipes involving field shifts in the
gauge-variant complex field of scalar QED so that the shared
conceptual error was protected by the “many people cannot err”
dictum. Swieca's scientifically successful but sociologically futile
attempts may serve as an illustration that there was a well-
founded early scientific criticism of these ideas, but the beginnings
of a correct understanding were finally lost in the maelstrom of
time. After Glashow, Weinberg and Salam supported the sponta-
neous symmetry breaking the Higgs issue became sealed and the
chance for a correct understanding within QFT evaporated.

Sagredo: Even if the “Higgs symmetry breaking” is only a
metaphor for a coupling of a Hermitian field to a massive
vectormeson as you claim, couldn't it survive as a mnemonic trick
which at the end more or less describes what you want? If a
metaphoric idea leads to results which later on finds a derivation
for which every step is consistent with the principles of QFT, isn't it
justified to credit the discoveries? After all we attribute the dis-
covery of antiparticles to Dirac even though his hole theory was
later recognized as being incorrect.

Simplicio: This is an important point, and yes they do deserve
recognition as in many other cases besides Dirac. In a science about
foundational properties of matter, the frontiers are often in a very
speculative state and discoveries via metaphors are helpful as place-
holders for a later understanding. But at the times of Pauli, Feynman,
Lehmann, Landau, Kallen, Schwinger, ’t Hooft, Veltman, Jost,… none of
the many less than correct proposals which resulted from conceptual
misunderstandings had the chance to survive for more than a decade
(SU(6), peratization, …). The valuable discoveries, as those of renor-
malized perturbation of nonabelian gauge theories, went through
many refinements; starting with ’t Hooft and Veltman, passing
through Faddeev–Poppov, Slavnov and reaching the level of technical
maturity in the BRST formalism before the recent proposal of the use
of stringlocal potentials in a Hilbert space setting (which is still very
much in its infancy) again returned to it.

There are only two exceptions to the continuous unfolding of a
discovery: the five decades old discovery of String theory (which
has neither observational nor theoretical credentials) and the
Higgs mechanism which is the only experimentally successful
discovery which managed to survive for more than 4 decades
without any theoretical modification . The (often well-founded)
early critique was unable to penetrate the thick protective socio-
logical layer of approval and finally vanished in the maelstrom of
time. Present Big Science and a Nobel prize guaranty that the issue
will remain protected against scientific critique.

To be more concrete, QFT is a foundational theory based on the
quantum adaptation of causal localization. Its perturbative imple-
mentation in the most accepted (Bogoiubov) formulation is based
on interaction-defining free fields and a first-order interaction
density. Hence the definition of a model includes the masses of
these fields; renormalization theory insures that these masses are
identical to the masses of the observed particles which are
considered elementary within that model. QFT is not a theory which
can say anything about masses of the defining "elementary" fields.
Renormalized perturbation theory in its present stage is not able to

say something about bound states, associated to composite fields;
for this task one presently uses lattice approximations. In case of the
massive vectormeson-H coupling one only needs to specify the
first-order AAH coupling, the rest (which include the second-order
“Mexican hat” shaped H-self-interactions) do not belong to the
defining properties of the model but are induced by the powerful
BRST gauge conditions (the s-invariance of the S-matrix) or by the
even more powerful Hilbert space positivity condition in the
new SLF setting (the differential calculus implementing string
independence).

All the numerical aspects of the induced second-order potential are
fixed in terms of the masses of the model-defining free fields; there is
no place for gauge symmetry breaking field shifts. By ignoring the
gauge aspects of scalar QED one can of course envisage a quasiclassical
picture of how to attain such a H-coupling, but when setting up the
renormalized perturbation theory involving a massive vectormeson
one has to liberate oneself from such pictures and follow the BRST
rules of gauge theory starting with the gAAH coupling of massive
vectormesons to Hermitian scalar fields and let the BRST operator
formalism do its job (the implementation of sS¼0) (Scharf, 2001).
Otherwise one may overlook the fact that the Mexican hat potential is
induced in order g2 of the gauge-invariant S-matrix and depends on
the two masses. Of course one may re-construct from these two data
the strength of a quadrilinear self-coupling of an imagined scalar QED
and the gauge breaking shift parameter in field space, but why does
anybody want to construct something, which is it best a quasiclassical
image, if the first order which contains the mass of the vectorpotential
as well as the H-mass is already prepared for renormalized perturba-
tion theory in the BRST setting.

This is totally different from setting up perturbation theory of a
Goldstone spontaneous symmetry breaking. Here the starting point
is the intrinsic definition of spontaneous symmetry breaking. Con-
trary to popular opinion it is not the shift in field space but the
physical (observable) attribute of a conserved current whose charge
(the would-be symmetry generator) diverges. A structural theorem
(Ezawa & Swieca, 1967) says that this can only occur in the presence
of a zero mass Goldstone particle which destroys the convergence of
the charge for large distances.53

The task is therefore to find renormalizable couplings in which
zero mass and massive fields interact in a way which leads to a
conserved “Goldstone current”. A convenient way to get there is to
use the quasiclassical device of a field shift which itself is not a
physical parameter. This current is very different from that
associated to a massive vectormesons which is the only current
of the abelian H-model. The Maxwell current of a massive
vectormeson (the only current of the H-model) leads to “screened
charge” Q ¼ 0, whereas a spontaneously broken symmetry man-
ifests itself in terms of a diverging charge Q ¼1. Nothing could be
more different than that! The unification of both phenomena
under the roof of spontaneous symmetry breaking is a conceptual
misunderstanding. For the construction of the formel Goldstone
current the shift in field space is a useful trick (although it does not
help in the construction of the renormalized Goldstone current)
whereas the Higgs breaking mechanism has no concrete aim since
the logic is that of the BRST formalism applied to a AAH coupling.

Interacting massive gauge theories exist with arbitrary masses and
in the Hilbert space setting each massive vectorpotential is accom-
panied by its scalar stringlocal escort ϕ which carries the same mass.
For equal vectormeson masses (in particular for zero masses) the
induction mechanism imposes a Lie-structure on the self-couplings of
vectormesons; solutions with completely independent couplings but

53 His Cargese lecture notes (Swieca, 1970) on this topic are highly recommended
since they reveal the clarity and depth onwhich these issues were once understood. His
profound knowledge about spontaneous symmetry-breaking led him some years later
to the “Schwinger–Higgs charge screening mechanism” (Swieca, 1976).
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equal masses would violate the Hilbert space positivity. H-fields may
be coupled in addition, but their presence is not necessary for
“fattening” massless gluons and H-fields. If, as it seems to be the case,
H-fields are necessary for the consistency of the gauge theory (or
better: to uphold causality in a Hilbert space setting) then the problem
to understand such a situation points into a quite different direction
than the metaphor of a spontaneous symmetry breaking.

Interacting zero mass vectormesons (QED, QCD) are outside the
range of the standard field-particle setting in a Wigner–Fock Hilbert
space. In that case one needs to go the round-about way of computing
appropriately infrared-renormalized correlation functions of string-
local vectormesons in the massless limit and then reconstruct the
operators usingWightman's reconstruction theorem. One expects that
the characterizing property of confinement will be the vanishing of
correlation functions containing in addition to local observables also
self-interacting massless stringlocal gluon and quark fields.

Sagredo: In your new setting the stringlocal fields Ψ ðx; eÞ are
renormalizable in the standard sense of the power-counting criterion,
which in particular means that they are localizable in the sense of
Wightman's testfunction smearing with the Schwartz D functions in
the (x; e) variables. On the other hand you claim that your new
stringlocal renormalization theory also allows us to construct asso-
ciated singular pointlike fields whose short distance scaling degree is
unbounded (increasing with perturbative order) which explains their
pointlike nonrenormalizability in terms of their worsened localiza-
tions. Do these singular pointlike fields play any useful role?

Simplicio: Most of the intuition which comes with the definition of
the model in terms of a pointlike massive field interaction is
preserved; in fact the associated renormalizable stringlike interaction
is obtained by “peeling-off surface terms” which carry the leading
short distance singularities and hence do not contribute in the
adiabatic S-matrix limit. This has the interesting consequence that
the high-energy behavior of scattering amplitudes is better than that
which one naively reads off in momentum space by going in a simple-
minded way to the mass shell from the Fourier transformed singular
pointlike correlation functions. Hence phenomenological arguments in
favor of the presence of Higgs particles based on the use of Feynman
diagrams must be taken with a grain of salt; the perturbative content
of sZ1 stringlocal interactions cannot simply be encoded into Feyn-
man diagrams (including contributions from counterterms). The
intuitive appeal of pointlike couplings is however completely lost in
the massless limit; in that limit the singular pointlike fields disappear
and the stringlike localization in QED becomes more stiff since
different e-directions of the localization lines along which infrared
photons “hover” cease to be unitarily equivalent (spontaneous break-
down of Lorentz covariance in electrically charged sectors); this is the
regime in which the standard field-particle relation is lost.

QFT is presently undergoing significant changes. There are
several forthcoming papers which promise to clarify the mathe-
matical problems coming from causal string crossings in addition
to the already existing Epstein–Glaser renormalization theory for
point-crossings. The development of these new ideas will be slow
because foundational knowledge about QFT has been lost seems to
be limited to a minority of experts.

Sagredo: I thank you dear friend for sharing your thoughts, and I
hope that your pessimistic assessment about foundational particle
theory in the shadow of Big Science remains a warning and does not
become a prediction about its future. It will take some time to fully
comprehend what you told me; lots of important issues to think about
lie before me before I will meet you again.//

8. The dual model, misunderstandings about particle crossing

The idea to avoid the use of singular fields, which led to the
problem of ultraviolet divergencies, and instead formulate particle

physics in terms of the S-matrix goes back to Heisenberg. It was
abandoned soon afterwards when the success of renormalized
perturbation theory in QED left no doubts that the conclusion of
inconsistency of QFT based on those divergencies was premature.
The problem which perturbative methods had with strong inter-
actions led to adaptation of the Kramers–Kronig dispersion rela-
tions to particle physics. It was modest in scope54 but after a
decade it came to closure by achieving all its objectives (the only
project in particle theory which came to a successful closure)
which included the support of the validity of the locality principle
at that time new high energy region.

This success encouraged several theoreticians to formulate a new
constructive S-matrix setting in which the perturbative analytic
particle crossing property for the S-matrix (and later formfactors)
played the important role. Together with unitarity and Poincaré
invariance it became known as the “S-matrix bootstrap” but it was
soon abandoned as a result of the unmanageable nonlinear problems
arising from simultaneously implementing these three properties “by
hand”. Without any demonstrable success it nevertheless enjoyed a lot
of support even by people who on different topics had been quite
critical as e.g. Freeman Dyson. A related problem was the insufficient
understanding of the conceptual origin of particle crossing; its deriva-
tion from the locality principle for some very special scattering
amplitudes did not lead to sufficient insights, and the prohibitively
difficult method of analytic functions (Bros et al., 1965) of several
complex variables led to an early end of these attempts.

Another attempt to obtain a constructive computational access
to particle theory in terms of an on-shell project based on S-matrix
properties was formulated by Mandelstam (1968). In analogy to the
successful use of the Jost–Lehmann–Dyson spectral representation
which led to a rigorous proof of dispersion relation, Mandelstam
postulated the validity of a double spectral representation for the
elastic scattering amplitude as a starting point for getting access to
analytic on-shell properties, including the crossing property.

The era of genuine misunderstanding of particle crossing started
with Veneziano's (Di Vecchia, 2008) construction (based on properties
Euler's beta function) of a meromorphic function of two variables
which had an infinity of first-order poles in the two variables which
were related by an analytic crossing relation. Although his presenta-
tion did not contain any physical argument why this mathematically
constructed function which is meromorphic in variables which he
identified with the invariant s, t, u variables (the “Mandelstam
variables”) should be related with the elastic part of a scattering
amplitude, his construction created a lot of excitement within which a
critical attitude had little chance. Apparently the results on integrable
models, which could have revealed that although scattering ampli-
tudes can be meromorphic in the rapidity variables but not in the
Mandelstam variables, were not known to the dual model community.

Instead of speculating about what went on the mind of peoples
who excepted Veneziano's use of the dual model meromorphic
function as an approximation of an elastic scattering amplitude
(to be improved by “unitarization”), it is much easier to understand
what kind of quantum field theoretic idea leads precisely to such dual
model function. This clarification is due to Mack, and his construction
is here referred to as the “Mack-machine”; this name is chosen
because it can not only produce Veneziano's dual model and similar
dual models constructed later, but in a certain sense it also contains all
dual models (all crossing symmetric meromorphic functions55 in s,t,u).

54 Its main aim was to make sure that the causal locality principle of QFT
continues to be valid at the energies of the newly emerging High Energy Physics.

55 Even in the simplest context of integrable models elastic crossing symmetric
scattering amplitudes are not meromorphic in the Mandelstam variables (but
rather in the exponential “rapidity variables”)
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The construction uses conformal global operator expansions for
pairs of operators which, in contrast to the Wilson–Zimmermann
short distance expansions, are known to converge

AðxÞBðyÞΩ¼
X
k

Z
d4zΔA;B: ;Ck

ðx; y; zÞCkðzÞΩ ð68Þ

A1ðx1ÞA2ðx2ÞA3ðx3ÞA4ðx4Þ
� �

-3 different expansions ð69Þ

and applies them to all pairings inside the 4-point function
(second line). Each pair of operators has a converging expansion
on the vacuum in which the resulting operators Ck stand for a list
of composites which can be connected with the given pair through
nonvanishing conformal 3-point functions Δ. Used inside the
4-point function, this leads to three different ways of decomposing
the 4-point function into a sum over two three-point functions
multiplicatively connected by an integration over the z-variables.
Mack showed that the Mellin transform of this infinite sum over
operators C leads precisely to the pole representation of the
meromorphic functions which define dual models; the position
of the first-order poles is given in terms of the spectrum of scale
dimensions of those C0s which couple to the A;B pairs. Veneziano's
model corresponds to a certain chiral conformal model, but any
conformal 4-point function in any spacetime dimension upon
expansion of its 4-point function and Mellin transforming the
resulting series always leads to a dual model in the sense of
defining a meromorphic function with first-order poles which
fulfills a crossing relation. The set of contributing poles is (up to a
shared factor) a subset of the anomalous dimension spectrum of
the conformal theory. What initially looked magic and unique56 in
Veneziano's is now “mass-produced” by the Mack-machine;
demystified in this way it makes no sense to identify the dual
model with scattering amplitudes.

A scattering function cannot be meromorphic in the Mandel-
stam variables but, under special circumstances (integrability) it is
meromorphic in the rapidity variables. Conformal theories are
interesting quantum field theories from which one can learn a lot
about the inner workings of the modular localization properties,
but they certainly contain no information about scattering of
particles; in fact interacting conformal models contain no particles
at all, they are rather theories of anomalous scale dimensions
which live on a covering of the compactified Minkowski space.
Mellin transforms of their 4-point functions may be called dual
models, but this has no bearing on interactions between particles.
It does not make sense to apply ideas of unitarization to them as if
they would define a kind of nonunitary approximation of an
S-matrix.

This could have been the end of a misunderstanding and led to
the closure of this unfortunate chapter of misguided particle
physics. In fact it probably would have been the end if not an
even stranger twist would have greatly increased the mysterious
aspects and with it the attractiveness of ST. This consisted in the
observation that the oscillator algebra resulting from the Fourier
decomposition of a certain chiral 10-component conformal current
algebra formally related to supersymmetric version of the Poly-
akov action:Z

dσ dτ
X
ξ ¼ σ;τ

∂ξXμðσ; τÞgμν∂ξXμðσ; τÞ; σ; τ¼ t7x

X ¼ potential of conformal current j ð70Þ

permits a positive energy representation of the Poincaré group
which decomposes into a discrete infinite sum of irreducible

representation (an infinite (m,s) “tower”). This action is conveni-
ently formulated on the oscillator variables obtained by Fourier
transformations in the standard circular compactification of con-
formal theories.

The construction of such a tower (an infinite component field
fields) from an irreducible algebraic structure was Majorana's
project which he formulated in 1932 with the idea to achieve
something similar to what the Oð4;2Þ group representation theory
does for the hydrogen atom spectrum in QM. This project was
revived in the 1960s when it acquired some popularity under the
name “dynamic infinite group representation project” (Fronsdal,
Barut, Kleinert, …Bogoliubov, Logunov, Oksak, & Todorov, 1989).
Majorana's project as well as its later revival restricted this search
to irreducible representations of extensions of the Lorentz group.
The only known solution up to date is the representation on the
irreducible oscillator algebra of the supersymmetric 10 component
current algebra, the so-called superstring representation of the
Poincaré group. This is a group theoretic fact which, although
discovered by string theorists, has no relation to Mandelstam
S-matrix based on-shell project.

To understand in a more generic way the prerequisites one
need to encounter the representation of a noncompact group as a
kind of internal symmetry group on the component space of a
multicomponent chiral conformal algebra, it is helpful to be
reminded of same basic fact of LQP in which inner symmetries
arise from the local net of observable algebras in the vacuum
representation. The inequivalent local representation classes
(superselection sectors) can in typical cases be combined with
the vacuum representation within a larger field algebra net (Haag,
1996). There are convincing arguments why a continuous set of
superselection sectors (in the presence of zero mass particles as
QED one must pass to charge-classes Buchholz, 2013) and non-
compact internal symmetries of the field algebras cannot occur in
higher than two dimensions. The superselection analysis is very
different in d¼1þ1 dimensions and such cases can occur; in fact
the abelian chiral current models are examples.

As an illustration let us look at a n-component current algebra

ΦkðxÞ ¼
Z x

�1
jkðxÞ; jkðxÞjLðx0Þ

� �� δk;L x�x0 � iεð Þ�2

Ψ ðx; q!Þ¼ : ei q
!

Φ
!

ðxÞ : carries scale dimens: dðqÞ � q2

suggests analogy q� p; q!� q!� pμp
μ; dsd; �m2 ð71Þ

Here we have substituted the somewhat confusing letter X (70) in
favor of Φ for the multicomponent current potential because we
want to avoid a notation which may suggest the wrong idea of an
operator which embeds a chiral conformal theory on a lightray (or
on its compactified circle) into a n-dimensional Minkowski space-
time so that at its development in time it looks like a
2-dimensional surface (a tube, in case of a chiral theory on a
circle). This picture of a covariant string generating a spacetime
tube-like world-sheet is incorrect inasmuch as it is incorrect to

think that the classical covariant particle Lagrangian
ffiffiffiffiffiffiffi
ds2

p
leads to

a covariant quantum embedding described in terms of a covariant
operator xopμ ðτÞ. In fact Lagrangian quantization is the wrong guide;
there simply exists no covariant position operator whose spectral
projectors fulfill the requirements of covariant localization.
Wigner was well aware of this limitation when he constructed
relativistic particles by representation theory and not by
quantization.

In the book on string theory by Polchinski he used this classical
relativistic particle Lagrangian as a “trailer” for presenting a
relativistic quantum theory of strings based on the Nambu–Goto
action which replaces the ds2 under the square root by the
corresponding covariant surface differential. Hence instead of

56 The uniqueness, which was already expected to be follow from the bootstrap
principles, was a precursor of the reductionist idea of a theory of everything (TOE)
which originated in connection with ST.
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being helpful, this analogy turns out to be a squid load. The
quantization of the Nambu–Goto Lagrangian according to the
correct rules for quantization in the presence of re-
parametrization invariance resembles that of quantizing the
Einstein–Hilbert action; It is certainly non-renormalizable and
has no natural relation to the Poincaré group which acts on the
embedding Minkowski spacetime (Bahns, Rejzner, & Zahn, 2014).
There is another approach to the square root N–G Lagrangian
which is due to Pohlmeyer (Bahns (2004)); it is based on the
observation that the classical system is integrable. So instead of
confronting the problem of quantization of reparametrization-
invariant actions which inevitably leads to renormalization pro-
blems, he proposes to quantize the Poisson relations between the
infinitely many conserved “charges”. The problem with this
quantization is that one loses the connection with localization in
spacetime and Poincaré covariance.

On the other hand the Polyakov Lagrangian has a direct relation
to chiral conformal QFT, so one believes to be on conceptually safe
grounds. Here the problem is that the representation of the
irreducible oscillator algebra behind the operator formalism (71)
which serves for the representation of the Poincaré group (and the
ensuing intrinsic localization concept which comes with positive
energy representation of the Poincaré group Brunetti et al., 2002)
is not the same as the one which localizes the chiral model on the
lightray. In other words the Hilbert space representations of the
oscillator algebra are not equivalent. The charge spectrum of the
chiral theory is the whole Rn and the sigma-model fields Ψ in (71)
are the charge carriers. On the other hand the spectrum of the
representation of the Poincaré group is contained in the forward
light cone and has mass gaps. The the spectrum of the zero mode
multicomponent charge operator covers the full spectrum of the
charge superselection structure. The treacherous nature of the
analogy between the mass spectrum and the conformal dimen-
sional spectrum in (71) has been overlooked by string theorists.

These analogies become even more seductive if one realizes
that a particular discrete particle representation of the Poincaré
group (the superstring representation) does appear on the oscil-
lator algebra of a 10 component supersymmetric current model
(unique up to a finite discrete “M-theoretic” variation). But what
has this group theoretic coincidence between a spectrum of a
discrete Poincaré group representation on the oscillator algebra of
a supersymmetric 10-component abelian current to do with
Mandelstam's S-matrix project? The answer is nothing beyond
the appearance of crossing symmetric analytic functions. Never-
theless the group theoretic content of this relation is interesting
from a historical viewpoint because it is the only known solution
of the 1932 Majorana project to find an irreducible algebra which
carries a purely discrete representation of the Poincaré group.

In distinction to the string-localization of matter fields inter-
acting with vectorpotentials in previous section, the representa-
tions occurring in the superstring representation are pointlike
generated. This was precisely what the calculations of the (graded)
spacelike commutator of the putative string-fields by string-
theorists in the 1990s showed (Martinec, 1993; Lowe, 1994). The
situation is somewhat confusing as a result of the fact that the
distribution representing the infinite component quantum field is
extremely singular since the localization points of all pointlike
components fall on top of each other. It is an interesting historical
question why the string community agreed with the authors that
the localization is stringlike (a point on an invisible string?).
Looking back with some hindsight, the dual model and the string
theory are certainly the most curious results from an epoch in
which conceptually unguided calculations combined with sophis-
ticated mathematics were expected to lead to a unified theory of
everything (a TOE). Historians of science will have a lot of
problems to understand the related Zeitgeist, but the almost 50

years lasting popularity (longer than the phlogiston theory) will
leave them no choice but to try to explain to a curious public what
really went on in the minds of people.

9. Localization and phase-space degrees of freedom

In a course on QM one learns that the number of “degrees of
freedom” (quantum states) per unit cell of phase space is finite.
Already in the beginning of the 1960s it became clear that this is
not compatible with the causal localization in QFT. The first
computation revealed that the infinity is not worse than that of
a compact set (Haag & Swieca, 1965) which in later work of
Buchholz and Wichmann became sharpened to the cardinality of a
nuclear set (Haag, 1996); together with modular localization theory
it led to the important concept of modular nuclearity (Haag, 1996).

The physical motivation of these investigations is the desire to
understand the connection between field localization and the
presence of particles; in particular the circumstances under which
the causal localization properties of quantum fields lead to
particles with discrete masses including the important property
of asymptotic completeness.57 One remarkable result in more than
eight decades lasting attempts to prove the existence of models of
QFT with interactions and to obtain mathematically controlled
approximations is the before mentioned existence proof for
certain strictly renormalizable integrable models. Such models
are characterized in terms of its factorizing S-matrices which
permit a classification in terms of matrix-valued 2-particle scatter-
ing functions (Section 6). In that case one knows the particle
structure and one would like to find the net of local algebras and
the their generating quantum fields whose collision theory repro-
duces the known particle content. The S-matrix determines the
structure of the wedge algeℓbras. In order to obtain a nontrivial
net of compact localized double cone algebras one can use the
aforementioned modular nuclearity property of phase space
degrees of freedom which follows from the analytic properties of
the scattering functions.

On the positive side these models have a realistic short distance
behavior as one expects it from renormalizabity, i.e. they are not
superrenormalizable as polynomial self-interactions between
scalar dsd ¼ 0 (logarithmic divergent short distance behavior)
fields in two dimensions.58 The fact that integrability in QFT can
only be achieved in d¼1þ1 did not affect their usefulness as a
“theoretical laboratory” of QFT. The existence of these models can
be controlled with the help of “modular nuclearity” (Lechner,
2008).

Another important use of these ideas consists in the exclusion
of models with unphysical causality properties. Lagrangian quan-
tization seems to lead inevitably to divergent renormalized per-
turbative series, and hence it is not suited for addressing problems
of existence of models. It is however important to maintain the
formal causality properties of Lagrangian quantization in the
better mathematically controlled LQP setting of QFT. Whereas
the spacelike Einstein causality property is easily taken care of,
the relevance of the causal completion (causal shadow) property is
sometimes overlooked. One reason is that this quantum counter-
part of causal propagation cannot be formulated in terms of
individual fields; its precise formulation needs the algebraic
setting as in Section 4.

It is easy to write down generalized free fields which fulfill
Einstein causality but violate the causal completeness property

57 The equality of the Hilbert space with a Wigner–Fock particle space.
58 The d¼1þ1 superrenormalizable theory can still be treated within a

measure-theoretic functional quantization setting (Glimm & Jaffe, 1972), no use
of modular localization properties is needed.
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(the local version of the old time-slice property, Haag & Schroer,
1962). A recent illustration of a violation of this important physical
property is the conformal covariant generalized free field which
results from a normal free field on a AdS spacetime through the
mathematical AdSnþ1–CFTn isomorphism (Duetsch & Rehren,
2002). The physical defect of fields which violate the causal
completeness property is that they lead to a “poltergeist effect”
in the causal shadow region; as one “moves up” from the space-
time region O into its causal completions O″ there are causality
violating degrees of freedom apparently coming from nowhere.

The LQP setting reveals that this physical defect is of a general
nature and may be viewed as a manifestation of the holistic nature
of spacetime localization. As the holistic nature of life needs the
right amount of chemicals, the holistic nature of causal localization
in spacetime needs the right cardinality of degrees of freedom
which is appropriate for causal localization. Starting from a
physical AdS theory, one obtains an “overpopulated” CFT model
which leads to the mentioned poltergeist phenomenon. In the
opposite direction a “physical healthy” CFT passes to an “anemic”
AdS theory which does not have enough degrees of freedomwhich
are needed for a nontrivial realization of causality; in the case at
hand one has to go to noncompact spacetime regions in order to
find at all degrees of freedom (Rehren, 2000).

It is interesting to note that this pathology is absent in
holographic projections onto null-surfaces; unlike in isomorphic
correspondences, holographic projections dilute (loss of imbed-
ding information) degree of freedom by the right amount which
fits the lower dimensional surface.

It is interesting to take a closer look at a special misinterpreta-
tion which played an important role in ST. As mentioned before,
the irreducible oscillator algebra of the 10 component chiral
current admits two inequivalent representations, one which is
important for the invariance under the conformal Möbius group
and the pointlike localized fields on a lightray, and the other which
carries the mentioned 10 dimensional superstring positive energy
representation of the Poincaré group. Both representations are
pointlike generated; this is a property shared by all positive energy
representations with the exception of Wigner's infinite spin
representations. But there is a huge difference in the cardinality
of freedom; the oscillator representation carries the superstring
Poincaré group representation, but certainly not the superstring
field representation which is canonically associated with it and
hence it is not possible to view the one as embedded into the
other. The misplaced terminology “ST” which refers to a stringlocal
object in a target spacetime is the result of an incorrect picture.

At best this terminology could refer to an internal oscillator
chain (after taking out the zero mode degree of freedom) “over” a
spacetime localization point which carries the (m,s) representation
as well as additional operators which are not needed for the
representation of the Poincaré group, but interlink the different
levels of the (m,s) tower and in this way secure the embedding of
the reducible superstring representation of the Poincaré group
into an irreducible algebra. Such a tower of free fields piling up
over one point leads to pointlike singularities which are beyond
those of ordinary (Wightman) QFT even though each individual
component is an ordinary free field. Perhaps this could have been
the reason why, despite their correct calculation, the authors in
Lowe (1994) and Martinec (1993) presented their result as a
confirmation of stringlike spacetime localization by declaring the
localization point to be the center point on an imagined spacetime
string.

As previously mentioned the embedding of lower dimensional
QFTs into higher dimensional ones and its Kaluza–Klein inverse
are also inconsistent with the holistic localization principle. Argu-
ments based on quasiclassical approximations or on “massaging”
Lagrangians do not help on issues which directly relate the

cardinality of degrees of freedom with quantum causal localiza-
tion. Different from quantum mechanical matter the spacetime
dimension is an inseparable part of what constitutes causally
localized quantum matter. The only known exceptions are holo-
graphic projections onto null-surfaces; in this case the cardinality
of degrees of freedom is thinned out in the right way (Schroer,
2011b).

These insights into the connection between the cardinality of
degrees of freedom and localization immediately disproves the
Maldacena conjecture which claims that both sides of the AdS5–
CFT4 represent physical theories. As a coauthors of a 1962 paper
(Haag & Schroer, 1962) which led to the concept of the causal
completion property it is somewhat distressing to look at the
present situation in which globalized communities of particle
theorists have fallen behind previously attained levels of knowl-
edge about important concepts.

Sagredo: Dear Simplicio, some of our friends tell me that you
claim the dual model and ST led to a derailment of an important
part of particle theory?

Simplicio: Although my attitude with respect to those attempts
concerning a “theory of everything” has been indeed very critical,
I have good reasons to avoid expressing my critique in this way.
What prevents me is the fact that I share the goals of an S-matrix-
based alternative to the quantization approach. Hence criticizing a
certain unfortunate direction which this has taken in the form of
string theory should not be misunderstood as a dismissal of the
aims of the project.

After the successful closure of the dispersion relation project it
seemed natural to look for a setting in which the analytic proper-
ties derived from the relativistic causality of QFT can be extended
in such a way that they may be used for dynamical calculations in
particle physics. So instead of starting with quantized fields and
deriving properties of interacting particles (scattering amplitudes,
formfactors), why not start directly with objects referring to
particles and address the problem of whether these results can
be backed up by a more foundational QFT to a later stage. It is
customary to refer to such a particle-based construction as an
“on-shell” projects and to quantum field based approach as “off-
shell” since scattering amplitudes and formfactors are formally
related to mass shell restrictions of Fourier transforms of field
correlations. Different from the off-shell project of QFT for which
one will know the physical content of the model-defining field
theoretic interaction only at the end of the calculation, the on-
shell particle-based project is a “top-to-bottom” setting in which
the physical properties are laid out before one starts to work one's
way down to the field theoretic description.

The problem is of course that our conceptual/mathematical
understanding works best on the level of the foundational causal
localization principles of quantum fields, whereas it is difficult to
directly convert attributes of particles with the help of analytic
properties of scattering amplitudes into concrete predictions.
Whereas the foundational properties of fields lead to analytic
properties of off-shell field correlations, it is extremely hard to
extract from them on-shell analytic properties. Even in perturba-
tion theory where the graphical aspects of crossing properties are
obvious, the proof that there is an analytic on-shell path which
relates a scattering amplitude to its crossed counterpart is any-
thing but simple. Stanley Mandelstam, one of the protagonists of
an on-shell project, knew that on-shell analytic properties beyond
those which were needed for the derivation of the particle analog
of the Kramers–Kronig dispersion relations are hard to get at. His
proposal of the Mandelstam double spectral representation for the
elastic scattering amplitude was a guess and not a derivation from
the causality principles. It was Venezianos guess of a dual model
and its later conversion into string theory which led to the
derailment of Mandelstam's project.
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Looking back at that epoch with today's hindsight it is clear
that there was no chance for such a project to succeed at that time.
An important aspect of the S-matrix which tightens its link with
the causality principle of local quantum physics was still missing
namely the fact that the S-matrix, in addition of describing the
collision of particles, is also a relative modular invariant of the
wedge algebra AðWÞ. For integrable models of QFT (a property
which unfortunately is limited to d¼1þ1 and which forces the
S-matrix to be purely elastic) the on-shell project has a unique
solution; in this case one can really start from the classification of
S-matrices and arrive at a unique integrable QFT which is asso-
ciated to that integrable S-matrix. Even without integrability there
are some ideas, but due to the complexity of the problem there has
been no significant progress.

Sagredo: But how was string theory related to Mandelstam's
on-shell project and what was its impact?

Simplicio: Mandelstam realized that an on-shell approach to
particle theory idea must start with a profound understanding of
the analytic crossing property of scattering amplitudes of which
the elastic part is the simplest. As a starting point he postulated a
two-variable representation which became known under the
name “the Mandelstam representation”. Unfortunately no crossing
symmetric solution of this representation was found.

In order to understand the next step one needs to recall a bit of
the spirit of the times. When a seemingly well-defined but non-
linear problem did not admit any solution this was sometimes
taken as a hint that if the problem admits any solution at all, this
should be rather unique. This was the view about solutions of the
nonlinear Schwinger–Dyson equations and this was not different
in case of the nonlinear bootstrap project. It may nowadays appear
naive, but the idea that Poincaré invariance, unitarity and the
crossing property lead to a unique S-matrix (a TOE apart from
gravity) had a strong spell on many people even prominent
physicists as Freeman Dyson supported it for some time.

When Veneziano, while playing with properties of Euler beta
functions, found a meromorphic crossing symmetric functions
with an infinite family of first order poles, there was a lot of
commotion in the phenomenologically motivated particle theory
community. Veneziano's proposal to view it as a model of an
approximation (it was not unitary and had no elastic cut) to a
crossing symmetric scattering amplitude received widespread
acceptance and also Mandelstam's blessing. Nowadays we know
that such functions occur in models of conformal QFT and have no
relation to scattering amplitudes. When the use of the dual model
functions in scattering theory was finally given up, the reason was
not the existence of a conceptual flaw but rather the fact that new
experimental results removed the phenomenological basis for the
interest in such models. This was the end of the Mandelstam on-
shell project but not that of the dual model formalism. The new
idea was that Veneziano's mathematical dual model observations
were anyhow too sophisticated for strong interaction phenomen-
ology and one should find a more foundational application. This
was the birth of string theory which pushed the somewhat
modified dual model formalism from its application to strong
interactions all the way up to the Planck scale; in this way it
became the millenniums TOE.

Sagredo: But doesn't this mean that string theory rid itself from
the impossible relation to Mandelstam's on-shell project? How
does this fit in with your belief that ST a failed theory?

Simplicio: The 10 dimensional free superstring is a second
quantized version of the so-called superstring representation.
This is a positive energy Wigner representation on the irreducible
operator algebra associated with a certain supersymmetric
10-component abelian chiral current algebra. One has all the right
to be surprised about the existence of such a representation
since it is the only known entirely discrete positive energy

representation on an irreducible algebra; representations on field
algebras coming from QFT inevitably have the continuous con-
tribution from scattering theory. It is the first and only known
solution of Majorana's 1932 problem (Majorana, 1932) to find an
irreducible algebra which can support an infinite component
discrete positive energy Wigner representation (an “infinite com-
ponent field equation”). This group theoretic problem was solved
by the string theorists construction of the “superstring represen-
tation” on the algebra of the supersymmetric 10-component
abelian chiral current model; this is their achievement.

Sagrado: But what about strings in spacetime?
Simplicio: The terminology “string theory” is misleading since

the superstring field creates states which decompose into irredu-
cible pointlike generated irreducible Wigner components. The
only positive energy Wigner representations which are genuinely
stringlocal are the massless infinite spin representations but they
are absent in the superstring representation. Since the relation
between states and field operators in case of linear (free) fields is
unique, the pointlike nature of states passes immediately to the
fields. By projecting states on finite invariant energy subspaces one
can explicitly see that the “string” field is the singular limit of
pointlike ordinary fields.

There is an important philosophical message which these
failures reveal. Independent of how theoretical discoveries are
obtained, the aim must always be to understand them as a
realization of physical principles. String-localization cannot be
based on similarities of an infinite (m,s) tower spectrum with that
of a quantum mechanical chain of oscillators; causal localization is
a totally intrinsic property of local quantum physics and the
concept of modular localization expresses this fact in its concep-
tual/mathematical most concise form.

Of course what we consider to be a foundational principle is
subject to future refinements. The idea of finding a TOE by playing
mathematical games is not the way in which the material world
reveals itself to us. Such a theory is its own principle whereas all
our experience shows that the real interesting part of nature is
that it offers a wealth of different realizations of its principles.

The explanation of why the popularity of a TOE reached its
peak at the turn of the millennium will be problem for historians
of science. As the phlogiston theory, string theory lasted too long
in order to be overlooked in the history of physics. Whereas the
phlogiston theory was abandoned as a result of contradictions
with measurements, the contradictions of string theory with
existing principles of particle physics were always present for
anybody with a strong conceptual awareness. The final word about
its legacy is up to historians of science.

My dear Sagredo, at this late hour I propose to close our
dialog.//

10. Resumé and concluding remarks

QFT provides particle theory with an important conceptual
structure: the causal localization principle. It results from the
amalgamation of the Faraday–Maxwell–Einstein classical causality
in Minkowski spacetime with the operator-algebraic formulation
of quantum theory in Hilbert space. Its conceptual strength is
matched by its concise mathematical formulation: the adaptation
of the Tomita–Takesaki theory of operator algebras in the form of
modular localization. One reason for submitting the present work
to a history/philosophy oriented physics journal is the fact that
this new framework of QFT sheds additional light on a famous
debate in the history of QFT namely the dispute between Einstein
and Jordan which finally led Jordan to the discovery of QFT. Its
main message concerning the vacuum-polarization caused statis-
tical mechanics nature of the spacetime-restricted vacuum has
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sometimes been misinterpreted in terms of the quantum mechan-
ical particle–wave duality (Duncan & Janssen, 2008).

The new modular localization-based formulation removes the
alleged spacetime string-localization from string theory and shows
that such models are special examples of infinite component
pointlike fields. It reveals the conceptual origin of the particle
crossing property and explains the solvability of integrable models
in terms of the simplicity of generators of modular-localized
wedge algebras. It suggests to construct nonperturbative QFTs by
starting from the modular structure of wedge algebras and obtain
compact localized operator algebras in terms of intersections of
wedge algebras.

The enormous conceptual range of modular localization
unfolds in numerous applications. In certain cases this led to
clashes with existing results and their interpretation. This hap-
pened in particular with ideas which originated in string theory as
dimensional embeddings and reductions (the use of Kaluza–Klein
ideas outside of (quasi)classical approximations) and Maldacena's
incorrect claim that the mathematical AdS–CFT isomorphism can
be used to relate two causally localized QFTs in different spacetime
dimensions.

On the constructive side it led to a deeper conceptual under-
standing of the limitations of BRST gauge theory and how to
overcome them in a new Hilbert space setting of stringlocal fields.
This in turn led to a demystification of the Higgs mechanism and
its alleged symmetry-breaking Mexican hat potential in terms of
massive vectormesons coupled to Hermitian (instead of complex)
fields and their induced second-order interactions. The new
Hilbert space setting of interacting higher spin fields leads in
particular to the new concept of stringlocal Hermitian “escort
fields” which in the case of s¼ 1 are in many aspects Higgs-like,
except that they appear as an inexorable part of the massive
vectormesons rather than independent scalar fields to be coupled
to massive vectormesons. This new concept has no counterpart in
the pointlike gauge setting and therefore cannot be adequately
described in the terminology of pointlike fields.

These theoretical results present a new meeting ground of
ideas coming from foundational local quantum physics with
problems arising from the observation-oriented research on the
Standard Model. It does not exclude Higgs couplings but it denies
the existence of a Higgs mechanism of mass creation by symmetry
breaking.

An unsolved problem of at least comparable importance is the
derivation of gluon/quark confinement from the QCD coupling. As
explained in the text, the problem amounts to establish the
vanishing of all correlation functions which contain stringlocal gluon
or quark operators59 in the limit of vanishing gluon mass so that
only pointlike correlation functions of composites (hadron and
gluonium) survive. The stringlike nature results from the very
restrictive Hilbert space positivity, which was not available in the
Krein space gauge setting. The analogy to the YFS summation
technique of leading logm terms in the limit m–>0 (which leads to
vanishing QED scattering amplitudes for collisions of charged
particles with a finite number of outgoing photons) should be a
valuable guide for proving the vanishing of correlation functions
which contain in addion to pointlike composites also gluon or
quark operators.

The purpose of this article has been accomplished if it succeeds
to draw attention to the enormous unifying power of modular
localization for problems of QFT and particle physics.
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