
Berrak Sisman- Doctor of Philosophy
- Professor (Assistant) at The University of Texas at Dallas
Berrak Sisman
- Doctor of Philosophy
- Professor (Assistant) at The University of Texas at Dallas
She leads the Speech & Machine Learning (SML) Lab at the Electrical & Computer Engineering Department of UT Dallas.
About
112
Publications
35,908
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,225
Citations
Introduction
Current institution
Additional affiliations
May 2020 - May 2020
October 2019 - February 2020
January 2016 - January 2020
Education
January 2016 - January 2020
September 2011 - June 2015
September 2011 - January 2015
Publications
Publications (112)
This paper presents a voice conversion framework that uses phonetic information in an exemplar-based voice conversion approach. The proposed idea is motivated by the fact that phone-dependent exemplars lead to better estimation of activation matrix, therefore, possibly better conversion. We propose to use the phone segmentation results from automat...
A voice conversion system typically consists of two modules , the feature conversion module that is followed by a vocoder. The exemplar-based sparse representation marks a success in feature conversion when we only have a very limited amount of training data. While parametric vocoder is generally designed to simulate the mechanics of the human spee...
The statistical approach to voice conversion typically consists of a feature conversion module followed by a vocoder. So far, the feature conversion studies are mainly fo-cused on the conversion of spectrum. However, speaker identity is also characterized by prosodic features, such as fundamental frequency (F0) and energy contour among others. In t...
Cross-lingual voice conversion (VC) aims to convert the source speaker's voice to sound like that of the target speaker, when the source and target speakers speak different languages. In this paper, we propose to use Generative Adversarial Networks (GANs) for cross-lingual voice-conversion. We further the studies on Variational Autoencoding Wassers...
Speaker identity is one of the important characteristics of human speech. In voice conversion, we change the speaker identity from one to another, while keeping the linguistic content unchanged. Voice conversion involves multiple speech processing techniques, such as speech analysis, spectral conversion, prosody conversion, speaker characterization...
Current strategies for achieving fine-grained prosody control in speech synthesis entail extracting additional style embeddings or adopting more complex architectures. To enable zero-shot application of pretrained text-to-speech (TTS) models, we present PRESENT (PRosody Editing without Style Embeddings or New Training), which exploits explicit pros...
Recent advancements in Text-to-Speech (TTS) systems have enabled the generation of natural and expressive speech from textual input. Accented TTS aims to enhance user experience by making the synthesized speech more relatable to minority group listeners, and useful across various applications and context. Speech synthesis can further be made more f...
Voice conversion (VC) aims to modify the speaker's identity while preserving the linguistic content. Commonly, VC methods use an encoder-decoder architecture, where disentangling the speaker's identity from linguistic information is crucial. However, the disentanglement approaches used in these methods are limited as the speaker features depend on...
Synthesizing the voices of unseen speakers is a persisting challenge in multi-speaker text-to-speech (TTS). Most multi-speaker TTS models rely on modeling speaker characteristics through speaker conditioning during training. Modeling unseen speaker attributes through this approach has necessitated an increase in model complexity, which makes it cha...
Current strategies for achieving fine-grained prosody control in speech synthesis entail extracting additional style embeddings or adopting more complex architectures. To enable zero-shot application of pretrained text-to-speech (TTS) models, we present PRESENT (PRosody Editing without Style Embeddings or New Training), which exploits explicit pros...
In speech synthesis, modeling of rich emotions and prosodic variations present in human voice are crucial to synthesize natural speech. Although speaker embeddings have been widely used in personalized speech synthesis as conditioning inputs, they are designed to lose variation to optimize speaker recognition accuracy. Thus, they are suboptimal for...
Voice conversion (VC) research traditionally depends on scripted or acted speech, which lacks the natural spontaneity of real-life conversations. While natural speech data is limited for VC, our study focuses on filling in this gap. We introduce a novel data-sourcing pipeline that makes the release of a natural speech dataset for VC, named NaturalV...
Recent advances in style transfer text-to-speech (TTS) have improved the expressiveness of synthesized speech. Despite these advancements, encoding stylistic information from diverse and unseen reference speech remains challenging. This paper introduces StyleMoE, an approach that divides the embedding space, modeled by the style encoder, into tract...
Many frameworks for emotional text-to-speech (E-TTS) rely on human-annotated emotion labels that are often inaccurate and difficult to obtain. Learning emotional prosody implicitly presents a tough challenge due to the subjective nature of emotions. In this study, we propose a novel approach that leverages text awareness to acquire emotional styles...
Accented text-to-speech (TTS) synthesis seeks to generate speech with an accent (L2) as a variant of the standard version (L1), which is challenging as L2 is different from L1 in terms of phonetic rendering and prosody pattern (pitch, energy, and duration variance, etc.). Accented TTS has several significant real-world applications, such as languag...
Most current audio-visual emotion recognition models lack the flexibility needed for deployment in practical applications. We envision a multimodal system that works even when only one modality is available and can be implemented interchangeably for either predicting emotional attributes or recognizing categorical emotions. Achieving such flexibili...
Speech Emotion Recognition (SER) is crucial for enabling computers to understand the emotions conveyed in human communication. With recent advancements in Deep Learning (DL), the performance of SER models has significantly improved. However, designing an optimal DL architecture requires specialised knowledge and experimental assessments. Fortunatel...
Emotional speech synthesis aims to synthesize human voices with various emotional effects. The current studies are mostly focused on imitating an averaged style belonging to a specific emotion type. In this paper, we seek to generate speech with a mixture of emotions at run-time. We propose a novel formulation that measures the relative difference...
Emotional voice conversion (EVC) traditionally targets the transformation of spoken utterances from one emotional state to another, with previous research mainly focusing on discrete emotion categories. This paper departs from the norm by introducing a novel perspective: a nuanced rendering of mixed emotions and enhancing control over emotional exp...
The goal of Automatic Voice Over (AVO) is to generate speech in sync with a silent video given its text script. Recent AVO frameworks built upon text-to-speech synthesis (TTS) have shown impressive results. However, the current AVO learning objective of acoustic feature reconstruction brings in indirect supervision for inter-modal alignment learnin...
Deep Learning (DL) models have been popular nowadays to execute different speech-related tasks, including automatic speech recognition (ASR). As ASR is being used in different real-time scenarios, it is important that the ASR model remains efficient against minor perturbations to the input. Hence, evaluating efficiency robustness of the ASR model i...
Speech Emotion Recognition (SER) is a critical enabler of emotion-aware communication in human-computer interactions. Deep Learning (DL) has improved the performance of SER models by improving model complexity. However, designing DL architectures requires prior experience and experimental evaluations. Encouragingly, Neural Architecture Search (NAS)...
Most current audio-visual emotion recognition models lack the flexibility needed for deployment in practical applications. We envision a multimodal system that works even when only one modality is available and can be implemented interchangeably for either predicting emotional attributes or recognizing categorical emotions. Achieving such flexibili...
Text-to-speech (TTS) models have achieved remarkable naturalness in recent years, yet like most deep neural models, they have more parameters than necessary. Sparse TTS models can improve on dense models via pruning and extra retraining, or converge faster than dense models with some performance loss. Inspired by these results, we propose training...
Accent plays a significant role in speech communication, influencing understanding capabilities and also conveying a person's identity. This paper introduces a novel and efficient framework for accented Text-to-Speech (TTS) synthesis based on a Conditional Variational Autoencoder. It has the ability to synthesize a selected speaker's speech that is...
Emotional voice conversion (EVC) traditionally targets the transformation of spoken utterances from one emotional state to another, with previous research mainly focusing on discrete emotion categories. This paper departs from the norm by introducing a novel perspective: a nuanced rendering of mixed emotions and enhancing control over emotional exp...
Accent is a crucial aspect of speech that helps define one's identity. We note that the state-of-the-art Text-to-Speech (TTS) systems can achieve high-quality generated voice, but still lack in terms of versatility and customizability. Moreover , they generally do not take into account accent, which is an important feature of speaking style. In thi...
Accented text-to-speech (TTS) synthesis seeks to generate speech with an accent (L2) as a variant of the standard version (L1). Accented TTS synthesis is challenging as L2 is different from L1 in both in terms of phonetic rendering and prosody pattern. Furthermore, there is no easy solution to the control of the accent intensity in an utterance. In...
Neural models are known to be over-parameterized, and recent work has shown that sparse text-to-speech (TTS) models can outperform dense models. Although a plethora of sparse methods has been proposed for other domains, such methods have rarely been applied in TTS. In this work, we seek to answer the question: what are the characteristics of select...
Emotional speech synthesis aims to synthesize human voices with various emotional effects. The current studies are mostly focused on imitating an averaged style belonging to a specific emotion type. In this paper, we seek to generate speech with a mixture of emotions at run-time. We propose a novel formulation that measures the relative difference...
Emotion classification of speech and assessment of the emotion strength are required in applications such as emotional text-to-speech and voice conversion. The emotion attribute ranking function based on Support Vector Machine (SVM) was proposed to predict emotion strength for emotional speech corpus. However, the trained ranking function doesn't g...
Emotion classification of speech and assessment of the emotion strength are required in applications such as emotional text-to-speech and voice conversion. The emotion attribute ranking function based on Support Vector Machine (SVM) was proposed to predict emotion strength for emotional speech corpus. However, the trained ranking function doesn't g...
Emotional voice conversion (EVC) seeks to convert the emotional state of an utterance while preserving the linguistic content and speaker identity. In EVC, emotions are usually treated as discrete categories overlooking the fact that speech also conveys emotions with various intensity levels that the listener can perceive. In this paper, we aim to...
Neural end-to-end text-to-speech (TTS) is superior to conventional statistical methods in many ways. However, the exposure bias problem, that arises from the mismatch between the training and inference process in autoregressive models, remains an issue. It often leads to performance degradation in face of out-of-domain test data. To address this pr...
Emotional voice conversion (EVC) seeks to convert the emotional state of an utterance while preserving the linguistic content and speaker identity. In EVC, emotions are usually treated as discrete categories overlooking the fact that speech also conveys emotions with various intensity levels that the listener can perceive. In this paper, we aim to...
In this paper, we first provide a review of the state-of-the-art emotional voice conversion research, and the existing emotional speech databases. We then motivate the development of a novel emotional speech database (ESD) that addresses the increasing research need. With this paper, the ESD database is now made available to the research community....
Expressive voice conversion performs identity conversion for emotional speakers by jointly converting speaker identity and speaker-dependent emotion style. Due to the hierarchical structure of speech emotion, it is challenging to disentangle the speaker-dependent emotional style for expressive voice conversion. Motivated by the recent success on sp...
Conventional vocoders are commonly used as analysis tools to provide interpretable features for downstream tasks such as speech synthesis and voice conversion. They are built under certain assumptions about the signals following signal processing principle, therefore, not easily generalizable to different audio, for example, from speech to singing....
In this paper, we formulate a novel task to synthesize speech in sync with a silent pre-recorded video, denoted as automatic voice over (AVO). Unlike traditional speech synthesis, AVO seeks to generate not only human-sounding speech, but also perfect lip-speech synchronization. A natural solution to AVO is to condition the speech rendering on the t...
Recently, emotional speech synthesis has achieved remarkable performance. The emotion strength of synthesized speech can be controlled flexibly using a strength descriptor, which is obtained by an emotion attribute ranking function. However, a trained ranking function on specific data has poor generalization, which limits its applicability for more...
Traditional voice conversion(VC) has been focused on speaker identity conversion for speech with a neutral expression. We note that emotional expression plays an essential role in daily communication, and the emotional style of speech can be speaker-dependent. In this paper, we study the technique to jointly convert the speaker identity and speaker...
In this paper, we first provide a review of the state-of-the-art emotional voice conversion research, and the existing emotional speech databases. We then motivate the development of a novel emotional speech database (ESD) that addresses the increasing research need. With this paper, the ESD database is now made available to the research community....
We propose a novel training strategy for Tacotron-based text-to-speech (TTS) system that improves the speech styling at utterance level. One of the key challenges in prosody modeling is the lack of reference that makes explicit modeling difficult. The proposed technique doesn't require prosody annotations from training data. It doesn't attempt to m...
Non-autoregressive architecture for neural text-to-speech (TTS) allows for parallel implementation, thus reduces inference time over its autoregressive counterpart. However, such system architecture doesn’t explicitly model temporal dependency of acoustic signal as it generates individual acoustic frames independently. The lack of temporal modeling...
Emotional text-to-speech synthesis (ETTS) has seen much progress in recent years. However, the generated voice is often not perceptually identifiable by its intended emotion category. To address this problem, we propose a new interactive training paradigm for ETTS, denoted as i-ETTS, which seeks to directly improve the emotion discriminability by i...
Emotional voice conversion (EVC) aims to change the emotional state of an utterance while preserving the linguistic content and speaker identity. In this paper, we propose a novel 2-stage training strategy for sequence-to-sequence emotional voice conversion with a limited amount of emotional speech data. We note that the proposed EVC framework leve...
Emotional voice conversion aims to transform emotional prosody in speech while preserving the linguistic content and speaker identity. Prior studies show that it is possible to disentangle emotional prosody using an encoder-decoder network conditioned on discrete representation, such as one-hot emotion labels. Such networks learn to remember a fixe...
Attention-based end-to-end text-to-speech synthesis (TTS) is superior to conventional statistical methods in many ways. Transformer-based TTS is one of such successful implementations. While Transformer TTS models the speech frame sequence well with a self-attention mechanism, it does not associate input text with output utterances from a syntactic...
Prosodic phrasing is an important factor that affects naturalness and intelligibility in text-to-speech synthesis. Studies show that deep learning techniques improve prosodic phrasing when large text and speech corpus are available. However, for low-resource languages, such as Mongolian, prosodic phrasing remains a challenge for various reasons. Fi...
Emotional voice conversion (EVC) aims to convert the emotion of speech from one state to another while preserving the linguistic content and speaker identity. In this paper, we study the disentanglement and recomposition of emotional elements in speech through variational autoencoding Wasser-stein generative adversarial network (VAW-GAN). We propos...
Emotional voice conversion (EVC) aims to convert the emotion of speech from one state to another while preserving the linguistic content and speaker identity. In this paper, we study the disentanglement and recomposition of emotional elements in speech through variational autoencoding Wasserstein generative adversarial network (VAW-GAN). We propose...
Emotional voice conversion aims to transform emotional prosody in speech while preserving the linguistic content and speaker identity. Prior studies show that it is possible to disentangle emotional prosody using an encoder-decoder network conditioned on discrete representation, such as one-hot emotion labels. Such networks learn to remember a fixe...
Attention-based end-to-end text-to-speech synthesis (TTS) is superior to conventional statistical methods in many ways. Transformer-based TTS is one of such successful implementations. While Transformer TTS models the speech frame sequence well with a self-attention mechanism, it does not associate input text with output utterances from a syntactic...
Cross-lingual voice conversion aims to change source speaker's voice to sound like that of target speaker, when source and target speakers speak different languages. It relies on non-parallel training data from two different languages, hence, is more challenging than mono-lingual voice conversion. Previous studies on cross-lingual voice conversion...
Tacotron-based end-to-end speech synthesis has shown remarkable voice quality. However, the rendering of prosody in the synthesized speech remains to be improved, especially for long sentences, where prosodic phrasing errors can occur frequently. In this paper, we extend the Tacotron-based speech synthesis framework to explicitly model the prosodic...
Tacotron-based end-to-end speech synthesis has shown remarkable voice quality. However, the rendering of prosody in the synthesized speech remains to be improved, especially for long sentences, where prosodic phrasing errors can occur frequently. In this paper, we extend the Tacotron-based speech synthesis framework to explicitly model the prosodic...
Singing voice conversion aims to convert singer's voice from source to target without changing singing content. Parallel training data is typically required for the training of singing voice conversion system, that is however not practical in real-life applications. Recent encoder-decoder structures, such as variational autoencoding Wasserstein gen...
We propose a novel training strategy for Tacotron-based text-to-speech (TTS) system to improve the expressiveness of speech. One of the key challenges in prosody modeling is the lack of reference that makes explicit modeling difficult. The proposed technique doesn't require prosody annotations from training data. It doesn't attempt to model prosody...
A deep neural network approach to voice conversion usually depends on a large amount of parallel training data from source and target speakers. In this paper, we propose a novel conversion pipeline, DeepConversion, that leverages a large amount of non-parallel, multi-speaker data, but requires only a small amount of parallel training data. It is be...
Emotional voice conversion aims to convert the spectrum and prosody to change the emotional patterns of speech, while preserving the speaker identity and linguistic content. Many studies require parallel speech data between different emotional patterns, which is not practical in real life. Moreover, they often model the conversion of fundamental fr...
Emotional voice conversion aims to convert the emotion of speech from one state to another while preserving the linguistic content and speaker identity. The prior studies on emotional voice conversion are mostly carried out under the assumption that emotion is speaker-dependent. We consider that there is a common code between speakers for emotional...
Singing voice conversion (SVC) is a task to convert one singer's voice to sound like that of another, without changing the lyrical content. Singing conveys lexical and emotional information through words and tones. Both are to be transferred from the source to target. In this paper, we propose novel solutions to SVC based on Generative Adversarial...
While neural end-to-end text-to-speech (TTS) is superior to conventional statistical methods in many ways, the exposure bias problem in the autoregressive models remains an issue to be resolved. The exposure bias problem arises from the mismatch between the training and inference process, that results in unpredictable performance for out-of-domain...
Emotional voice conversion aims to convert the spectrum and prosody to change the emotional patterns of speech, while preserving the speaker identity and linguistic content. Many studies require parallel speech data between different emotional patterns, which is not practical in real life. Moreover, they often model the conversion of fundamental fr...
Voice Conversion (VC) aims to convert one’s voice to sound like that of another. This thesis is focused on developing advanced machine learning algorithms and frameworks for voice conversion under the constraint of limited training data. Firstly, a new voice conversion approach is proposed to address the problem of limited training data with and wi...
While neural end-to-end text-to-speech (TTS) is superior to conventional statistical methods in many ways, the exposure bias problem in the autoregressive models remains an issue to be resolved. The exposure bias problem arises from the mismatch between the training and inference process, that results in unpredictable performance for out-of-domain...
Singing voice conversion (SVC) is a task to convert the source singer's voice to sound like that of the target singer, without changing the lyrical content. So far, most of the voice conversion studies mainly focus only on the speech voice conversion that is different from singing voice conversion. We note that singing conveys both lexical and emot...
We describe our submitted system for the ZeroSpeech Challenge 2019. The current challenge theme addresses the difficulty of constructing a speech synthesizer without any text or phonetic labels and requires a system that can (1) discover subword units in an unsupervised way, and (2) synthesize the speech with a target speaker's voice. Moreover, the...
In this paper, we propose to use generative adversarial networks (GAN) together with a WaveNet vocoder to address the over-smoothing problem arising from the deep learning approaches to voice conversion, and to improve the vocoding quality over the traditional vocoders. As GAN aims to minimize the divergence between the natural and converted speech...