## About

803

Publications

208,507

Reads

**How we measure 'reads'**

A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more

111,001

Citations

Citations since 2016

## Publications

Publications (803)

Causal discovery, the inference of causal relations from data, is a core task of fundamental importance in all scientific domains, and several new machine learning methods for addressing the causal discovery problem have been proposed recently. However, existing machine learning methods for causal discovery typically require that the data used for...

Geospatial Information Systems are used by researchers and Humanitarian Assistance and Disaster Response (HADR) practitioners to support a wide variety of important applications. However, collaboration between these actors is difficult due to the heterogeneous nature of geospatial data modalities (e.g., multi-spectral images of various resolutions,...

We consider the problem of iterative machine teaching, where a teacher sequentially provides examples based on the status of a learner under a discrete input space (i.e., a pool of finite samples), which greatly limits the teacher's capability. To address this issue, we study iterative teaching under a continuous input space where the input example...

Many problems in causal inference and economics can be formulated in the framework of conditional moment models, which characterize the target function through a collection of conditional moment restrictions. For nonparametric conditional moment models, efficient estimation has always relied on preimposed conditions on various measures of ill-posed...

To protect the privacy of individuals whose data is being shared, it is of high importance to develop methods allowing researchers and companies to release textual data while providing formal privacy guarantees to its originators. In the field of NLP, substantial efforts have been directed at building mechanisms following the framework of local dif...

This paper considers the problem of unsupervised 3D object reconstruction from in-the-wild single-view images. Due to ambiguity and intrinsic ill-posedness, this problem is inherently difficult to solve and therefore requires strong regularization to achieve disentanglement of different latent factors. Unlike existing works that introduce explicit...

We have recently witnessed a number of impressive results on hard mathematical reasoning problems with language models. At the same time, the robustness of these models has also been called into question; recent works have shown that models can rely on shallow patterns in the problem description when predicting a solution. Building on the idea of b...

Recent work has seen the development of general purpose neural architectures that can be trained to perform tasks across diverse data modalities. General purpose models typically make few assumptions about the underlying data-structure and are known to perform well in the large-data regime. At the same time, there has been growing interest in modul...

We study the class of location-scale or heteroscedastic noise models (LSNMs), in which the effect $Y$ can be written as a function of the cause $X$ and a noise source $N$ independent of $X$, which may be scaled by a positive function $g$ over the cause, i.e., $Y = f(X) + g(X)N$. Despite the generality of the model class, we show the causal directio...

The creation of whole 3D objects in one shot is an ultimate goal for rapid prototyping, most notably biofabrication, where conventional methods are typically slow and apply mechanical or chemical stress on biological cells. Here, we demonstrate one-step assembly of matter to form compact 3D shapes using acoustic forces, which is enabled by the supe...

To approach the level of advanced human players in table tennis with robots, generating varied ball trajectories in a reproducible and controlled manner is essential. Current ball launchers used in robot table tennis either do not provide an interface for automatic control or are limited in their capabilities to adapt speed, direction, and spin of...

We build a multi-output generative model for quasar spectra and the properties of their black hole engines, based on a Gaussian process latent-variable model. This model treats every quasar as a vector of latent properties such that the spectrum and all physical properties of the quasar are associated with non-linear functions of those latent param...

AI systems are becoming increasingly intertwined with human life. In order to effectively collaborate with humans and ensure safety, AI systems need to be able to understand, interpret and predict human moral judgments and decisions. Human moral judgments are often guided by rules, but not always. A central challenge for AI safety is capturing the...

Humans naturally decompose their environment into entities at the appropriate level of abstraction to act in the world. Allowing machine learning algorithms to derive this decomposition in an unsupervised way has become an important line of research. However, current methods are restricted to simulated data or require additional information in the...

We build a multi-output generative model for quasar spectra and the properties of their black hole engines, based on a Gaussian process latent-variable model. This model treats every quasar as a vector of latent properties such that the spectrum and all physical properties of the quasar are associated with non-linear functions of those latent param...

Normalizing flows are tractable density models that can approximate complicated target distributions, e.g. Boltzmann distributions of physical systems. However, current methods for training flows either suffer from mode-seeking behavior, use samples from the target generated beforehand by expensive MCMC simulations, or use stochastic losses that ha...

Functional genomics experiments are invaluable for understanding mechanisms of gene regulation. However, comprehensively performing all such experiments, even across a fixed set of sample and assay types, is often infeasible in practice. A promising alternative to performing experiments exhaustively is to, instead, perform a core set of experiments...

How can we acquire world models that veridically represent the outside world both in terms of what is there and in terms of how our actions affect it? Can we acquire such models by interacting with the world, and can we state mathematical desiderata for their relationship with a hypothetical reality existing outside our heads? As machine learning i...

Deep neural networks perform well on prediction and classification tasks in the canonical setting where data streams are i.i.d., labeled data is abundant, and class labels are balanced. Challenges emerge with distribution shifts, including non-stationary or imbalanced data streams. One powerful approach that has addressed this challenge involves se...

This paper considers the problem of unsupervised 3D object reconstruction from in-the-wild single-view images. Due to ambiguity and intrinsic ill-posedness, this problem is inherently difficult to solve and therefore requires strong regularization to achieve disentanglement of different latent factors. Unlike existing works that introduce explicit...

Since out-of-distribution generalization is a generally ill-posed problem, various proxy targets (e.g., calibration, adversarial robustness, algorithmic corruptions, invariance across shifts) were studied across different research programs resulting in different recommendations. While sharing the same aspirational goal, these approaches have never...

One aim of representation learning is to recover the original latent code that generated the data, a task which requires additional information or inductive biases. A recently proposed approach termed Independent Mechanism Analysis (IMA) postulates that each latent source should influence the observed mixtures independently, complementing standard...

Important problems in causal inference, economics, and, more generally, robust machine learning can be expressed as conditional moment restrictions, but estimation becomes challenging as it requires solving a continuum of unconditional moment restrictions. Previous works addressed this problem by extending the generalized method of moments (GMM) to...

Algorithmic fairness is typically studied from the perspective of predictions. Instead, here we investigate fairness from the perspective of recourse actions suggested to individuals to remedy an unfavourable classification. We propose two new fair-ness criteria at the group and individual level, which—unlike prior work on equalising the average gr...

The number of published metagenome assemblies is rapidly growing due to advances in sequencing technologies. However, sequencing errors, variable coverage, repetitive genomic regions, and other factors can produce misassemblies, which are challenging to detect for taxonomically novel genomic data. Assembly errors can affect all downstream analyses...

Two-sample tests are important in statistics and machine learning, both as tools for scientific discovery as well as to detect distribution shifts. This led to the development of many sophisticated test procedures going beyond the standard supervised learning frameworks, whose usage can require specialized knowledge about two-sample testing. We use...

Context . High-contrast imaging of exoplanets hinges on powerful post-processing methods to denoise the data and separate the signal of a companion from its host star, which is typically orders of magnitude brighter.
Aims . Existing post-processing algorithms do not use all prior domain knowledge that is available about the problem. We propose a ne...

Variational autoencoders (VAEs) are a popular framework for modeling complex data distributions; they can be efficiently trained via variational inference by maximizing the evidence lower bound (ELBO), at the expense of a gap to the exact (log-)marginal likelihood. While VAEs are commonly used for representation learning, it is unclear why ELBO max...

Machine learning approaches commonly rely on the assumption of independent and identically distributed (i.i.d.) data. In reality, however, this assumption is almost always violated due to distribution shifts between environments. Although valuable learning signals can be provided by heterogeneous data from changing distributions, it is also known t...

Learning causal structures from observation and experimentation is a central task in many domains. For example, in biology, recent advances allow us to obtain single-cell expression data under multiple interventions such as drugs or gene knockouts. However, a key challenge is that often the targets of the interventions are uncertain or unknown. Thu...

The majority of observed pixels on the Transiting Exoplanet Survey Satellite (TESS) are delivered in the form of full-frame images (FFIs). However, the FFIs contain systematic effects such as pointing jitter and scattered light from the Earth and Moon that must be removed (i.e., “detrended”) before downstream analysis. We present unpopular , an ope...

Learning causal structure poses a combinatorial search problem that typically involves evaluating structures using a score or independence test. The resulting search is costly, and designing suitable scores or tests that capture prior knowledge is difficult. In this work, we propose to amortize the process of causal structure learning. Rather than...

Human-translated text displays distinct features from naturally written text in the same language. This phenomena, known as translationese, has been argued to confound the machine translation (MT) evaluation. Yet, we find that existing work on translationese neglects some important factors and the conclusions are mostly correlational but not causal...

This paper is motivated by addressing open questions in distributionally robust chance-constrained programs (DRCCP) using the popular Wasserstein ambiguity sets. Specifically, the computational techniques for those programs typically place restrictive assumptions on the constraint functions and the size of the Wasserstein ambiguity sets is often se...

Multiple lines of evidence strongly suggest that infection hotspots, where a single individual infects many others, play a key role in the transmission dynamics of COVID-19. However, most of the existing epidemiological models fail to capture this aspect by neither representing the sites visited by individuals explicitly nor characterizing disease...

High-contrast imaging of exoplanets hinges on powerful post-processing methods to denoise the data and separate the signal of a companion from its host star, which is typically orders of magnitude brighter. Existing post-processing algorithms do not use all prior domain knowledge that is available about the problem. We propose a new method that bui...

Machine learning is increasingly used to inform decision-making in sensitive situations where decisions have consequential effects on individuals’ lives. In these settings, in addition to requiring models to be accurate and robust, socially relevant values such as fairness, privacy, accountability, and explainability play an important role in the a...

The ongoing COVID-19 pandemic let to efforts to develop and deploy digital contact tracing systems to expedite contact tracing and risk notification. Unfortunately, the success of these systems has been limited, partly owing to poor interoperability with manual contact tracing, low adoption rates, and a societally sensitive trade-off between utilit...

We describe basic ideas underlying research to build and understand artificially intelligent systems: from symbolic approaches via statistical learning to interventional models relying on concepts of causality. Some of the hard open problems of machine learning and AI are intrinsically related to causality, and progress may require advances in our...

Algorithmic fairness is frequently motivated in terms of a trade-off in which overall performance is decreased so as to improve performance on disadvantaged groups where the algorithm would otherwise be less accurate. Contrary to this, we find that applying existing fairness approaches to computer vision improve fairness by degrading the performanc...

This paper demonstrates how to recover causal graphs from the score of the data distribution in non-linear additive (Gaussian) noise models. Using score matching algorithms as a building block, we show how to design a new generation of scalable causal discovery methods. To showcase our approach, we also propose a new efficient method for approximat...

Causal discovery from observational and interventional data is challenging due to limited data and non-identifiability which introduces uncertainties in estimating the underlying structural causal model (SCM). Incorporating these uncertainties and selecting optimal experiments (interventions) to perform can help to identify the true SCM faster. Exi...

Reasoning is central to human intelligence. However, fallacious arguments are common, and some exacerbate problems such as spreading misinformation about climate change. In this paper, we propose the task of logical fallacy detection, and provide a new dataset (Logic) of logical fallacies generally found in text, together with an additional challen...

Epigenetic modifications are dynamic control mechanisms involved in the regulation of gene expression. Unlike the DNA sequence itself, they vary not only between individuals but also between different cell types of the same individual. Exposure to environmental factors, somatic mutations, and ageing contribute to epigenomic changes over time, which...

Model identifiability is a desirable property in the context of unsupervised representation learning. In absence thereof, different models may be observationally indistinguishable while yielding representations that are nontrivially related to one another, thus making the recovery of a ground truth generative model fundamentally impossible, as ofte...

We introduce an approach to counterfactual inference based on merging information from multiple datasets. We consider a causal reformulation of the statistical marginal problem: given a collection of marginal structural causal models (SCMs) over distinct but overlapping sets of variables, determine the set of joint SCMs that are counterfactually co...

Although reinforcement learning has seen remarkable progress over the last years, solving robust dexterous object-manipulation tasks in multi-object settings remains a challenge. In this paper, we focus on models that can learn manipulation tasks in fixed multi-object settings and extrapolate this skill zero-shot without any drop in performance whe...

Epigenetic modifications are dynamic control mechanisms involved in the regulation of gene expression. Unlike the DNA sequence itself, they vary not only between individuals but also between different cell types of the same individual. Exposure to environmental factors, somatic mutations, and ageing contribute to epigenomic changes over time, which...

Model-free and model-based reinforcement learning are two ends of a spectrum. Learning a good policy without a dynamic model can be prohibitively expensive. Learning the dynamic model of a system can reduce the cost of learning the policy, but it can also introduce bias if it is not accurate. We propose a middle ground where instead of the transiti...

Algorithmic recourse is concerned with aiding individuals who are unfavorably treated by automated decision-making systems to overcome their hardship, by offering recommendations that would result in a more favorable prediction when acted upon. Such recourse actions are typically obtained through solving an optimization problem that minimizes chang...

A computational approach to simultaneously learn the vector field of a dynamical system with a locally asymptotically stable equilibrium and its region of attraction from the system's trajectories is proposed. The nonlinear identification leverages the local stability information as a prior on the system, effectively endowing the estimate with this...

Algorithmic recourse seeks to provide actionable recommendations for individuals to overcome unfavorable outcomes made by automated decision-making systems. Recourse recommendations should ideally be robust to reasonably small uncertainty in the features of the individual seeking recourse. In this work, we formulate the adversarially robust recours...

Complex systems often contain feedback loops that can be described as cyclic causal models. Intervening in such systems may lead to counter-intuitive effects, which cannot be inferred directly from the graph structure. After establishing a framework for differentiable interventions based on Lie groups, we take advantage of modern automatic differen...

A fundamental challenge for machine learning models is generalizing to out-of-distribution (OOD) data, in part due to spurious correlations. To tackle this challenge, we first formalize the OOD generalization problem as constrained optimization, called Disentanglement-constrained Domain Generalization (DDG). We relax this non-trivial constrained op...

Distinguishing between cause and effect using time series observational data is a major challenge in many scientific fields. A new perspective has been provided based on the principle of Independence of Causal Mechanisms (ICM), leading to the Spectral Independence Criterion (SIC), postulating that the power spectral density (PSD) of the cause time...

Normalizing flows are a popular class of models for approximating probability distributions. However, their invertible nature limits their ability to model target distributions with a complex topological structure, such as Boltzmann distributions. Several procedures have been proposed to solve this problem but many of them sacrifice invertibility a...

Out-of-distribution (OOD) detection is a well-studied topic in supervised learning. Extending the successes in supervised learning methods to the reinforcement learning (RL) setting, however, is difficult due to the data generating process - RL agents actively query their environment for data, and the data are a function of the policy followed by t...

In this paper, we consider the problem of iterative machine teaching, where a teacher provides examples sequentially based on the current iterative learner. In contrast to previous methods that have to scan over the entire pool and select teaching examples from it in each iteration, we propose a label synthesis teaching framework where the teacher...

We provide a functional view of distributional robustness motivated by robust statistics and functional analysis. This results in two practical computational approaches for approximate distributionally robust nonlinear optimization based on gradient norms and reproducing kernel Hilbert spaces. Our method can be applied to the settings of statistica...

Learning generative object models from unlabelled videos is a long standing problem and required for causal scene modeling. We decompose this problem into three easier subtasks, and provide candidate solutions for each of them. Inspired by the Common Fate Principle of Gestalt Psychology, we first extract (noisy) masks of moving objects via unsuperv...

Modern neural network architectures can leverage large amounts of data to generalize well within the training distribution. However, they are less capable of systematic generalization to data drawn from unseen but related distributions, a feat that is hypothesized to require compositional reasoning and reuse of knowledge. In this work, we present N...

Predicting the future trajectory of a moving agent can be easy when the past trajectory continues smoothly but is challenging when complex interactions with other agents are involved. Recent deep learning approaches for trajectory prediction show promising performance and partially attribute this to successful reasoning about agent-agent interactio...

Perceived signals in real-world scenarios are usually high-dimensional and noisy, and finding and using their representation that contains essential and sufficient information required by downstream decision-making tasks will help improve computational efficiency and generalization ability in the tasks. In this paper, we focus on partially observab...