Bernhard SchmidUniversity of Zurich | UZH · Department of Geography
Bernhard Schmid
PhD
About
761
Publications
430,462
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
68,765
Citations
Introduction
Bernhard Schmid now works at the Department of Geography, University of Zurich. Bernhard does research in Ecology, Environmental Science and Evolutionary Biology. His main interest is in Biodiversity-Ecosystem Functioning relationships and Experimental Plant Population Biology.
Additional affiliations
February 2018 - present
October 2013 - August 2014
September 1984 - March 1987
Publications
Publications (761)
Understanding the concurrent responses of aboveground and belowground biota compartments to global changes is crucial for the maintenance of ecosystem functions and biodiversity conservation. We conduct a comprehensive analysis synthesizing data from 13,209 single observations and 3223 pairwise observations from 1166 publications across the world t...
Global spatial patterns of vascular plant diversity have been mapped at coarse grain based on climate‐dominated environment–diversity relationships and, where possible, at finer grain using remote sensing. However, for grasslands with their small plant sizes, the limited availability of vegetation plot data has caused large uncertainties in fine‐gr...
Multispecies planting is an important approach to deliver ecosystem functions in afforestation projects. However, the importance of species richness vs specific species composition in this context remains unresolved.
To estimate species or functional group richness and compositional change between two communities, we calculated nestedness, where on...
The density of wood is a key indicator of the carbon investment strategies of trees, impacting productivity and carbon storage. Despite its importance, the global variation in wood density and its environmental controls remain poorly understood, preventing accurate predictions of global forest carbon stocks. Here we analyse information from 1.1 mil...
Genetically diverse populations can increase plant resistance to natural enemies. Yet, beneficial genotype pairs remain elusive due to the occurrence of positive or negative effects of mixed planting on plant resistance, respectively called associational resistance or susceptibility. Here, we identify key genotype pairs responsible for associationa...
Aims
Pharmacotherapeutic options for obesity treatment include glucagon‐like peptide‐1 receptor (GLP‐1R) agonists, for example, liraglutide. However, an unmet need remains, particularly in patients with a high body mass index (BMI), as GLP‐1R agonists are associated with gastrointestinal adverse events (AEs) and some patients do not respond to trea...
Push-pull systems for sustainable pest management of crop plants employ repellent stimuli from intercrops (“push”) to repel herbivores and attract their predators and parasitoids, and attracting stimuli from border plants (“pull”) to lead herbivorous insects out of the crop. The most widespread implementation, intercropping with the legume Desmodiu...
Push-pull systems for sustainable pest management of crop plants employ repellent stimuli from intercrops (“push”) to repel herbivores and attract their predators and parasitoids, and attracting stimuli from border plants (“pull”) to lead herbivorous insects out of the crop. The most widespread implementation, intercropping with the legume Desmodiu...
Ecosystem functioning depends on biodiversity at multiple trophic levels, yet relationships between multitrophic diversity and ecosystem multifunctionality have been poorly explored, with studies often focusing on individual trophic levels and functions and on specific ecosystem types. Here, we show that plant diversity can affect ecosystem functio...
The increasing strength of positive biodiversity effects on plant community productivity in long-term biodiversity experiments has been shown to be related to mixed responses at species level. However, it is still not well understood if the varying environments in plant communities with different diversity also exert different selection pressures t...
Push-pull systems for sustainable pest management of crop plants employ repellent stimuli from intercrops ("push") to repel herbivores and attract their predators and parasitoids, and attracting stimuli from border plants ("pull') to lead herbivorous insects out of the crop. The most widespread implementation, intercropping with the legume Desmodiu...
The decline in global plant diversity has raised concerns about its implications for carbon fixation and global greenhouse gas emissions (GGE), including carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4). Therefore, we conducted a comprehensive meta‐analysis of 2103 paired observations, examining GGE, soil organic carbon (SOC) and plant c...
The functioning of a tree is shaped by the neighbouring species through the interspecific interaction and local environments. The functional trait composition of the neighbourhood could provide mechanistic insights into the effects of neighbours on the resource strategies of focal trees.
In this study, we deployed an automated high‐frequency measur...
Global patterns of leaf nitrogen (N) and phosphorus (P) stoichiometry have been interpreted as reflecting phenotypic plasticity in response to the environment, or as an overriding effect of the distribution of species growing in their biogeochemical niches. Here, we balance these contrasting views. We compile a global dataset of 36,413 paired obser...
Decades of studies have demonstrated links between biodiversity and ecosystem functioning, yet the generality of the relationships and the underlying mechanisms remain unclear, especially for forest ecosystems.
Using 11 tree‐diversity experiments, we tested tree species richness–community productivity relationships and the role of arbuscular (AM) o...
The emergence of alternative stable states in forest systems has significant implications for the functioning and structure of the terrestrial biosphere, yet empirical evidence remains scarce. Here, we combine global forest biodiversity observations and simulations to test for alternative stable states in the presence of evergreen and deciduous for...
In the absence of chemical control with its negative side effects, fungal pathogens can cause large yield losses, requiring us to develop agroecosystems that are inherently disease resistant. Grassland biodiversity experiments often find plant species diversity to reduce pathogen pressure, but whether incorporating high biodiversity levels in agric...
Plot‐scale experiments indicate that functional diversity (FD) plays a pivotal role in sustaining ecosystem functions such as net primary productivity (NPP). However, the relationships between functional diversity and NPP across larger scale under varying climatic conditions are sparsely studied, despite its significance for understanding forest–at...
Au cours des 25 dernières années, l’idée que les changements de biodiversité peuvent influencer le fonctionnement des écosystèmes a évolué d’une notion controversée à un concept pleinement accepté par les communautés scientifique et politique. Alors que ce domaine scientifique atteint sa maturité, il est temps d’évaluer les avancées réalisées, d’ex...
Cultivar mixtures have been proposed as a way to increase diversity and thereby improve plant production, but our understanding of the effects of mixing cultivars on crop diseases and resource-use efficiency remains fragmentary. We performed a meta-analysis to assess the effects of cultivar mixtures on crop yield, yield stability, resource-use effi...
Foliar herbivory is known to directly affect phyllosphere microbiomes through altering plant phenotypes. However, how plant evolutionary responses to herbivory shape phyllosphere microbiomes is unclear. Here we use different invasive populations of the plant Ambrosia artemisiifolia that vary in reassociation timespan with a native specialist herbiv...
It is well known that biodiversity positively affects ecosystem functioning leading to enhanced ecosystem stability. However, this knowledge is mainly based on analyses using single ecosystem functions, while studies focusing on the stability of ecosystem multifunctionality are rare. Taking advantage of a long-term grassland biodiversity experiment...
Plant diversity effects on community productivity often increase over time. Whether the strengthening of diversity effects is caused by temporal shifts in species-level overyielding (i.e., higher species-level productivity in diverse communities compared with monocultures) remains unclear. Here, using data from 65 grassland and forest biodiversity...
In the absence of chemical control with its negative side effects, fungal pathogens can cause large yield losses, requiring us to develop agroecosystems that are inherently disease resistant. Grassland biodiversity experiments often find plant species diversity to reduce pathogen pressure, but whether incorporating high biodiversity levels in agric...
The density of wood is a key indicator of trees’ carbon investment strategies, impacting productivity and carbon storage. Despite its importance, the global variation in wood density and its environmental controls remain poorly understood, preventing accurate predictions of global forest carbon stocks. Here, we analyze information from 1.1 million...
Field spectroscopy (FS) measurements are crucial for validating Earth observation products obtained on other scales (drone, airborne or satellite). The accuracy of FS measurements relies on sensor traceability to an international standard, operator performance and the choice of measurement setup. To ensure reliable comparisons of data sets, it is i...
Growth–weather relationships of trees determine the seasonal fluctuation of carbon sequestration in forests. Even within the same local area, neighbouring trees with different functional traits can influence the growth–weather relationships of the focal trees by altering the availability and utilization efficiency of resources. Here, we measured hi...
Numerous biodiversity–ecosystem functioning (BEF) experiments have shown that plant community productivity typically increases with species diversity. In these studies, diversity is generally quantified using metrics of taxonomic, phylogenetic, or functional differences among community members. Research has also shown that the relationships between...
Extreme weather events are occurring more frequently, and research has shown that plant diversity can help mitigate the impacts of climate change by increasing plant productivity and ecosystem stability. Although soil temperature and its stability are key determinants of essential ecosystem processes, no study has yet investigated whether plant div...
The rapid diversification and high species richness of flowering plants is regarded as ‘Darwin’s second abominable mystery’. Today the global spatiotemporal pattern of plant diversification remains elusive. Using a newly generated genus-level phylogeny and global distribution data for 14,244 flowering plant genera, we describe the diversification d...
Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system¹. Remote-sensing estimates to quantify carbon losses from global forests2–5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these est...
Ecosystem management aims at providing many ecosystem services simultaneously. Such ecosystem service multifunctionality can be limited by tradeoffs and increased by synergies among the underlying ecosystem functions (EF), which need to be understood to develop targeted management. Previous studies found differences in the correlation between EFs....
Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, ever...
The associations of arbuscular mycorrhizal (AM) or ectomycorrhiza (EcM) fungi with plants have sequentially evolved and significantly contributed to enhancing plant nutrition. Nonetheless, how evolutionary and ecological forces drive nutrient acquisition strategies of AM and EcM woody plants remains poorly understood. Our global analysis of woody s...
Soil carbon is a critical ecosystem function in drylands. In these ecosystems, positive relationships between plant species richness (SR) and soil carbon storage (SOC) that have been found in biodiversity experiments and observational studies may be reduced by grazing and aridity. However, studies about the extent to which SR, grazing intensity, an...
Experiments under controlled conditions have established that ecosystem functioning is generally positively related to levels of biodiversity, but it is unclear how widespread these effects are in real-world settings and whether they can be harnessed for ecosystem restoration. We used remote-sensing data from the first decade of a long-term, field-...
Global warming is increasing the frequency and intensity of climate extremes. Forests may buffer such extreme events by creating their own microclimate below their canopy via cooling hot and insulating against cold macroclimate air temperatures. This buffering capacity of forests may be increased by tree diversity and may itself maintain forest fun...
Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5-7, we explore how the phy...
Biodiversity loss presents a growing threat to the global environment and requires systematic and spatially contiguous monitoring. Monitoring of within-species genetic variation, a key factor when assessing biodiversity loss, is laborious and could be complemented by observations of phenotypes allowing inferences about genetic variation. We studied...
Perhaps as much as any other scientist in the 20th century, J.P. Grime transformed the study of plant ecology and helped shepherd the field toward international prominence as a nexus of ideas related to global environmental change. Editors at the Journal of Ecology asked a group of senior plant ecologists to comment on Grime's scientific legacy.
Th...
In plant communities, diversity often increases productivity and functioning, but the specific underlying drivers are difficult to identify. Most ecological theories attribute positive diversity effects to complementary niches occupied by different species or genotypes. However, the specific nature of niche complementarity often remains unclear, in...
Forest biodiversity is critical for many ecosystem functions and services. Yet, it remains uncertain how plant functional diversity influences ecosystem functioning across environmental gradients and contiguous larger areas. We integrated remote sensing and terrestrial biosphere modeling to explore functional diversity–productivity relationships at...
Numerous biodiversity–ecosystem functioning (BEF) experiments have shown that plant community productivity typically increases with species diversity. In these studies, diversity is generally quantified using metrics of taxonomic, phylogenetic, or functional differences among community members. Research has also shown that the relationships between...
Genetically diverse populations can increase plant resistance to natural enemies. Yet, beneficial genotype pairs remain elusive due to the occurrence of both positive and negative effects of mixed planting on plant resistance, called associational resistance and susceptibility. We used genome-wide polymorphisms of the plant species Arabidopsis thal...
Functional diversity is a critical component driving ecosystem functioning. Spatially explicit data of plant functional traits and diversity are essential for understanding biodiversity effects on ecosystem functioning. Here we retrieved three morphological traits (95th quantile height, leaf area index, foliage height diversity) and three physiolog...
1. Biodiversity is an important component of natural ecosystems, with higher species richness often correlating with an increase in ecosystem productivity. Yet, this relationship varies substantially across environments, typically becoming less pronounced at high levels of species richness. However, species richness alone cannot reflect all importa...
Forests sustain 80% of terrestrial biodiversity and provide essential ecosystem services. Biodiversity experiments have demonstrated that plant diversity correlates with both primary productivity and higher trophic diversity. However, whether higher trophic diversity can mediate the effects of plant diversity on productivity remains unclear. Here,...
Carbon-focused climate mitigation strategies are becoming increasingly important in forests. However, with ongoing biodiversity declines we require better knowledge of how much such strategies account for biodiversity. We particularly lack information across multiple trophic levels and on established forests, where the interplay between carbon stoc...
Extreme weather events are occurring more frequently, and research has shown that plant diversity can help mitigate impacts of climate change by increasing plant productivity and ecosystem stability. Although soil temperature and its stability are key determinants of essential ecosystem processes related to water and nutrient uptake as well as soil...
Ecosystem management aims at providing many ecosystem services simultaneously. Such ecosystem multifunctionality can be limited by trade-offs and increased by synergies among the underlying ecosystem functions (EF), which need to be understood to develop targeted management. Previous studies found differences in the correlation between EFs. We hypo...
Plant microbiomes are known to influence host fitness and ecosystem functioning, but mechanisms regulating their structure are poorly understood.
Here, we explored the assembly mechanisms of leaf epiphytic and endophytic bacterial communities using a subtropical forest biodiversity experiment.
Both epiphytic and endophytic bacterial diversity incre...
Decades of theory and empirical studies have demonstrated links between
biodiversity and ecosystem functioning, yet the putative processes that
underlie these patterns remain elusive. This is especially true for forest ecosystems,
where the functional traits of plant species are challenging to quantify.
We analyzed 74,563 forest inventory plots tha...
Mycorrhizae are symbiotic associations between terrestrial plants and fungi in which fungi obtain nutrients in exchange for plant photosynthates. However, it remains unclear how different types of mycorrhizae affect their host interactions and productivity. Using a long-term experiment with a diversity gradient of arbuscular (AM) and ectomycorrhiza...
Remote sensing enhances large-scale biodiversity monitoring by overcoming temporal and spatial limitations of ground-based measurements and allows assessment of multiple plant traits simultaneously. The total set of traits and their variation over time is specific for each individual and can reveal information about the genetic composition of fores...