Bernhard Kainz

Bernhard Kainz
Imperial College London | Imperial · Department of Computing

Ph.D.

About

209
Publications
41,427
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
5,400
Citations
Introduction
I am Senior Lecturer (= Associate Professor) in the Department of Computing at Imperial College London. I head the human-in-the-loop computing group and I am one of four academics leading the Biomedical Image Analysis, BioMedIA collaboratory. Human-in-the-loop computing research aims to equip humans with machine-like learning and perceptual abilities. We believe that machines can complement human intelligence for maximum efficiency. I co-create intensively with King’s College London, Division of Imaging Sciences and Biomedical Engineering, St. Thomas Hospital London and the department of Bioengineering at Imperial. I am a key scientific adviser for ThinkSono Ltd. My research is about self-driving systems in healthcare, especially Medical Imaging.
Additional affiliations
May 2015 - present
King's College London
Position
  • Senior Researcher
May 2015 - present
Imperial College London
Position
  • Honorary Fellow
March 2013 - April 2015
Imperial College London
Position
  • Marie Curie Fellow
Education
October 2007 - May 2011
Graz University of Technology
Field of study
  • Medical Visualization
October 2005 - October 2007
Graz University of Technology
Field of study
  • Telematics

Publications

Publications (209)
Conference Paper
Full-text available
We present a method to correct motion in fetal in-utero scan sequences. The proposed approach avoids previously necessary manual segmentation of a region of interest. We solve the problem of non-rigid motion by splitting motion corrupted slices into overlapping patches of finite size. In these patches the assumption of rigid motion approximately ho...
Article
Full-text available
Capturing an enclosing volume of moving subjects and organs using fast individual image slice acquisition has shown promise in dealing with motion artefacts. Motion between slice acquisitions results in spatial inconsistencies that can be resolved by slice-to-volume reconstruction (SVR) methods to provide high quality 3D image data. Existing algori...
Conference Paper
Full-text available
In this paper we present a semi-automatic method for analysis of the fetal thorax in genuine three-dimensional volumes. After one initial click we localize the spine and accurately determine the volume of the fetal lung from high resolution volumetric images reconstructed from motion corrupted prenatal Magnetic Resonance Imaging (MRI). We compare t...
Article
Full-text available
In this paper we present Softshell, a novel execution model for devices composed of multiple processing cores operating in a single instruction, multiple data fashion, such as graphics processing units (GPUs). The Softshell model is intuitive and more flexible than the kernel-based adaption of the stream processing model, which is currently the dom...
Article
Full-text available
In modern clinical practice, planning access paths to volumetric target structures remains one of the most important and most complex tasks, and a physician's insufficient experience in this can lead to severe complications or even the death of the patient. In this paper, we present a method for safety evaluation and the visualization of access pat...
Preprint
Full-text available
Automatic segmentation of the placenta in fetal ultrasound (US) is challenging due to the (i) high diversity of placenta appearance, (ii) the restricted quality in US resulting in highly variable reference annotations, and (iii) the limited field-of-view of US prohibiting whole placenta assessment at late gestation. In this work, we address these t...
Preprint
Full-text available
Medical image analysis is a vibrant research area that offers doctors and medical practitioners invaluable insight and the ability to accurately diagnose and monitor disease. Machine learning provides an additional boost for this area. However, machine learning for medical image analysis is particularly vulnerable to natural biases like domain shif...
Preprint
Full-text available
Curating a large scale medical imaging dataset for machine learning applications is both time consuming and expensive. Balancing the workload between model development, data collection and annotations is difficult for machine learning practitioners, especially under time constraints. Causal analysis is often used in medicine and economics to gain i...
Preprint
Causally-enabled machine learning frameworks could help clinicians to identify the best course of treatments by answering counterfactual questions. We explore this path for the case of echocardiograms by looking into the variation of the Left Ventricle Ejection Fraction, the most essential clinical metric gained from these examinations. We combine...
Preprint
Counterfactual inference is a powerful tool, capable of solving challenging problems in high-profile sectors. To perform counterfactual inference, one requires knowledge of the underlying causal mechanisms. However, causal mechanisms cannot be uniquely determined from observations and interventions alone. This raises the question of how to choose t...
Preprint
Full-text available
Fetal Magnetic Resonance Imaging (MRI) is used in prenatal diagnosis and to assess early brain development. Accurate segmentation of the different brain tissues is a vital step in several brain analysis tasks, such as cortical surface reconstruction and tissue thickness measurements. Fetal MRI scans, however, are prone to motion artifacts that can...
Article
Detecting Out-of-Distribution (OoD) data is one of the greatest challenges in safe and robust deployment of machine learning algorithms in medicine. When the algorithms encounter cases that deviate from the distribution of the training data, they often produce incorrect and over-confident predictions. OoD detection algorithms aim to catch erroneous...
Chapter
Using self-supervision in anomaly detection can increase sensitivity to subtle irregularities. However, increasing sensitivity to certain classes of outliers could result in decreased sensitivity to other types. While a single model may have limited coverage, an adaptive method could help detect a broader range of outliers. Our proposed method expl...
Preprint
We present CortexODE, a deep learning framework for cortical surface reconstruction. CortexODE leverages neural ordinary different equations (ODEs) to deform an input surface into a target shape by learning a diffeomorphic flow. The trajectories of the points on the surface are modeled as ODEs, where the derivatives of their coordinates are paramet...
Article
Intelligent video summarization algorithms allow to quickly convey the most relevant information in videos through the identification of the most essential and explanatory content while removing redundant video frames. In this paper, we introduce the 3DST-UNet-RL framework for video summarization. A 3D spatio-temporal U-Net is used to efficiently e...
Article
We present PRETUS — a Plugin-based Real Time UltraSound software platform for live ultrasound image analysis and operator support. The software is lightweight; functionality is brought in via independent plug-ins that can be arranged in sequence. The software allows to capture the real-time stream of ultrasound images from virtually any ultrasound...
Article
Full-text available
Data privacy mechanisms are essential for rapidly scaling medical training databases to capture the heterogeneity of patient data distributions toward robust and generalizable machine learning systems. In the current COVID-19 pandemic, a major focus of artificial intelligence (AI) is interpreting chest CT, which can be readily used in the assessmen...
Preprint
This paper presents the use of Multi-Agent Reinforcement Learning (MARL) to perform navigation in 3D anatomical volumes from medical imaging. We utilize Neural Style Transfer to create synthetic Computed Tomography (CT) agent gym environments and assess the generalization capabilities of our agents to clinical CT volumes. Our framework does not req...
Preprint
Full-text available
We develop a new Bayesian model for non-rigid registration of three-dimensional medical images, with a focus on uncertainty quantification. Probabilistic registration of large images with calibrated uncertainty estimates is difficult for both computational and modelling reasons. To address the computational issues, we explore connections between th...
Article
Full-text available
Objective: Advances in artificial intelligence (AI) have demonstrated potential to improve medical diagnosis. We piloted the end-to-end automation of the mid-trimester screening ultrasound scan using AI-enabled tools. Methods: A prospective method comparison study was conducted. Participants had both standard and AI-assisted US scans performed....
Preprint
We introduce a new self-supervised task, NSA, for training an end-to-end model for anomaly detection and localization using only normal data. NSA uses Poisson image editing to seamlessly blend scaled patches of various sizes from separate images. This creates a wide range of synthetic anomalies which are more similar to natural sub-image irregulari...
Chapter
Fetal Magnetic Resonance Imaging (MRI) is used in prenatal diagnosis and to assess early brain development. Accurate segmentation of the different brain tissues is a vital step in several brain analysis tasks, such as cortical surface reconstruction and tissue thickness measurements. Fetal MRI scans, however, are prone to motion artifacts that can...
Chapter
Traditional cortical surface reconstruction is time consuming and limited by the resolution of brain Magnetic Resonance Imaging (MRI). In this work, we introduce Pial Neural Network (PialNN), a 3D deep learning framework for pial surface reconstruction. PialNN is trained end-to-end to deform an initial white matter surface to a target pial surface...
Chapter
Analysis of cardiac ultrasound images is commonly performed in routine clinical practice for quantification of cardiac function. Its increasing automation frequently employs deep learning networks that are trained to predict disease or detect image features. However, such models are extremely data-hungry and training requires labelling of many thou...
Chapter
Cardiac ultrasound imaging is used to diagnose various heart diseases. Common analysis pipelines involve manual processing of the video frames by expert clinicians. This suffers from intra- and inter-observer variability. We propose a novel approach to ultrasound video analysis using a transformer architecture based on a Residual Auto-Encoder Netwo...
Chapter
Fetal ultrasound screening during pregnancy plays a vital role in the early detection of fetal malformations which have potential long-term health impacts. The level of skill required to diagnose such malformations from live ultrasound during examination is high and resources for screening are often limited. We present an interpretable, atlas-learn...
Chapter
Supervised learning of every possible pathology is unrealistic for many primary care applications like health screening. Image anomaly detection methods that learn normal appearance from only healthy data have shown promising results recently. We propose an alternative to image reconstruction-based and image embedding-based methods and propose a ne...
Chapter
Chest radiographs are one of the most common diagnostic modalities in clinical routine. It can be done cheaply, requires minimal equipment, and the image can be diagnosed by every radiologists. However, the number of chest radiographs obtained on a daily basis can easily overwhelm the available clinical capacities. We propose RATCHET: RAdiological...
Preprint
Full-text available
We present PRETUS -a Plugin-based Real Time UltraSound software platform for live ultrasound image analysis and operator support. The software is lightweight; functionality is brought in via independent plug-ins that can be arranged in sequence. The software allows to capture the real-time stream of ultrasound images from virtually any ultrasound m...
Preprint
Traditional cortical surface reconstruction is time consuming and limited by the resolution of brain Magnetic Resonance Imaging (MRI). In this work, we introduce Pial Neural Network (PialNN), a 3D deep learning framework for pial surface reconstruction. PialNN is trained end-to-end to deform an initial white matter surface to a target pial surface...
Preprint
Full-text available
There has been much recent work using machine learning to answer causal queries. Most focus on interventional queries, such as the conditional average treatment effect. However, as noted by Pearl, interventional queries only form part of a larger hierarchy of causal queries, with counterfactuals sitting at the top. Despite this, our community has n...
Article
Full-text available
Deep vein thrombosis (DVT) is a blood clot most commonly found in the leg, which can lead to fatal pulmonary embolism (PE). Compression ultrasound of the legs is the diagnostic gold standard, leading to a definitive diagnosis. However, many patients with possible symptoms are not found to have a DVT, resulting in long referral waiting times for pat...
Chapter
Probably yes.—Supervised Deep Learning dominates performance scores for many computer vision tasks and defines the state-of-the-art. However, medical image analysis lags behind natural image applications. One of the many reasons is the lack of well annotated medical image data available to researchers. One of the first things researchers are told i...
Preprint
Analysis of cardiac ultrasound images is commonly performed in routine clinical practice for quantification of cardiac function. Its increasing automation frequently employs deep learning networks that are trained to predict disease or detect image features. However, such models are extremely data-hungry and training requires labelling of many thou...
Preprint
Full-text available
Appropriately representing elements in a database so that queries may be accurately matched is a central task in information retrieval; recently, this has been achieved by embedding the graphical structure of the database into a manifold in a hierarchy-preserving manner using a variety of metrics. Persistent homology is a tool commonly used in topo...
Preprint
Full-text available
Probably yes. -- Supervised Deep Learning dominates performance scores for many computer vision tasks and defines the state-of-the-art. However, medical image analysis lags behind natural image applications. One of the many reasons is the lack of well annotated medical image data available to researchers. One of the first things researchers are tol...
Preprint
Full-text available
Fetal ultrasound screening during pregnancy plays a vital role in the early detection of fetal malformations which have potential long-term health impacts. The level of skill required to diagnose such malformations from live ultrasound during examination is high and resources for screening are often limited. We present an interpretable, atlas-learn...
Preprint
Supervised learning of every possible pathology is unrealistic for many primary care applications like health screening. Image anomaly detection methods that learn normal appearance from only healthy data have shown promising results recently. We propose an alternative to image reconstruction-based and image embedding-based methods and propose a ne...
Preprint
Full-text available
Chest radiographs are one of the most common diagnostic modalities in clinical routine. It can be done cheaply, requires minimal equipment, and the image can be diagnosed by every radiologists. However, the number of chest radiographs obtained on a daily basis can easily overwhelm the available clinical capacities. We propose RATCHET: RAdiological...
Preprint
Cardiac ultrasound imaging is used to diagnose various heart diseases. Common analysis pipelines involve manual processing of the video frames by expert clinicians. This suffers from intra- and inter-observer variability. We propose a novel approach to ultrasound video analysis using a transformer architecture based on a Residual Auto-Encoder Netwo...
Preprint
Intelligent video summarization algorithms allow to quickly convey the most relevant information in videos through the identification of the most essential and explanatory content while removing redundant video frames. In this paper, we introduce the 3DST-UNet-RL framework for video summarization. A 3D spatio-temporal U-Net is used to efficiently e...
Preprint
Human pose estimation is a major computer vision problem with applications ranging from augmented reality and video capture to surveillance and movement tracking. In the medical context, the latter may be an important biomarker for neurological impairments in infants. Whilst many methods exist, their application has been limited by the need for wel...
Article
Fully automatic deep learning has become the state-of-the-art technique for many tasks including image acquisition, analysis and interpretation, and for the extraction of clinically useful information for computer-aided detection, diagnosis, treatment planning, intervention and therapy. However, the unique challenges posed by medical image analysis...
Article
Rendering realistic images with global illumination is a computationally demanding task and often requires dedicated hardware for feasible runtime. Recent research uses Deep Neural Networks to predict indirect lighting on image level, but such methods are commonly limited to diffuse materials and require training on each scene. We present Deep Radi...
Preprint
Full-text available
Deep Vein Thrombosis (DVT) is a blood clot most found in the leg, which can lead to fatal pulmonary embolism (PE). Compression ultrasound of the legs is the diagnostic gold standard, leading to a definitive diagnosis. However, many patients with possible symptoms are not found to have a DVT, resulting in long referral waiting times for patients and...
Chapter
The cerebral cortex performs higher-order brain functions and is thus implicated in a range of cognitive disorders. Current analysis of cortical variation is typically performed by fitting surface mesh models to inner and outer cortical boundaries and investigating metrics such as surface area and cortical curvature or thickness. These, however, ta...
Preprint
Congenital heart disease is considered as one the most common groups of congenital malformations which affects $6-11$ per $1000$ newborns. In this work, an automated framework for detection of cardiac anomalies during ultrasound screening is proposed and evaluated on the example of Hypoplastic Left Heart Syndrome (HLHS), a sub-category of congenita...
Preprint
In medical imaging, outliers can contain hypo/hyper-intensities, minor deformations, or completely altered anatomy. To detect these irregularities it is helpful to learn the features present in both normal and abnormal images. However this is difficult because of the wide range of possible abnormalities and also the number of ways that normal anato...
Chapter
X-Ray imaging is quick, cheap and useful for front-line care assessment and intra-operative real-time imaging (e.g., C-Arm Fluoroscopy). However, it suffers from projective information loss and lacks vital volumetric information on which many essential diagnostic biomarkers are based on. In this paper we explore probabilistic methods to reconstruct...
Article
Deep neural networks exhibit limited generalizability across images with different entangled domain features and categorical features. Learning generalizable features that can form universal categorical decision boundaries across domains is an interesting and difficult challenge. This problem occurs frequently in medical imaging applications when a...
Preprint
Deep neural networks exhibit limited generalizability across images with different entangled domain features and categorical features. Learning generalizable features that can form universal categorical decision boundaries across domains is an interesting and difficult challenge. This problem occurs frequently in medical imaging applications when a...
Chapter
We develop a fully Bayesian framework for non-rigid registration of three-dimensional medical images, with a focus on uncertainty quantification. Probabilistic registration of large images along with calibrated uncertainty estimates is difficult for both computational and modelling reasons. To address the computational issues, we explore connection...
Preprint
The cerebral cortex performs higher-order brain functions and is thus implicated in a range of cognitive disorders. Current analysis of cortical variation is typically performed by fitting surface mesh models to inner and outer cortical boundaries and investigating metrics such as surface area and cortical curvature or thickness. These, however, ta...
Chapter
Learning deep neural networks that are generalizable across different domains remains a challenge due to the problem of domain shift. Unsupervised domain adaptation is a promising avenue which transfers knowledge from a source domain to a target domain without using any labels in the target domain. Contemporary techniques focus on extracting domain...
Chapter
Prenatal screening with ultrasound can lower neonatal mortality significantly for selected cardiac abnormalities. However, the need for human expertise, coupled with the high volume of screening cases, limits the practically achievable detection rates. In this paper we discuss the potential for deep learning techniques to aid in the detection of co...
Chapter
Video is an essential imaging modality for diagnostics, e.g. in ultrasound imaging, for endoscopy, or movement assessment. However, video hasn’t received a lot of attention in the medical image analysis community. In the clinical practice, it is challenging to utilise raw diagnostic video data efficiently as video data takes a long time to process,...
Preprint
Estimating future events is a difficult task. Unlike humans, machine learning approaches are not regularized by a natural understanding of physics. In the wild, a plausible succession of events is governed by the rules of causality, which cannot easily be derived from a finite training set. In this paper we propose a novel theoretical framework to...
Preprint
Learning deep neural networks that are generalizable across different domains remains a challenge due to the problem of domain shift. Unsupervised domain adaptation is a promising avenue which transfers knowledge from a source domain to a target domain without using any labels in the target domain. Contemporary techniques focus on extracting domain...
Preprint
Full-text available
Prenatal screening with ultrasound can lower neonatal mor-tality significantly for selected cardiac abnormalities. However, the needfor human expertise, coupled with the high volume of screening cases,limits the practically achievable detection rates. In this paper we discussthe potential for deep learning techniques to aid in the detection of con-...
Preprint
X-Ray imaging is quick, cheap and useful for front-line care assessment and intra-operative real-time imaging (e.g., C-Arm Fluoroscopy). However, it suffers from projective information loss and lacks vital volumetric information on which many essential diagnostic biomarkers are based on. In this paper we explore probabilistic methods to reconstruct...
Preprint
Full-text available
Video is an essential imaging modality for diagnostics, e.g. in ultrasound imaging, for endoscopy, or movement assessment. However, video hasn't received a lot of attention in the medical image analysis community. In the clinical practice, it is challenging to utilise raw diagnostic video data efficiently as video data takes a long time to process,...
Preprint
When data is unlabelled and the target task is not known a priori, divergent search offers a strategy for learning a wide range of skills. Having such a repertoire allows a system to adapt to new, unforeseen tasks. Unlabelled image data is plentiful, but it is not always known which features will be required for downstream tasks. We propose a metho...
Preprint
Full-text available
We introduce Geomstats, an open-source Python toolbox for computations and statistics on nonlinear manifolds, such as hyperbolic spaces, spaces of symmetric positive definite matrices, Lie groups of transformations, and many more. We provide object-oriented and extensively unit-tested implementations. Among others, manifolds come equipped with fami...