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Semi-Analytical Magneto-Mechanic Coupling With Contact Analysis
for MEMS/NEMS
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This paper presents a methodology and a tool for magnetic and mechanical deformation coupling using numerical and analytical
modeling. An analytical magnetic model using Coulombian approach is used and coupled with a mechanical deformation model for a
cantilever beam to evaluate contact size and contact force. Such a coupling is not available using numerical solution. This paper details
the deformation and contact analysis, which is validated by finite element simulation and also details the coupling approach. Such a
modeling is dedicated to an optimization process of magnetic MEMS/NEMS in general and to magnetic nano switch in particular.

Index Terms—Contact analysis, magnetic switches, magneto mechanic coupling.

I. INTRODUCTION

M AGNETIC MEMS/NEMS have received much atten-
tion in recent years. This one gives a large actuation dis-

tance and requires a low voltage action compared with electro-
static MEMS/NEMS. One of the goals of MEMS/NEMS mag-
netic modeling (like magnetic nano switch [3], see Fig. 1) is the
contact quality evaluation, which depends on surface and con-
tact force.

No known tool can manage the coupling magneto-mechanic
with contact analysis, that is the reason why the modeling of
contact are often strongly approximated [1], [2]. In this paper, a
new model and tool for semi-analytical magneto-mechanic cou-
pling with contact analysis is presented. This tool is dedicated to
the modeling and to the optimization process of MEMS/NEMS
design. The optimization of a magnetic nano switch is presented
as an application of our new methodology.

II. MAGNETIC MODEL

A. Magnet and Conductor Modeling

Assumptions are constant magnetization of magnet and con-
stant current density in conductor.

For magnet, Coulombian equivalent surface and volume
charge approach is used

(1)

(2)
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Fig. 1. Working principle of magnetic nano switch. (a) Closed state. (b) Open
state.

For conductors, the Biot and Savart law is used

(3)

These formulas (2) and (3) are integrated symbolically for
some basic shapes and magnetization directions [4]–[6], leading
to a full analytical magnetic field model, which allows fast and
accurate calculations.

B. Computing Forces and Magnetic Torques on Magnets

For specific configurations such as interactions between par-
allelepiped magnets, the force can be fully analytical [5]. In our
coupling, forces and magnetic torques applied on the barycenter
of the beam are computed by adaptive numerical integrations,
leading to a semi-analytical model

(4)

(5)

III. MECHANICAL DEFORMATION MODEL

We have developed a model to compute deformation in the
presence of contact of a cantilever beam with inputs and outputs
as shown in Fig. 2.

The model is based on four hypotheses: 1) linear and isotropic
materials; 2) small displacement-Bernoulli’s hypothesis states:
“Plane section remains plane after bending”; 3) neglecting the
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Fig. 2. Inputs and outputs of mechanical deformation model.

Fig. 3. Equivalent beam 1-D of beam in 3-D.

secondary deformations: considering only one direction of de-
formation; and 4) neglecting the friction on contact.

A. Reducing the Beam in 3-D to 1-D

Thanks to basic geometry of MEMS/NEMS, the beam con-
sists of boxes. In addition, the last two hypotheses above which
allow reducing the beam in 3-D to 1-D as shown in Fig. 3. In-
deed, this reducing determines the of beam (equivalent
product of ), where is Young’s modulus (or elastic mod-
ulus) and is the second moment of area.

B. Computing the Deformation of Beam 1-D

Once the beam is reduced to 1-D, the equation used to com-
pute the deformation is

(6)

where and are, respectively, the deformation and the
bending moment at the -position.

The principle of superposition is used due to elastic linear
deformation. Total deformation is equal to the sum of deforma-
tions created by each forces and torques

(7)

In addition, the total derivation of deformation is computed
for contact analysis.

(8)

For each force or each torque, the bending moment is

(9)

where are constants determined using adequate boundary
conditions and connection conditions.

Solutions of (6) are

(10)

(11)

Fig. 4. Three types of beam categorized based on support conditions.

Fig. 5. Three steps of contact analysis.

Fig. 6. Algorithm of contact analysis.

Connection conditions are continuous conditions of deforma-
tion between the beam pieces (with different ).

Boundary conditions depend on beam type as Fig. 4.

C. Contact Analysis

Contact analysis is realized by decomposing in three steps,
which can be superposed as shown in Figs. 5 and 6.

1) Step 1: In this step, we calculate , which is the pro-
portion of total forces, and torques for the beam touching the
contact

(12)

where is deformation at the end of beam (point B) with all
forces and torques, with simple clumping beam. If , the
beam is just touching the contact.

2) Step 2: In this step, we calculate for which
is the proportion of total forces and torques for a deformation’s
derivative equal to zero at the end of the beam

(13)

where is deformation’s derivative at the end of the beam
with all forces and torques with simple clumping beam,
is the same with clumping-posing beam.

3) Step 3: In this step, the beam touches the contact and has
a contact surface.
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Fig. 7. Contact replaced by a distribution of force.

Fig. 8. Iterative method to compute the contact's length.

The contact is replaced by a distribution of forces
as Fig. 7.

To find the forces and torques which are able to create a given
length of contact, a linear system of equations with

unknowns has to solved

(14)

where
• is the proportion of total forces and torques

to create the given length of contact ;
• is the th force value replacing the contact;
• is

the application point of th force replacing contact.
is total length of beam;

• are, respectively, deformations
and its derivative at with all forces and torques, with
simple clumping beam;

• are, respectively, deformations
and its derivative at with all forces and torques, with
clumping-posing beam;

• are deformations
and its derivative at with the th force replaced the con-
tact, with clumping-posing beam.

As the distribution of force, which replaces the contact, is
unknown, the length of contact cannot be founded directly. An
iterative method detailed in the algorithm at Fig. 8 is used.

Fig. 9. Beam's geometry for validation of mechanical deformation model.

Fig. 10. Results of validation of mechanical deformation model.

The contact’s force is computed by
, where is the total force applied on the beam,
is the reaction force on the fixed side of the beam

(point A).

D. Validation by Finite-Element Simulation

Our mechanical deformation model has been validated by
ANSYS software. The beam’s geometry used is shown in Fig. 9.
Three forces are applied on the beam.

Fig. 10 shows the variation of the contact length and contact
force as function of forces applied on the beam. The results ob-
tained by our model are closed to the results of finite-element
simulation.

IV. MAGNETO-MECHANICAL COUPLING

A tool following as [4] has been developed to generate au-
tomatically the equations, which describe the sequential mag-
neto-mechanic coupling.

The interaction between two fields is accomplished via the
load vectors of forces, torques and positions as Fig. 11. The
magnetic model requires the deformation to compute forces and
torques. These forces and torques are used in the mechanical
deformation model to compute positions of the beam. This cou-
pling is equivalent to solve a system of two vector variables (two
fields) with Gauss method.
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Fig. 11. Sequential magnetic-mechanical coupling.

Fig. 12. Screenshot of our simulation tool visualizing the deformation along
the beam of the first iteration and the final result.

Fig. 13. Geometry and parameters to be optimized of a magnetic nano switch.

V. APPLICATION: MAGNETIC NANO SWITCH OPTIMIZATION

A. Working Principle

Magnetic nano switches have many applications as power
switches, nanomechanical memory Their working principle
(as Fig. 1) is based on the deformation of a beam with magnet
under the influence of the field created by a ferromagnetic/an-
tiferromagnetic (F/AF) association, which is able to create
more than 2T fields without power supply [7]. The switching
is achieved by reversing the magnetization of the F/A using
conductors.

B. Model

In static, the association F/AF is as magnet. Consequently,
our coupling tool is used to evaluate the quality of contact in
closed state and to evaluate the deformation in open state.

The convergence is achieved with relative tolerance of 10
after some iterations. Fig. 12 shows the deformation along the
beam of the first iteration and the final result.

TABLE I
OPTIMIZATION RESULTS OF MAGNETIC NANO SWITCH

C. Optimization Specifications

Geometry and parameters to be optimized are given in
Fig. 13. The optimization aims to determine dimensions of
both fixed and mobile magnets and their positions on beam, to
minimize the volume of magnets, while respecting constraints
such as length of contact and contact force to ensure the quality
of contact or contact resistances below a desired value in closed
state.

D. Optimization Results

The following results, as in Table I, have been obtained by a
genetic algorithm, which can only be applied on fast models.

VI. CONCLUSION

This paper presented a semi-analytical mechanical deforma-
tion with contact analysis model for the cantilever beam and the
sequential coupling with magnetic model. This kind of model
was not available before. Moreover, it is fast enough to the op-
timization process.

As no known numeric tool can manage the magnetic-mechan-
ical coupling with contact analysis, each model has been vali-
dated separately by finite element method. Experimental vali-
dation is not yet available due to nanometric fabrication issues.

This work is supported by the French research agency (ANR,
Monaco project) in order to simulate forces exerted on nano-
metric bodies. Our tool gives the user the ability to add equa-
tions, which is very useful to add complementary forces from
van der Waals or Casimir effects.
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