
Berkley Walker- PhD
- Professor (Assistant) at Michigan State University
Berkley Walker
- PhD
- Professor (Assistant) at Michigan State University
About
85
Publications
19,003
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,333
Citations
Introduction
Current institution
Additional affiliations
August 2018 - present
July 2013 - October 2015
January 2016 - April 2016
Publications
Publications (85)
Photorespiration, a central aspect of plant metabolism that is tightly connected to photosynthesis, functions in part to support photosynthetic performance, especially under stress conditions such as high light. However, our understanding of the mechanisms underlying the role and regulation of photorespiration in plant response to high light is lim...
The thermoacidophilic red alga Cyanidioschyzon merolae survives its challenging environment likely in part by operating a carbon-concentrating mechanism (CCM). Here, we demonstrated that C. merolae’s cellular affinity for CO2 is stronger than the affinity of its rubisco for CO2. This finding provided additional evidence that C. merolae operates a C...
As global temperatures rise, improving crop yields will require enhancing the thermotolerance of crops. One approach for improving thermotolerance is using bioengineering to increase the thermostability of enzymes catalysing essential biological processes. Photorespiration is an essential recycling process in plants that is integral to photosynthes...
Plant metabolism faces a challenge of investing enough enzymatic capacity to a pathway without overinvestment. As it takes energy and resources to build, operate, and maintain enzymes, there are benefits and drawbacks to accurately matching capacity to the pathway influx. The relationship between functional capacity and physiological load could be...
C3 photosynthesis can be complemented with a C4 carbon concentrating mechanism (CCM) to minimize photorespiratory losses. C4 photosynthesis is often more efficient than C3 under steady‐state conditions. However, the C4 CCM depends on inter‐cellular metabolite concentration gradients, which must increase following increases in light intensity and co...
Leaves experience near-constant light fluctuations daily. Past studies have identified many limiting factors of slow photosynthetic induction when leaves transition from low light to high light. However, the contribution of photorespiration in influencing photosynthesis during transient light conditions is largely unknown. This study employs dynami...
The metabolism of tetrahydrofolate (H 4 PteGlu n )‐bound one‐carbon (C 1 ) units (C 1 metabolism) is multifaceted and required for plant growth, but it is unclear what of many possible synthesis pathways provide C 1 units in specific organelles and tissues. One possible source of C 1 units is via formate‐tetrahydrofolate ligase, which catalyzes the...
Balancing the ATP: NADPH demand from plant metabolism with supply from photosynthesis is essential for preventing photodamage and operating efficiently, so understanding its drivers is important for integrating metabolism with the light reactions of photosynthesis and for bioengineering efforts that may radically change this demand. It is often ass...
Isotopically nonstationary metabolic flux analysis (INST-MFA) is a powerful technique for studying plant central metabolism, which involves introducing a 13CO2 tracer to plant leaves and sampling the labeled metabolic intermediates during the transient period before reaching an isotopic steady state. The metabolic intermediates involved in the C3 c...
Measures of respiration in the light and Ci* are crucial to the modeling of photorespiration and photosynthesis. This chapter provides background on the equations used to model C3 photosynthesis and the history of the incorporation of the effects of rubisco oxygenation into these models. It then describes three methods used to determine two key par...
Leaf-level gas exchange is widely used to investigate the largest carbon fluxes in illuminated leaves, offering a nondestructive way to investigate the impact of photorespiration on plant carbon balance. Modern commercial gas exchange systems allow high temporal resolution measurements under changing environments, aiding the development of nonstead...
We describe an assay for measuring the activity of D-glycerate 3-kinase (GLYK) in a 96-well microplate format with the use of a set of coupling enzymes. The assay is appropriate for use with a crude protein extract prepared from leaf tissue and with the recombinant purified enzyme. The 96-well microplate format reduces the needed amounts of reagent...
Leaf-level gas exchange enables accurate measurements of net CO2 assimilation in the light, as well as CO2 respiration in the dark. Net positive CO2 assimilation in the light indicates that the gain of carbon by photosynthesis offsets the photorespiratory loss of CO2 and respiration of CO2 in the light (RL), while the CO2 respired in the dark is ma...
Determining enzyme activities involved in photorespiration, either in a crude plant tissue extract or in a preparation of a recombinant enzyme, is time-consuming, especially when large number of samples need to be processed. This chapter presents a phosphoglycolate phosphatase (PGLP) activity assay that is adapted for use in a 96-well microplate fo...
Carbon concentrating mechanisms (CCMs) have evolved numerous times in photosynthetic organisms. They elevate the concentration of CO2 around the carbon-fixing enzyme rubisco, thereby increasing CO2 assimilatory flux and reducing photorespiration. Biophysical CCMs, like the pyrenoid-based CCM of Chlamydomonas reinhardtii or carboxysome systems of cy...
Photorespiration is an essential process related to photosynthesis that is initiated following the oxygenation reaction catalyzed by rubisco, the initial enzyme of the Calvin–Benson–Bassham cycle. This reaction produces an inhibitory intermediate that is recycled back into the Calvin–Benson–Bassham cycle by photorespiration which requires the use o...
As global temperatures rise, maintaining and improving crop yields will require enhancing the thermotolerance of crops. One approach for improving thermotolerance is using bioengineering to increase the thermostability of enzymes catalyzing essential biological processes. Photorespiration is an essential recycling process in plants that is integral...
Measurements of in vivo photosynthesis are powerful tools that probe the largest fluxes of carbon and energy in an illuminated leaf, but often the specific techniques used are so varied and specialized that it is difficult for researchers outside the field to select and perform the most useful assays for their research questions. The goal of this c...
The thermoacidophilic red alga Cyanidioschyzon merolae survives its challenging environment likely in part by operating a carbon-concentrating mechanism (CCM). Here, we demonstrated that cellular affinity of C. merolae for CO2 is stronger than the rubisco affinity of C. merolae for CO2. This provided further evidence that C. merolae operates a CCM...
The net CO2 assimilation (A) response to intercellular CO2 concentration (Ci) is a fundamental measurement in photosynthesis and plant physiology research. The conventional A/Ci protocols rely on steady-state measurements and take 15-40 minute per measurement, limiting data resolution or biological replication. Additionally, there are several CO2 p...
Gas exchange measurements enable mechanistic insights into the processes that underpin carbon and water fluxes in plant leaves which in turn inform understanding of related processes at a range of scales from individual cells to entire ecosytems. Given the importance of photosynthesis for the global climate discussion it is
important to (a) foster...
Poster presentation of DOE review of Great Lakes Bioenergy Research Center
Carbon Concentrating Mechanisms (CCMs) have evolved numerous times in photosynthetic organisms. They elevate the concentration of CO2 around the carbon-fixing enzyme rubisco, thereby increasing CO2 assimilatory flux and reducing photorespiration. Biophysical CCMs, like the pyrenoid-based CCM of Chlamydomonas reinhardtii or carboxysome systems of cy...
Photorespiration consumes substantial amounts of energy in the forms of adenosine triphosphate (ATP) and reductant making the pathway an important component in leaf energetics. Because of this high reductant demand, photorespiration is proposed to act as a photoprotective electron sink. However, photorespiration consumes more ATP relative to reduct...
Photorespiration (PR) is the pathway that detoxifies the product of the oxygenation reaction of Rubisco. It has been hypothesized that in dynamic light environments, PR provides a photoprotective function. To test this hypothesis, we characterized plants with varying PR enzyme activities under fluctuating and non-fluctuating light conditions. Contr...
Increase photorespiration and optimising intrinsic water use efficiency are unique challenges to photosynthetic carbon fixation at elevated temperatures. To determine how plants can adapt to facilitate high rates of photorespiration at elevated temperatures while also maintaining water-use efficiency, we performed in-depth gas exchange and biochemi...
A long‐standing question in perennial grass breeding and physiology is whether yield improvement strategies could compromise winter survival. Since perennial grasses rely on stored carbohydrates for winter maintenance and spring regrowth, yield improvement strategies could reduce winter survival if they increase biomass and grain yields at the expe...
Light respiration (RL) is an important component of plant carbon balance and a key parameter in photosynthesis models. RL is often measured using the Laisk method, a gas exchange technique that is traditionally employed under steady-state conditions. However, a non-steady-state dynamic assimilation technique (DAT) may allow for more rapid Laisk mea...
[This corrects the article DOI: 10.3389/fpls.2022.1023571.].
Carbonic anhydrases (CAs) are ubiquitous enzymes that accelerate the reversible conversion of CO2 to HCO3 - . The Arabidopsis genome encodes members of the α, β, and γ-CA families, and it has been hypothesized that βCA activity has a role in photosynthesis. In this work, we tested this hypothesis by characterizing the two plastidial βCAs, βCA1, and...
Cyanidioschyzon merolae is an extremophilic red microalga which grows in low-pH, high-temperature environments. The basis of C. merolae’s environmental resilience is not fully characterized, including whether this alga uses a carbon-concentrating mechanism (CCM). To determine if C. merolae uses a CCM, we measured CO2 uptake parameters using an open...
Humans have been harnessing biology to make valuable compounds for generations. From beer and biofuels to pharmaceuticals, biology provides an efficient alternative to industrial processes. With the continuing advancement of molecular tools to genetically modify organisms, biotechnology is poised to solve urgent global problems related to environme...
To defend themselves in the face of biotic stresses, plants employ a sophisticated immune system that requires the coordination of other biological and metabolic pathways. Photorespiration, a byproduct pathway of oxygenic photosynthesis that spans multiple cellular compartments and links primary metabolisms, plays important roles in defense respons...
The initial reaction of CO2 fixation has a shared specificity with oxygen, resulting in the formation of 2-phosphoglycolate, an inhibitory sugar. 2-phosphoglycolate is detoxified by photorespiration, but this recycling requires energy and releases carbon, substantially reducing rates of net CO2 fixation in many crop plants. Many strategies are in d...
Leaf photosynthesis of perennial grasses usually decreases markedly from early to late summer, even when the canopy remains green and environmental conditions are favorable for photosynthesis. Understanding the physiological basis of this photosynthetic decline reveals the potential for yield improvement. We tested the association of seasonal photo...
Photorespiration is an essential process juxtaposed between plant carbon and nitrogen metabolism that responds to dynamic environments. Photorespiration recycles inhibitory intermediates arising from oxygenation reactions catalysed by Rubisco back into the C3 cycle, but it is unclear what proportions of its nitrogen-containing intermediates (glycin...
Plants use light energy to produce ATP and redox equivalents for metabolism. Since during the course of a day plants are exposed to constantly fluctuating light, the supply of ATP and redox equivalents is also fluctuating. Further, if the metabolism cannot use all of the supplied energy, the excess absorbed energy can damage the plant in the form o...
Photorespiration is a dynamic process that is intimately linked to photosynthetic carbon assimilation. There is a growing interest in understanding carbon assimilation during dynamic conditions, but the role of photorespiration under these dynamic conditions is unclear. In this review, we discuss recent work relevant to the function of photorespira...
Photosynthetic organisms possess a variety of mechanisms to achieve balance between absorbed light (source) and the capacity to metabolically utilize or dissipate this energy (sink). While regulatory processes that detect changes in metabolic status/balance are relatively well studied in plants, analogous pathways remain poorly characterized in pho...
Photorespiration recovers carbon that would be otherwise lost following the oxygenation reaction of rubisco and production of glycolate. Photorespiration is essential in plants and recycles glycolate into usable metabolic products through reactions spanning the chloroplast, mitochondrion, and peroxisome. Catalase in peroxisomes plays an important r...
Modern agriculture couples photosynthetic energy with human‐applied energy supplements (e.g., fertilizers, labor, cultivation) to feed a growing population. These energy supplements usually come from fossil fuels, presenting an opportunity to decrease fossil fuel required per calorie by improving photosynthetic efficiency. To quantify how improving...
Photosynthetic organisms possess a variety of mechanisms to achieve balance between absorbed light (source) and the capacity to metabolically utilize or dissipate this energy (sink). While regulatory processes that detect changes in metabolic status/balance are relatively well-studied in plants, analogous pathways remain poorly characterized in pho...
Photorespiration recovers carbon that would be otherwise lost following the oxygenation reaction of rubisco and production of glycolate. Photorespiration is essential in plants and recycles glycolate into usable metabolic products through reactions spanning the chloroplast, mitochondrion, and peroxisome. Catalase in peroxisomes plays an important r...
The effect of including triose phosphate utilization (TPU) on parameterization of the Farquhar, von Caemmerer, Berry model of photosynthetic gas exchange measurements is explored. Better fits to data are found even though TPU rarely limits photosynthesis under physiological conditions.
Background
We report a method to estimate carbon assimilation based on isotope ratio-mass spectrometry (IRMS) of ¹³ CO 2 labeled plant tissue. Photosynthetic carbon assimilation is the principal experimental observable which integrates important aspects of primary plant metabolism. It is traditionally measured through gas exchange. Despite its cent...
Respiration in the light (RL) releases CO2 in photosynthesizing leaves and is a phenomenon that occurs independently from photorespiration. Since RL lowers net carbon fixation, understanding RL could help improve plant carbon-use efficiency and models of crop photosynthesis. Although RL was identified more than 75 years ago, its biochemical mechani...
We explored the effects, on photosynthesis in cowpea (Vigna unguiculata) seedlings, of high temperature and light — environmental stresses that often co‐occur under field conditions and can have greater impact on photosynthesis than either by itself. We observed contrasting responses in the light and carbon assimilatory reactions, whereby in high t...
Leaf-level gas exchange data support the mechanistic understanding of plant fluxes of carbon and water. These fluxes inform our understanding of ecosystem function, are an important constraint on parameterization of terrestrial biosphere models, are necessary to understand the response of plants to global environmental change, and are integral to e...
The chloroplastic 2-oxaloacetate/malate transporter (OMT1 or DiT1) takes part in the malate valve that protects chloroplasts from excessive redox poise through export of malate and import of oxaloacetate (OAA). Together with the glutamate/malate transporter (DCT1 or DiT2), it connects carbon with nitrogen assimilation, by providing 2-oxoglutarate f...
The chloroplastic oxaloacetate/malate transporter (OMT1 or DiT1) takes part in the malate valve that protects chloroplasts from excessive redox poise through export of malate and import of oxaloacetate (OAA). Together with the glutamate/malate transporter (DCT1 or DiT2), it connects carbon with nitrogen assimilation, by providing α-ketoglutarate fo...
Given their ability to harness chemical energy from the sun and generate the organic compounds necessary for life, photosynthetic organisms have the unique capacity to act simultaneously as their own power and manufacturing plant. This dual capacity presents many unique challenges, chiefly that energy supply must be perfectly balanced with energy d...
Computer models are commonly used to represent a wide range of real systems, but they often involve some unknown parameters. Estimating the parameters by collecting physical data becomes essential in many scientific fields, ranging from engineering to biology. However, most of the existing methods are developed under a homoscedastic error assumptio...
The evolution of C4 photosynthesis led to an increase in carbon assimilation rates and plant growth compared to C3 photosynthetic plants. This enhanced plant growth, in turn, affected the requirement for soil-derived mineral nutrients. However, mineral plant nutrition has scarcely been considered in connection with C4 photosynthesis. Sulfur is cruc...
Measurements of in vivo photosynthesis are powerful tools that probe the largest fluxes of carbon and energy in an illuminated leaf, but often the specific techniques used are so varied and specialized that it is difficult for researchers outside the field to select and perform the most useful assays for their research questions. The goal of this c...
Rapidly changing light conditions can reduce carbon gain and productivity in field crops because photosynthetic responses to light fluctuations are not instantaneous. Plant responses to fluctuating light occur across levels of organizational complexity from entire canopies to the biochemistry of a single reaction and across orders of magnitude of t...
The co-ordinated positioning of veins, mesophyll cells and stomata across a leaf is crucial for efficient gas exchange and transpiration, and therefore for overall function. In monocot leaves, stomatal cell files are positioned at the flanks of underlying longitudinal leaf veins, rather than directly above or below. This pattern suggests either tha...
The hypothesis that reducing chlorophyll content (Chl) can increase canopy photosynthesis in soybeans was tested using an advanced model of canopy photosynthesis. The relationship between leaf Chl, leaf optical properties, and photosynthetic biochemical capacity were measured in 67 soybean accessions showing large variation in leaf Chl. These relat...
Rates of carbon dioxide assimilation through photosynthesis are readily modeled using the Farquhar, von Caemmerer, and Berry (FvCB) model based on the biochemistry of the initial Rubisco-catalyzed reaction of net C3 photosynthesis. As models of CO2 assimilation rate are used more broadly for simulating photosynthesis among species and across scales...
Photorespiration is an energy-intensive process that recycles 2-phosphoglycolate, a toxic product of the RubisCO oxygenation reaction. The photorespiratory pathway is highly compartmentalized, involving the chloroplast, peroxisome, cytosol and mitochondria. Though the soluble enzymes involved in photorespiration are well characterized, very few mem...
Global climate change caused by the emission of anthropogenic greenhouse gasses (GHGs) is a grand challenge to humanity. To alleviate the trend, the consumption of fossil fuels needs to be largely reduced and alternative energy technologies capable of controlling GHG emissions are anticipated. In this study, we introduced a synthetic reductive pent...
Photorespiration recycles fixed carbon following the oxygenation reaction of Ribulose, 1–5, carboxylase oxygenase (Rubisco). The recycling of photorespiratory C2 to C3 intermediates is not perfectly efficient and reduces photosynthesis in C3 plants. Recently, a plastidic glycolate/glycerate transporter (PLGG1) in photorespiration was identified in...
The group of homoiochlorophyllous resurrection plants evolved the unique capability to survive severe drought stress without dismantling the photosynthetic machinery. This implies that they developed efficient strategies to protect the leaves from reactive oxygen species (ROS) generated by photosynthetic side reactions. These strategies, however, a...
Photorespiration is essential for C3 plants but operates at the massive expense of fixed carbon dioxide and energy. Photorespiration is initiated when the initial enzyme of photosynthesis, ribulose-1,5-bisphosphate carboxylase/ oxygenase (Rubisco), reacts with oxygen instead of carbon dioxide and produces a toxic compound that is then recycled by p...
Biochemical models of leaf photosynthesis, which are essential for understanding the impact of photosynthesis to changing environments, depend on accurate parameterizations. One such parameter, the photorespiratory CO2 compensation point can be measured from the intersection of several CO2 response curves measured under sub-saturating illumination....
Rubisco activase (RCA) is essential for the activation of Rubisco, the carboxylating enzyme of photosynthesis. In Arabidopsis, RCA is composed of a large RCAα and small RCAβ isoform that are formed by alternative splicing of a single gene (At2g39730). The activity of Rubisco is controlled in response to changes in irradiance by regulation of RCA ac...
Recycling of the 2-phosphoglycolate generated by the oxygenase reaction of Rubisco requires a complex and energy-consuming
set of reactions collectively known as the photorespiratory cycle. Several approaches aimed at reducing the rates of photorespiratory
energy or carbon loss have been proposed, based either on screening for natural variation or...
There is growing interest in accurate and comparable measurements of the CO2 photocompensation point (Γ*), a vital parameter to model leaf photosynthesis. The Γ* is measured as the common intercept of several CO2 response curves, but this method may incorrectly estimate Γ(*) by using linear fits to extrapolate curvilinear responses and single condu...
Photosynthesis captures light energy to produce ATP and NADPH. These molecules are consumed in the conversion of CO2 to sugar, photorespiration, and NO3(-) assimilation. The production and consumption of ATP and NADPH must be balanced to prevent photoinhibition or photo-damage. This balancing may occur via cyclic electron flow around photosystem I...
Unequal absorption of photons between photosystems I and II, and between bundle sheath and mesophyll cells are likely to affect the efficiency of the CO2 concentrating mechanism in C4 plants. Under steady state conditions it is expected that the biochemical distribution of energy (ATP and NADPH) and photosynthetic metabolite concentrations will adj...
Biochemical models of photosynthesis use the temperature dependency of ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) kinetics and mesophyll conductance to CO 2 ( g m ). However, the in vivo temperature response of Rubisco kinetics and g m has only been measured in the warm adapted Nicotiana tabacum; therefore, we determined these parame...
The CO2 compensation point in the absence of day respiration (Γ*) is a key parameter for modelling leaf CO2 exchange. Γ* links the kinetics of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) with the stoichiometry of CO2 released per Rubisco oxygenation from photorespiration (α), two essential components of biochemical models of photosynt...
Recycling of carbon by the photorespiratory pathway involves enzymatic steps in the chloroplast, mitochondria, and peroxisomes. Most of these reactions are essential for plants growing under ambient CO2 concentrations. However, some disruptions of photorespiratory metabolism cause subtle phenotypes in plants grown in air. For example, Arabidopsis
t...