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Abstract. Phylogenetic2 trees based on gene reper-
toires are remarkably similar to the current consensus
of life history. Yet it has been argued that shared gene
content is unreliable for phylogenetic reconstruction
because of convergence in gene content due to hori-
zontal gene transfer and parallel gene loss. Here we
test this argument, by filtering out as noise those
orthologous groups that have an inconsistent phylo-
genetic distribution, using two independent methods.
The resulting phylogenies do indeed contain small
but significant improvements. More importantly, we
find that the majority of orthologous groups contain
some phylogenetic signal and that the resulting phy-
logeny is the only detectable signal present in the gene
distribution across genomes. Horizontal gene transfer
or parallel gene loss does not cause systematic biases
in the gene content tree.

Key words: Genome phylogeny — Horizontal
gene transfer — Gene loss — Genome evolution
— Character weighting — Thermophilic Bacteria

Introduction

With the availability of complete genome sequences, it
has become possible to use the information contained
in whole genomes to infer phylogenies (for a review see

Wolf et al. 2002). Genome trees are created in an at-
tempt to combine all the phylogenetic messages in all
the genes. The main idea is that one can obtain a more
representative phylogeny by averaging out the con-
founding signals in single gene trees. It has been argued
that the gene repertoire is a phenetic character (Doo-
little 1999a;Gogarten et al. 2002) and that gene content
can undergo convergence through selective pressures.
Thus, some of the processes that impair single gene
trees, such as horizontal transfer (Doolittle 1999b) and
parallel loss of related genes (Snel et al. 2002;Wolf et al.
2002), can, when frequent enough, also affect genome
trees. For example, some phenotypic characteristics,
such as a parasitic lifestyle, are reflected in a similarity
in the functional classes of genes in the genome
(Zomorodipour and Andersson 1999).

It is true that gene content is a more phenotypic
character than gene sequence. After all, the gene rep-
ertoire determines the phenotype of an organism. We
have argued that gene content phylogenies take a po-
sition intermediate to phylogenies based on single
genes and phylogenies based on phenotypic charac-
teristics (Snel et al. 1999). However sequence evolution
can also reflect the phenotype, e.g., thermophily is
reflected in the amino acid content of a genome
(Cambillau and Claverie 2000; Kreil and Ouzounis
2001; Suhre and Claverie 2003), and in general se-
quence-based phylogenetics can suffer from homo-
plastic events. Fast-evolving positions create a
problem when inferring ancient phylogenetic rela-
tionships, adding noise rather than signal to the data

J Mol Evol (2004) 58:527–539
DOI: 10.1007/s00239-003-2575-6

Correspondence to: Bas E. Dutilh, Toernooiveld 1, 6525 ED,

Nijmegen, The Netherlands; email: dutilh@cmbi.kun.nl



(Gribaldo and Philippe 2002). Unless parallel gene loss
and horizontal gene transfer occur along demarcated
transfer routes, these processes will also only add
noise. Sequence analysis has developed tools to iden-
tify and remove this noise (Bruno et al. 2000;Goldstein
and Pollock 1994). Because the gene presence/absence
profile is a binary sequence in all organisms, we can use
similar tools to remove noise from genome phyloge-
nies (Brown et al. 2001; Clarke et al. 2002). Clarke et
al. (2002) suggested an implementation in which they
rid the genome of phylogenetically discordant signals
(PDSs) by applying a filter that identified horizontal
transfers as sequences with an irregular ranking of the
BLAST expectancy values of their orthologs. Re-
moving these PDSs did improve bootstrap support for
basal nodes in the phylogeny but, aside from that, al-
tered hardly any topological features.

In the current investigations, we reduce the impact
of noise in gene content phylogenies by two schemes
that treat the presence/absence profiles as sequence
alignments. As we identify PDSs by examining their
species distribution, we avoid the pitfalls inherent in
sequence analysis, unlike Clarke et al. (2002), who
reverted to sequence comparison for identification of
the PDSs. By using both orthology and sequence
information, Clarke et al. try to combine possibly
inconsistent sources of information. This approach
can be expected to erroneously identify sequences in
rapidly evolving lineages as phylogenetically dis-
cordant. Our approach should be less sensitive to this
long-branch artifact, as the orthology assignment
(Tatusov et al. 2001; von Mering et al. 2003) suffers
from this problem only to a small extent. We identify
as PDSs instances of horizontal gene transfer, and
contrary to Clarke et al. (2002), our schemes also
identify parallel gene loss as PDS. As we take
orthologous groups as the starting material, orthol-
ogous gene displacement within an orthologous
group is not identified as a discordant signal.

The coding of genomes as binary sequences allows
our approaches to deal with noise from fast-evolving
positions. First, we use a method that finds PDSs in a
reconstructed genome phylogeny and removes them
from the data set. To properly incorporate changes,
construction of phylogenies, and identification and
removal of PDSs are repeated iteratively until the
trees converge. To further test whether the phylo-
genetic signal in gene content is the only dominant
signal, we also used this approach to determine to
which topology our trees converge from 100 different
random initial topologies.

Second, we use an adapted method that was
originally developed for assessing amino acid
sequences (Bruno 1996). Assigning high weights to
the clade specific genes, and low weights to genes that
evolve rapidly, we were able to scale down the impact
of noisy signals and infer a filtered phylogeny.

Methods

Orthology

To be able to compare genomes based on their gene content, it is

first necessary to identify which genes are shared between genomes,

i.e., which genes are orthologs. Orthologs are genes in different

species that are directly related by vertical inheritance (Fitch 1970).

Paralogs are genes within a species that are derived from gene

duplication. If a group of paralogs in a certain species has dispersed

after the latest speciation event, all these genes will have the same

orthology relationship with their relatives in the sister species.

Thus, groups of orthologs will best represent the ancestral rela-

tionships of a collection of genes in a set of species.

Inferring orthology relationships is far from trivial, especially

because orthology has been defined for the comparison between

two species (Fitch 1970). It is not unusual in comparative genomics

to define as orthologs those homologs that have a BLAST expec-

tation value lower than a certain threshold (e.g., Bansal and Meyer

2002; Fitz-Gibbon and House 1999). Another operational defini-

tion of orthology that is often used is that of reciprocal best

BLAST matches (called BeTs [Tatusov et al. 1997], BBHs [Tama-

mes 2001], or RBMs [Clarke et al. 2002]). Although this definition

will be a closer approximation of the evolutionary definition of

orthology than the close homologs method, it does not give us

directly a group orthology that is best suited for our study. A very

suitable database of groups of orthologous genes is the manually

curated COG database (Clusters of Orthologous Groups of Pro-

teins; NCBI; see www.ncbi.nlm.nih.gov/COG [Tatusov et al.

1997]). Within each of the 3166 COGs, the proteins are assumed to

have evolved from the same ancestral gene, and if present, the COG

is represented by an individual protein or a group of paralogs

within a certain species. We use this database, extended by von

Mering et al. (2003) to a current total of 19,433 orthologous groups

(OGs) in 89 completely sequenced genomes (for more information

see www.bork.embl-heidelberg.de/STRING), to compare these

organisms on the basis of their gene content.

Distance Measure

For each OG, a binary profile was created, indicating its presence

(1) or absence (0) in the 89 genomes considered (see Fig. 1). Using

these profiles as a similarity measure, a matrix was made containing

the distances between all species according to Eq. (1) (Korbel et al.

2002).

distðA;BÞ ¼ 1� shared OGsðA;BÞ
ð

ffiffiffi

2
p

� size A � size BÞ=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

size A2 þ size B2
p

Þ
ð1Þ

As larger genomes can share more genes, we normalize the

number of shared OGs by dividing by the weighted average genome

size (see Eq. (1) [Korbel et al. 2002]), where the genome size is

defined as the number of considered OGs in the genome. Other

approaches for normalization such as division by the smallest of

the two genomes, or by the geometric average of the genome sizes,

show an inferior fit to the relation between genome size and the

number of shared genes (not shown). The distance is calculated by

subtracting the resulting similarity fraction from 1 (see Eq. [1]).

Iterative Removal of Phylogenetically Discordant
Signals (PDSs)

The idea of the iterative method is to compare the presence/absence

profile of every OG to the phylogeny to determine to what extent it

can be considered discordant. Those OGs that are discordant ac-
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cording to a certain threshold are then removed, and a new phy-

logeny is inferred from the remaining profiles. This means that we

need a first instance phylogeny to identify the first PDSs and start

the iterations. In the standard runs, this was done by using the

distance matrix calculated from all the OGs to construct a first

instance neighbor-joining tree (Saitou and Nei 1987) using Neigh-

bor (Felsenstein 1989). We also started 100 runs from randomized

initial topologies.

The profile of every OG was then compared to the tree to de-

termine to what extent its distribution was monophyletic. To do so,

we counted the number of subtrees in which all the leaves contain

the OG in question (i.e., all species in this partition have a 1 in the

presence/absence profile; see Fig. 1). The number of completely

covered subtrees was used to calculate a score for how mono-

phyletic the distribution is. For a given number of species, the score

lay between the average coverage of 1000 randomly generated

profiles in the first instance neighbor-joining tree (lower bound, set

to 0) and the maximum number of partitions possibly covered by

this number of species (upper bound, set to 1). The maximum

number of tree partitions covered by a profile depends on the

number of species in which the OG is present, according to Eq. (2).

Equation (2) is based on the number of partitions in a rooted tree,

as every bipartition defines a rooted subtree in the entire phylogeny

(cf. Fig. 1).

max covered partitions ¼ 2 � species� 1 ð2Þ

The resulting4 coverage score, which can be compared between

OGs present in any number of species, allows us to choose a

threshold. OGs that scored below this threshold were removed

from the data set, and a new distance matrix and neighbor-joining

tree were computed based on the remaining profiles. For every

threshold score, this procedure was iterated until convergence was

established. Note that convergence to a limit cycle of phylogenies is

possible as OGs are allowed to return to the data set if, in the new

tree, their profile does cover sufficient branches. After each con-

vergence, we increased the threshold in a simulated annealing-like

approach (Kirkpatrick et al. 1983). In the work presented here, we

chose 10 annealing steps of 0.1 each (the horizontal lines in Fig. 2).

Taking smaller annealing steps (e.g., 50 steps of 0.02 each) did not

result in different phylogenies (not shown).

Weighting Method

As an alternative to the above method based on counting subtrees

that share a gene, we employed a method that was originally de-

veloped to address the sequence weighting problem in amino acid

multiple sequence alignments. The Rind program (Bruno 1996)

uses a simple maximum likelihood model to estimate the frequency

of characters on the tree and corrects for phylogenetic correlations.

The Rind frequency gives an estimate of the number of times a

character appeared de novo in evolution (Bruno 1996). If a char-

acter appears throughout a clade consisting of short branches, it is

assiged a lower frequency than a gene that appears throughout a

clade of the same number of taxa but is made of long branches. If

the monophyly of a clade is disrupted by taxon with an inconsistent

character, this will have a smaller effect if the branch length of that

taxon is longer.

As the presence/absence profiles of the OGs in all species can be

seen as a multiple sequence alignment, we were able to run the Rind

program on these binary sequences. Genes or columns that have a

low Rind frequency, but are relatively abundant according to the

raw data, are very clade specific. Thus, to get a score for the

monophyly of each character, we divided the raw gene frequency

by the Rind frequency. We scaled these scores so that the lowest

received a weight of 0 and the highest got a weight of 1, and

inferred a neighbor-joining tree as explained above, using the

scores to assign weights to each OG.

Assessing Tree Quality

To determine how well the distances in the distance matrix were

represented in the neighbor-joining tree, a new distance matrix was

derived from the tree, by measuring the distances along the

branches between all species pairs. The total difference between all

the corresponding values in the two distance matrices was calcu-

lated and is expressed as a fraction of the average total distance in

the trees. This gives a measure for how well the neighbor-joining

tree represents the distance matrix.

We assessed the reliability of the genome tree by counting how

often of the partitions occurred in 100 phylogenies constructed by

resampling 100% of the OGs with replacement (bootstrapping).

Reference Trees

For reference, we used a SSU rRNA tree and an (unresolved)

reference phylogeny from the NCBI taxonomy database

(www.ncbi.nlm.nih.gov/Taxonomy [Wheeler et al. 2000]). The

rRNA tree is based on a database of expert aligned SSU rRNA

sequences of all the species present in the current investigations

(www.rna.icmb.utexas.edu [Cannone et al. 2002]). If the correct

species was not available, a SSU rRNA sequence from a closely

related organism was chosen; if multiple sequences per species were

available, the longest and most reliable was selected. We used

Clustal to construct a simple neighbor-joining tree based on this

alignment (Thompson et al. 1994).

Results

The Choice for a Distance-Based Phylogeny

At first glance, the genome size effect and the con-
comitant parallel loss of genes should be represented
by the Dollo parsimony (Farris 1977). This method is
based on the idea that in evolution it is harder to gain
a complex feature than to lose it, and we assert that a
gene or orthologous group (OG) is such a complex
feature that can only be independently gained by
horizontal gene transfer. In a given phylogenetic tree,
the Dollo algorithm explains the distribution of a
character by allowing one origin (i.e., a change from 0
to 1) and as many reversions (1 to 0) as are necessary
to explain the pattern of states seen. It then searches
for the tree that minimizes the number of 1-to-0 re-

Fig. 1. Example of an OG profile that shows its presence in 7

species (the OG is absent from the rest of the 89 species; not dis-

played). The profile covers the maximum number of subtrees in this

phylogeny (i.e., 7 leaf nodes +6 internal nodes = 13). The species

abbreviations are explained in the legend to Fig. 3.
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versions. Although this approach performs slightly
better than standard parsimony (not shown), the re-
sulting phylogeny still contains many errors including
the clustering of small genomes. Likewise a maximum
likelihood approach, such as implemented in
MrBayes (Huelsenbeck and Ronquist 2001), in which
the presence/absence of OGs was treated as the
presence/absence of phenotypic characteristics, did
not result in the clustering of the small parasitic ge-
nomes with their close relatives with large genomes.

In general, the main caveat of off-the-shelf parsi-
mony or maximum likelihood methods is that they
treat the evolution of each character independently.
A model for genome evolution has to take variations
in the number of genes present in a genome explicitly
into account, as has been done for distance-based
gene content phylogenies (Korbel et al. 2002). It is
not the aim of this work to build a model but rather
to develop methods to identify and filter out phylo-
genetic noise based on the presence/absence pattern
of genes, and for that distance-based gene content
phylogenies suffice.

The Signal in Gene Content

Phylogenetic Signal in Most of the OGs. Prior to
iterating, we establish which OGs behave discord-
antly, based on the genome tree of the complete data
set. This comparison already reveals how well the tree
represents the data, as most of the OGs (13,375 of
19,433 = 69%; see Table 1) have a presence/absence
profile that is (to a certain extent) consistent with the
initial phylogeny based on all the OGs. Profiles that
are present in only a few species are more likely to be
either perfect or worse than random; the 31% of the

OGs that had a negative coverage score contained an
average of only 2.8 species. The rest of the OGs cover
more subtrees than random profiles would and have a
positive coverage score (see Fig. 2). All these profiles
are consistent with the genome tree of the complete
data set (lowest simulated annealing threshold). No
fewer than 5320 of the OGs (27%) are even com-
pletely in accordance with the first iteration neighbor-
joining tree (they have a coverage score of 1). Many
of these ‘‘perfect’’ OGs are present in the same few
species; e.g., large groups of over 300 OGs with the
same profiles occur between two species like the
Ascomycota (352), the Cyanobacteria (341), the
Methanosarcinales (364), the Sulfolobaceae (335), or
the Xanthomonadaceae (305), but also between a
three-species Mammalia–Drosophila group (579), and
between the four Metazoa (890) included in this data
set. All the OGs in these large groups are nonsuper-
vised orthologous groups (NOGs) from the extended
data set of von Mering et al. (2003). The other 2154
‘‘perfect’’ OGs are distributed over only 90 different
profiles, among which there are profiles specific for
groups such as the 16 Archaea, the 24 Archaea (16)
plus Eukaryotes (8), and the 8 a-proteobacteria.
Some of the larger groups can be seen as clusters on
the line y = 1 in Fig. 2.

Results from Iterations. The first instance tree
(Fig. 3) is already quite similar to the SSU rRNA
reference phylogeny and the NCBI taxonomy (see
Table 1). This confirms that gene content contains a
strong phylogenetic signal (Fitz-Gibbon and House
1999; Snel et al. 1999; Tekaia et al. 1999). Through-
out the iterations, this signal is shown be persistent in
the evolving genome tree, and the phylogeny inferred

Fig. 2. The coverage score of all the OGs in the

first iteration neighbor-joining tree is plotted

against the total number of species that contain

this OG (number of species in the profile). Note

that the coordinates have been scattered (by

adding a random number from a normal distri-

bution) to get better insight into the density. The

horizontal lines are the simulated annealing steps

going from the average of the random distribu-

tion (score 0; bottom line) to the maximum pos-

sible number of completely covered partitions

(score 1).
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from the restricted gene repertoire even improves.
The improvements with respect to the reference trees
(see Table 1; SSU rRNA, column 5; and NCBI tax-
onomy, column 6) are only minor, largely because the
first instance tree already shows a considerable re-
semblance. As the threshold increases (column 2), the
tree is based on a decreasing fraction of the OG
profiles (column 3), which are selected to cover a
maximum number of subtrees. At a certain point, the
threshold becomes too high, and we start to exclude

false negatives. The phylogeny then breaks down
because too many OGs are removed that contain a
phylogenetic signal.

This breakdown is evident in Table 1: the differ-
ence between the matrix and the neighbor-joining tree
increases, and after topology number 7, the overlap
with the reference trees shows a sharp drop. Topol-
ogy number 8 decreases the average bootstrap value
of the partitions from 80 to 63%. To illustrate the
types of changes that occur in the evolving tree, Fig. 3

Table 1. Statistics on the evolving phylogeny under a scheme that eliminates discordant OGs from the data set with an increasing

stringency

Topology

number (1)

Score

threshold (2) OGs (3)

Average

score (4)

Branches,

rRNA (5)

Branches,

NCBI (6)

Matrix vs.

NJ tree (7)

Average

bootstrap (8)

0 0.0 19,433 0.494 0.628 0.818 0.237 0.881

0.1 13,375 0.720 0.272 0.868

1 0.2 13,350 0.721 0.628 0.818 0.273 0.880

0.3 13,152 0.729 0.278 0.880

12,769 0.745 0.283 0.878

2 0.4 12,777 0.744 0.616 0.818 0.283 0.888

0.5 11,737 0.780 0.302 0.871

3 9,239 0.856 0.640 0.800 0.338 0.877

9,379 0.863 0.339 0.849

4 0.6 8,449 0.896 0.640 0.818 0.362 0.855

5 8,428 0.898 0.651 0.818 0.364 0.864

8,468 0.897 0.361 0.827

6 0.7 7,046 0.946 0.651 0.818 0.388 0.819

7 7,074 0.945 0.651 0.818 0.396 0.829

0.8 7,081 0.945 0.397 0.759

8 5,930 0.980 0.628 0.818 0.429 0.798

0.9 5,975 0.981 0.430 0.627

9 5,651 0.987 0.581 0.727 0.452 0.645

5,644 0.989 0.449 0.568

10 1.0 5,564 0.990 0.570 0.709 0.421 0.563

11 5,563 0.990 0.570 0.709 0.421 0.573

12 5,565 0.990 0.570 0.709 0.419 0.569

Note: Similarity to the rRNA and NCBI reference trees reaches a

maximum after seven simulated annealing steps. The simulated

annealing threshold in the iterations is given in column 2. Note that

the simulated annealing threshold scores are raised after con-

vergence of the topology, so more topologies may be visited in a

single threshold score step. The number of OG profiles used to

construct each tree is given in column 3. The average scores of the

OG profiles used to reconstruct the phylogeny are given in column

4. The fraction of branches shared with the SSU rRNA reference

tree and in the taxonomy from NCBI is shown in columns 5 and 6

(the value for the unresolved NCBI taxonomy is higher because it

contains fewer branches and will automatically share a larger

fraction of its partitions). The difference between the distance ma-

trix and the neighbor-joining tree is shown in column 7, and column

8 contains the average bootstrap value of all the partitions. The

topology shifts above the bold line are shown in detail in Fig. 3.
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shows the shifts leading from the initial phylogeny to
topology number 7. Up to the point of this break-
down, where 64% of the discordant OGs were ex-
cluded, the reconstructed phylogenies change little
and remain very close to the reference trees. The

phylogeny contains almost 82% of the branches of
the (unresolved) NCBI taxonomy and just over 65%
of the branches of the SSU rRNA tree. This result
shows that the phylogenetic signal in gene content, as
present in the first instance tree, is the dominant
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signal. More importantly, the shifts in the tree do not
specifically affect organisms with shared phenotypic
characters, e.g., parasites or hyperthermophilic spe-
cies. As we do not see the effect of phenotype in the
tree, such phenotypic convergence does not appear to
be the cause or the result of large, systematic biases in
the horizontal transfers.

Random Initializations. To investigate whether
the quality of the reconstructed gene content trees
throughout the iterations depended on the good first
instance phylogeny, we repeated the experiments,
starting from random initial topologies. The 100
random initial topologies, though completely differ-
ent (they shared an average of 1% of their branches),
rapidly converged. Based on the random first instance
phylogenies, an average of 90% of the OGs was de-
leted. The second iteration phylogenies, composed of
those OGs that were not discordant in the random
initial trees (lowest simulated annealing threshold),
already shared an average of 70% of their branches.
The rapid convergence of the topology over the it-
erations illustrates how consistently this single phy-
logenetic signal is present in the gene repertoire data.
To analyze the topological paths the phylogenies

took after these random initializations, we looked in
more detail at those trees with the highest resem-
blance to the reference phylogenies (the rRNA tree
and the NCBI taxonomy) and to a selected topology
from the standard initialization (topology 7; cf. Table
1). Of the 100 random initial topologies, a large
group of 68 paths converged to one topology, which
shared 97% of its branches with the standard initial-
ization. Abundant though this topology was, it con-
tained some improbable shifts compared to the
phylogeny from the standard procedure. The position
of Halobacterium was closer to the archaeal root, and
Thermotoga was placed next to Thermoanaerobacter
rather than at the root of the low-G+C Gram-posi-
tives. Seven of the paths converged exactly to the
topology of the standard genome tree. The other 25
paths converged to six other phylogeny, sharing an
average of 94% of the partitions with the phylogeny
from the standard initialization.

A Worst-Case Scenario. An often-discussed case
of ‘‘massive’’ horizontal gene transfer is that from the
Archeae to the hyperthermophilic Bacteria Aquifex
aeolicus and Thermotoga maritima (Aravind et al.
1998). We tested whether starting our iterations with

Fig. 3. Initial phylogeny inferred from all the gene presence/

absence profiles. The branches that shift in the tree during the

iterations are indicated. The number given is the topology number

(cf. Table 1) at which the shift occurs. Note that there are no shifts

that improve or deteriorate the topology relative to the NCBI

taxonomy alone: because the NCBI taxonomy is not completely

resolved, changes relative to this tree always also change the frac-

tion of branches shared with the SSU rRNA tree. The phylogeny

we inferred was unrooted; we chose to display the Archaea and the

Eukaryota as sister taxa, as that is the most commonly accepted

view (though there are many papers from the Philippe group to

combat this [e.g., Philippe and Forterre 1999]). There is no legend

for the branch lengths, as they are only informative in the first

instance tree (in two cases they have been very slightly altered to fit

the arrows indicating the shifts into the figure). The species ab-

breviations are the first letter of the family name and the first two

letters of the species name, followed by the taxonomic identifier (in

alphabetical order): Aae_63363, Aquifex aeolicus; Afu_2234, Ar-

chaeoglobus fulgidus; Ana_103690, Anabaena sp.; Ape_56636, Ae-

ropyrum pernix; Ath_3702, Arabidopsis thaliana; Atu_181661,

Agrobacterium tumefaciens C58/ATCC 33970 (Cereon);

Atu_180835, Agrobacterium tumefaciens C58/ATCC 33970 (U.

Washington); Bap_118099, Buchnera aphidicola; Bbu_139, Borrelia

burgdorferi; Bha_86665, Bacillus halodurans; Bme_29459, Brucella

melitensis; Bsu_1423, Bacillus subtilis; Cac_1488, Clostridium acet-

obutylicum; Ccr_155892, Caulobacter crescentus; Cel_6239, Ca-

enorhabditis elegans; Cgl_196627, Corynebacterium glutamicum;

Cje_197, Campylobacter jejuni; Cmu_83560, Chlamydia muridarum;

Cpe_1502, Clostridium perfringens; Cpn_115711, Chlamydia pneu-

moniae AR37; Cpn_115713, Chlamydia pneumoniae CWL029;

Cpn_138677, Chlamydia pneumoniae J138; Ctr_813, Chlamydia

trachomatis; Dme_7227, Drosophila melanogaster; Dra_1299, Dei-

nococcus radiodurans; Eco_155864, Escherichia coli O157:H7

EDL933; Eco_83333, Escherichia coli K-12 MG1655; Eco_83334,

Escherichia coli O157:H7 substr. RIMD 0509952; Ecu_6035,

Encephalitozoon cuniculi; Fnu_76856, Fusobacterium nucleatum;

Hal_64091, Halobacterium sp.; Hin_727, Haemophilus influenzae;

Hpy_85962, Helicobacter pylori 26695; Hpy_85963, Helicobacter

pylori J99; Hsa_9606, Homo sapiens; Lin_1642, Listeria innocua;

Lla_1360, Lactococcus lactis subsp. lactis; Lmo_1639, Liste-

ria monocytogenes; Mac_2214, Methanosarcina acetivorans;

Mge_2097, Mycoplasma genitalium; Mja_2190, Methanococcus

jannaschii; Mka_2320, Methanopyrus kandleri; Mle_1769, Myco-

bacterium leprae; Mma_2209, Methanosarcina mazei; Mmu_10090,

Mus musculus; Mpn_2104, Mycoplasma pneumoniae; Mpu_2107,

Mycoplasma pulmonis; Mth_145262, Methanobacterium thermo-

autotrophicum; Mtu_83331, Mycobacterium tuberculosis CDC1551;

Mtu_83332, Mycobacterium tuberculosis H37Rv; Nme_491 Neis-

seria meningitidis; Nme_65699, Neisseria meningitidis; Pab_29292,

Pyrococcus abyssi; Pae_287, Pseudomonas aeruginosa; Pae_13773,

Pyrobaculum aerophilum; Pfu_2261, Pyrococcus furiosus;

Pho_53953, Pyrococcus horikoshii; Pmu_747, Pasteurella multocida;

Rco_781, Rickettsia conorii; Rlo_381, Rhizobium loti; Rme_382,

Rhizobium meliloti; Rpr_782, Rickettsia prowazekii; Rso_305,

Ralstonia solanacearum; Sau_158878, Staphylococcus aureus subsp.

aureus Mu50; Sau_158879, Staphylococcus aureus subsp. aureus

N315; Sau_196620, Staphylococcus aureus subsp. aureus MW2;

Sce_4932, Saccharomyces cerevisiae; Sco_1902, Streptomyces

coelicolor; Spn_170187, Streptococcus pneumoniae TIGR4;

Spn_171101, Streptococcus pneumoniae R6; Spo_4896, Schizosac-

charomyces pombe; Spy_1314, Streptococcus pyogenes; Spy_186103,

Streptococcus pyogenes; Sso_2287, Sulfolobus solfataricus;

Sto_111955, Sulfolobus tokodaii; Sty_601, Salmonella typhi;

Sty_602, Salmonella typhimurium; Syn_1148, Synechocystis

sp.; Tac_2303, Thermoplasma acidophilum; Tma_2336, Thermotoga

maritima; Tpa_160, Treponema pallidum; Tte_119072, Thermo-

anaerobacter tengcongensis; Tvo_50339, Thermoplasma volcanium;

Upa_134821, Ureaplasma parvum; Vch_666, Vibrio cholerae;

Xax_92829, Xanthomonas axonopodis; Xca_340, Xanthomonas

campestris; Xfa2371, Xylella fastidiosa; and Ype_632, Yersinia

pestis. The strain is not specified unless more instances of the same

species make this necessary.
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an edited phylogeny, in which we grouped A. aeolicus
and T. maritima at the root of the Archaea, would
result in the selection of those horizontally trans-
ferred genes, and a convergence of the tree to one in
which the hyperthermophilic Bacteria would cluster
with the Archaea. In the first iteration the tree con-
verged to the same tree as the one that was started
with the unedited tree. This illustrates the point that
there may be cases of large-scale horizontal between
some species, but their signal is not strong enough to
cause systematic biases in the tree based on gene
content, even when biasing the selection of genes for
the phylogeny toward a set involved in horizontal
transfer.

Weighted Tree. The tree obtained from weighing
fast-evolving positions is very similar to the rRNA
phylogeny (Fig. 4) and successfully improves relative
to the unweighted first instance tree. The tree shares
over 85% of the branches with the (unresolved) NCBI
taxonomy and just over 65% of the branches with the
SSU rRNA reference tree. The weighting procedure
reinforces especially strongly the separation into
three kingdoms, as the internal branches separating
the three kingdoms have become longer. When
comparing the genome phylogenies that result from
the two approaches for filtering the OGs in detail, it
becomes apparent that the iterative removal method
has a bigger impact on the topology of the tree. As
the threshold increases, there are many more topo-
logical shifts than in the weighting method. Topology
number 3 looks most like the weighted tree (they
share 90% of the branches), and all topologies that
follow move farther away from the initial phylogeny.
Nonetheless, both methods accomplish comparable
improvements relative to the unfiltered tree. The ad-
vantage of the weighted tree relative to the iterated
tree is that the former does not require arguably
subjective criteria, like the breakdown of the boot-
strap values, to determine when to stop increasing the
score threshold.

Phylogenetic Implications

Shifts in the Archaea. In the archaeal phylogeny,
the Crenarchaeota remain monophyletic, but they
appear to be derived from the Euryarchaeota,
making the Euryarchaeota a paraphyletic taxon.
This is inconsistent with the rRNA tree but often
found in genome trees (Wolf et al. 2002). The cur-
rent approach does manage to shift Halobacterium
away from its (erroneous) ancestral position, into
the Euryarchaeota. Instead, the Methanosarcinales
move to the archaeal root, next to Halobacterium,
followed later by the Thermoplasmata. Cavalier-
Smith already proposed to join the Methanosarci-
nales and the Halobacteria in the phylum Halome-
bacteria. This was based on the fact that many of

the differences between the two can be attributed to
the loss of ancestral proteins by the Methanobacte-
ria, whereas many similarities in RNA polymerases,
antibiotic sensitivities, and rRNAs can be found
(Cavalier-Smith 1986, 2002). Slesarev and co-work-
ers (2002) showed that genome trees based on gene
content or on conserved gene pairs group all
methanogenic Archaea. Indeed, this is true for the
methanogens sequenced at the time of that research,
but we show here that the Methanosarcinales are
not part of the otherwise strongly supported meth-
anogenic subtree. As in the gene content tree pre-
sented by Slesarev et al. (2002), we find the position
of Archaeoglobus fulgidus to be stable at the root of
the methanogens.

Hyperthermophilic Bacteria. Gene content phy-
logenies are especially interesting for those clades
where rRNA trees might fail. The phylogenetic po-
sition of thermophilic Bacteria is such a point (Cav-
alier-Smith 2002). The inference that the thermophilic
Bacteria are primitive, based on rRNA trees, has
been doubted because this placement might be an
artifact from long-branch attraction (Gribaldo and
Philippe 2002) and selection for high G+C content in
hyperthermophilic rRNA (Galtier and Lobry 1997).
Recently it has indeed been shown that this artifact
can be circumvented by considering only the slowly
evolving nucleotides in the rRNA sequence. This
places the hyperthermophilic Bacteria as a division
whose relation to other divisions remains unclear
(Brochier and Philippe 2002). Interestingly our results
indicate a consistent (i.e., throughout the iterations)
affiliation of Thermotoga with the Firmicutes and of
Aquifex with the (d/e)-Proteobacteria. They stay there
even after removal of possible phylogenetically dis-
cordant signals, such as the abundant horizontal
transfers of these species with the Archaea (Nelson et
al. 1999).

The hypothesis of independent origins of eubac-
terial (hyper)thermophily finds strong support in the
work of Forterre et al. (2000). They show that reverse
gyrase, an enzyme that is crucial for stabilizing the
DNA in hyperthermophilic organisms, in Aquifex
and in Thermotoga was independently obtained by
two seperate horizontal transfer events. Our iterative
approach discards reverse gyrase (COG1110) as a
discordant signal at a threshold score of 0.5 and in
the weighting approach it is assigned a weight of 0.16.
When combined with results from other genome tree-
like approaches and other independent evidence, the
position of Aquifex with the Proteobacteria, as well as
Thermotoga with the Gram-positive Bacteria, is sup-
ported.

Structurally, the outer membrane of Aquifex has
been shown to contain lipopolysaccharide (Plotz et al.
2000), like the Proteobacteria, but unlike Gram-pos-
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itive Bacteria. Klenk et al. (1999) made phylogenetic
analyses of the two largest subunits of bacterial RNA
polymerases and placed Aquifex with the Proteobac-
teria. This position is also supported by a supertree
composed of the phylogenies of hundreds of orthol-
ogous gene families (Daubin et al. 2001), gene content
trees (Wolf et al. 2001), and gene order trees (Wolf et
al. 2001) Analysis from rare genomic events, such as
conserved insertions and deletions in several proteins,
also shows that Aquifex should be placed next to the
Proteobacteria (Gupta and Griffiths 2002).

The position of Thermotoga as an evolutionary
neighbor to the Gram-positives is supported by the
same insertions and deletions study (Gupta and
Griffiths 2002). Both Tiboni et al. (1993) and Pesole
et al. (1995) show that glutamine synthetase I trees
group Thermotoga with the low-G+C Gram-positive
Bacteria. Gribaldo et al. (1999) show a deletion in the
sequence of HSP70, shared by Thermotoga and the
Gram-positive Bacteria, and though the phylogenies
inferred from the protein sequence do not cluster
these groups, this may be artifactual and the result of

Fig. 4. Phylogeny inferred from gene presence/absence profiles with weighted characters. The species abbreviations are explained in the

legend to Fig. 3.
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convergence within the hyperthermophilic sequences
(Cambillau and Claverie 2000; Kreil and Ouzounis
2001; Suhre and Claverie 2003).

Problems. In the iterative method, the eu-
karyotic subtree is very stable. The only topological
change is for the worse: Drosophila melanogaster is
placed in between the mammals (see Fig. 3). This
results from an artifact of the definition of NOGs by
von Mering et al. (2003), which unites the mammals
to form a single clade, thus disallowing the formation
of any NOGs shared only by these two species. The
weighting method does not show this shift.

Two groups of Bacteria with exceptionally small
genomes are pushed to the root during the iterations.
Though we have corrected for genome size in Eq. (1),
the Chlamydiae/Spirochaetes group and the Molli-
cutes are still problematic cases, though more so in
the iterative than in the weighting approach. This size
effect is the result of the fact that small genomes can
share only a certain maximum number of genes. This
is a known problem in gene content phylogenetics
(Wolf et al. 2002), and though it has been addressed
(Korbel et al. 2002), a definitive solution has still not
been found.

Which Genes Are Discordant?

It has been proposed that metabolic genes undergo
more horizontal gene transfer than informational

genes. Here we obtain detailed information on this
hypothesis, by determining which types of genes were
discordant, i.e., which OGs were filtered out in our
procedures. To summarize this, we look at the COG
functional classes (NOGs are not functionally clas-
sified). Figure 5 shows the extent to which the dif-
ferent COG functional categories were allowed to
remain in the data set. For the weighting method, the
average assigned weight of all the genes in the func-
tional category is plotted. For the iterative removal
method, the fraction of genes that remained in the
data set of topology number 7 is indicated. This to-
pology, where the coverage score threshold of 0.8
excluded 64% of the OGs, was selected to maintain
consistency with Fig. 3.

The results for both schemes investigated in this
research are remarkably similar. The ‘‘translation,
ribosomal structure, and biogenesis’’ category (J) is
the least discordant; less than 8% of the COGs from
this category are removed in the iterative procedure,
and the average weight assigned to the COGs in this
category was 0.30. Of the ‘‘inorganic ion transport
and metabolism’’ category (P), less than 8% remained
in the data set, and it can be considered the fastest-
evolving category of genes with respect to gene con-
tent. The category where the lowest weights were
assigned was ‘‘secondary metabolite biosynthesis,
transport, and catabolism’’ (Q), where the COGs
received an average weight of 0.08. In general,
‘‘metabolism’’ COGs are filtered out most in our

Fig. 5. Functional categories of the contributing COGs for each

of the two methods. The dark gray bars (left) are the fractions that

were not removed in the seventh topology (coverage score, 0.8; cf.

Table 1) of the iterative method. The light gray bars (right) are the

average weights assigned in the weighting method. Both methods

identify the same functional categories as discordant. The catego-

ries are grouped in the four main COG classes ‘‘information stor-

age and processing’’ (translation, ribosomal structure, and

biogenesis [J], transcription [K], and DNA replication, recombi-

nation, and repair [L]), ‘‘cellular processes’’ (cell division and

chromosome partitioning [D], posttranslational modification,

protein turnover, chaperones [O], cell envelope biogenesis, outer

membrane [M], cell motility and secretion [N], inorganic ion

transport and metabolism [P], and signal transduction mechanisms

[T]), ‘‘metabolism’’ (energy production and conversion [C], car-

bohydrate transport and metabolism [G], amino acid transport and

metabolism [E], nucleotide transport and metabolism [F], coen-

zyme metabolism [H], lipid metabolism [I], and secondary metab-

olite biosynthesis, transport, and catabolism [Q]), and ‘‘poorly

characterized’’ (general function prediction only [R] and function

unknown [S]) (Tatusov et al. 1997).
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procedure, whereas ‘‘information storage and
processing’’ COGs are relatively stable in evolution.
This supports the complexity hypothesis (Jain et al.
1999) that, generally, operational genes are transferred
more readily throughout evolution than informational
genes, which are more often involved in complex net-
works of interactions. However, our study reveals a
more detailed picture: apart from the inorganic ion
transport and metabolism category (P), the other
‘‘cellular processes’’ categories, such as ‘‘cell division
and chromosome partitioning’’ (D) and ‘‘cell envelope
biogenesis, outer membrane’’ (M), are intermediately
discordant with the COGs from the ‘‘metabolism’’ and
‘‘information storage and processing’’ classes.

Discussion

If we correct for genome size, a very good gene
content phylogeny, subject to some caveats, can al-
ready be inferred. This means that the noise, which
results from processes like horizontal transfer or
convergence through parallel gene loss and may
confound a genome phylogeny, can be effectively
averaged out by considering genome scale data. In
this initial tree, improvements can be made by re-
ducing the impact of the noise, which is shown in the
current paper using two independent approaches.
This result is in contrast with Clarke et al. (2002),
who did not find any improvements in their tree when
filtering for discordant genes. This is probably due to
the fact that the filtering scheme used by these au-
thors is not strong enough. The topological im-
provement of their phylogeny may also be restrained
by their choice to use one source (orthology) for the
reconstruction of the tree and another, albeit related,
source (sequence) for filtering. Here we show that the
topology will change during the iterative removal of
the noise, as well as in a scheme that selectively
downweighs the noise. This is not to say that the
genes designated as noise are biologically irrelevant.
Genes that have a nonphylogenetic distribution often
have functional significance, such as shared pathog-
enicity factors between Helicobacter pylori and Hae-
mophilus influenzae (Huynen et al. 1998) or reverse
gyrase in the hyperthermophiles (Forterre et al.
2000). But these qualitative, phenetic, patterns in
shared gene content apparently play a quantitatively
minor role relative to the phylogenetic signal and can
be considered noise when constructing genome trees.

In the iterative procedure, we have shown that
there is a consistent phylogenetic signal in the ma-
jority of OGs: throughout the iterations, the phylog-
eny shows few changes until the fraction signal over
noise that is removed becomes too high. This result is
also supported by the converging trajectories starting
from random initial phylogenies. Being too strict in
removing discordant OGs leads to a breakdown of the

phylogenetic pattern, leaving too little signal for a
reliable tree topology. The phylogenetic signal is thus
the only detectable signal in the gene content. The rest
is noise. A recent investigation of the relation between
horizontal transfer and phylogenetic incongruence in
gene trees revealed that, in most cases, alternate top-
ologies represent construction artifacts rather than the
accumulation of horizontal transfer events with time
(Daubin et al. 2003).

In the current paper, we have implemented two
methods, based on the same ideas, and both give
comparable results in terms of improvements in the
phylogeny and in the types of functions that are
considered discordant. Improvement for the current
approaches may be achieved by the implementation
of a better measure for the discordance of a signal in
the phylogeny, but we do not expect major changes in
the results given the similarity in outcome from the
two procedures. The main improvements for both the
iterative and the weighting method may be expected
from a better, i.e., more fine-grained, definition of
orthology, which will allow more detail and thus
better-defined relationships between the species.

Other improvements might come from maximum
likelihood or Bayesian approaches, which can include
explicit statistical models of genome evolution. Full
Bayesian methods are already available for gene/
species tree reconciliation (Arvestad et al. 2003). This
specific development, and that of Bayesian inference
in general, opens up several lines along which gene
content phylogenies can be improved. First, their
model of gene content evolution can be used for the
likelihood of a species phylogeny, incorporating all
genome sizes and the distribution of the OGs over the
species. Second, a more complicated approach could
be implemented that does not treat the OGs as a bi-
nary distribution but as a gene tree. This makes it
possible to directly use the methodology from
Arvestad et al. (2003), but with the extension that the
species tree is one of the parameters that are to be
determined using the likelihood algorithm. The big-
gest drawbacks are expected to be the computational
time needed to construct reliable gene trees for all
OGs, computing the likelihood for all the trees, and
the great increase in computational time needed for
the Monte Carlo Markov chain to simultaneously
and sufficiently sample tree space.
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