Benoit Déprez

Benoit Déprez
Université de Lille · U1177

PhD, MBA

About

224
Publications
29,596
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
5,350
Citations
Citations since 2017
74 Research Items
3014 Citations
20172018201920202021202220230100200300400500
20172018201920202021202220230100200300400500
20172018201920202021202220230100200300400500
20172018201920202021202220230100200300400500
Additional affiliations
January 2004 - December 2011
Université de Lille
January 2004 - present
Institut Pasteur de Lille
Position
  • Head of Department
January 2003 - November 2014
Université de Lille
Position
  • Head of Department

Publications

Publications (224)
Article
Full-text available
Metformin (MET) is the most prescribed antidiabetic drug, but its mechanisms of action remain elusive. Recent data point to the gut as MET's primary target. Here, we explored the effect of MET on the gut glucose transport machinery. Using human enterocytes (Caco-2/TC7 cells) in vitro, we showed that MET transiently reduced the apical density of sod...
Article
Full-text available
Type 2 diabetes (T2D) is a metabolic disorder characterized by loss of pancreatic β-cell function, decreased insulin secretion and increased insulin resistance, that affects more than 537 million people worldwide. Although several treatments are proposed to patients suffering from T2D, long-term control of glycemia remains a challenge. Therefore, i...
Article
Full-text available
The concept of privileged structure has been used as a fruitful approach for the discovery of novel biologically active molecules. A privileged structure is defined as a semi-rigid scaffold able to display substituents in multiple spatial directions and capable of providing potent and selective ligands for different biological targets through the m...
Article
Full-text available
Mycobacterium tuberculosis, the pathogen that causes tuberculosis, is responsible for the death of 1.5 million people each year and the number of bacteria resistant to the standard regimen is constantly increasing. This highlights the need to discover molecules that act on new M. tuberculosis targets. Mycolic acids, which are very long-chain fatty...
Preprint
Full-text available
Type 2 diabetes (T2D) is a metabolic disorder characterized by loss of pancreatic β-cell function, decreased insulin secretion and increased insulin resistance, that affects more than 400 million people worldwide. Although several treatments are proposed to patients suffering from T2D, long-term control of glycemia remains a challenge. Therefore, i...
Article
Since end of 2019, the global and unprecedented outbreak caused by the coronavirus SARS-CoV-2 led to dramatic numbers of infections and deaths worldwide. SARS-CoV-2 produces two large viral polyproteins which are cleaved by two cysteine proteases encoded by the virus, the 3CL protease (3CLpro) and the papain-like protease, to generate non-structura...
Article
Full-text available
It is critical that novel classes of antituberculosis drugs are developed to combat the increasing burden of infections by multidrug-resistant strains. To identify such a novel class of antibiotics, a chemical library of unique 3-D bioinspired molecules was explored revealing a promising, mycobacterium specific Tricyclic SpiroLactam (TriSLa) hit. C...
Article
Metallo-β-lactamases (MBLs) contribute to the resistance of Gram-negative bacteria to carbapenems, last-resort antibiotics at hospital, and MBL inhibitors are urgently needed to preserve these important antibacterial drugs. Here, we describe a series of 1,2,4-triazole-3-thione-based inhibitors displaying an α-amino acid substituent, which amine was...
Article
Endoplasmic reticulum aminopeptidase 2 (ERAP2) is a key enzyme involved in the trimming of antigenic peptides presented by Major Histocompatibility Complex class I. It is a target of growing interest for the treatment of autoimmune diseases and in cancer immunotherapy. However, the discovery of potent and selective ERAP2 inhibitors is highly challe...
Article
Full-text available
Kinetic target-guided synthesis and optimisation led to the first nanomolar ERAP2 inhibitors with outstanding selectivity. The binding modes of the most potent inhibitors were elucidated by X-ray crystallography. Our frontrunners engage target in cells and display good in vitro and in vivo pharmacokinetic properties. Abstract Endoplasmic reticulum...
Article
Acinetobacter baumannii is a gram-negative bacterium causing severe hospital-acquired infections such as bloodstream infections or pneumonia. Moreover, multidrug resistant A. baumannii becomes prevalent in many hospitals. Consequently, the World Health Organization made this bacterium a critical priority for the research and development of new anti...
Article
Full-text available
Drug repurposing has the advantage of shortening regulatory preclinical development steps. Here, we screened a library of drug compounds, already registered in one or several geographical areas, to identify those exhibiting antiviral activity against SARS-CoV-2 with relevant potency. Of the 1,942 compounds tested, 21 exhibited a substantial antivir...
Article
The sensitivity of Mycobacterium tuberculosis , the pathogen that causes tuberculosis (TB), to antibiotic prodrugs is dependent on the efficacy of the activation process that transforms the prodrugs into their active antibacterial moieties. Various oxidases of M. tuberculosis have the potential to activate the prodrug ethionamide. Here, we used med...
Article
Full-text available
Insulin-degrading enzyme (IDE) is a multifunctional protease due to the variety of its substrates, its various cellular locations, its conservation between species and its many non-proteolytic functions. Numerous studies have successfully demonstrated its implication in two main therapeutic areas: metabolic and neuronal diseases. In recent years, s...
Article
Full-text available
Efflux transporters of the RND family confer resistance to multiple antibiotics in Gram-negative bacteria. Here, we identify and chemically optimize pyridylpiperazine-based compounds that potentiate antibiotic activity in E. coli through inhibition of its primary RND transporter, AcrAB-TolC. Characterisation of resistant E. coli mutants and structu...
Article
Full-text available
The nuclear bile acid (BA) receptor farnesoid X receptor (FXR) is a major regulator of metabolic/energy homeostasis in peripheral organs. Indeed, enterohepatic-expressed FXR controls metabolic processes (BA, glucose and lipid metabolism, fat mass, body weight). The central nervous system (CNS) regulates energy homeostasis in close interaction with...
Article
Insulin degrading enzyme (IDE) is a zinc metalloprotease that cleaves numerous substrates among which amyloid-β and insulin. It has been linked through genetic studies to the risk of type-2 diabetes (T2D) or Alzheimer's disease (AD). Pharmacological activation of IDE is an attractive therapeutic strategy in AD. While IDE inhibition gave paradoxal a...
Article
Full-text available
Chemical biology and drug discovery are two scientific activities that pursue different goals but complement each other. The former is an interventional science that aims at understanding living systems through the modulation of its molecular components with compounds designed for this purpose. The latter is the art of designing drug candidates, i....
Article
The main protease (3CLp) of the SARS‐CoV‐2, the causative agent for the COVID‐19 pandemic, is one of the main targets for drug development. To be active, 3CLp relies on a complex interplay between dimerization, active site flexibility, and allosteric regulation. The deciphering of these mechanisms is a crucial step to enable the search for inhibito...
Article
The main protease (3CLp) of the SARS‐CoV‐2, the causative agent for the COVID‐19 pandemic, is one of the main targets for drug development. To be active, 3CLp relies on a complex interplay between dimerization, active site flexibility, and allosteric regulation. The deciphering of these mechanisms is a crucial step to enable the search for inhibito...
Preprint
Drug repurposing has the advantage of shortening regulatory preclinical development steps. Here, we screened a library of drug compounds, already registered in one or several geographical areas, to identify those exhibiting antiviral activity against SARS-CoV-2 with relevant potency. Of the 1,942 compounds tested, 21 exhibited a substantial antivir...
Preprint
Full-text available
Background and Prupose: The nuclear bile acid (BA) receptor farnesoid X receptor (FXR) is a major regulator of metabolic/energy homeostasis in peripheral organs. Indeed, enterohepatic-expressed FXR controls metabolic processes (BA, glucose and lipid metabolism, fat mass, body weight). The central nervous system (CNS) regulates energy homeostasis in...
Article
Bile acids (BAs) improve metabolism and exert anti-obesity effects through the activation of the Takeda G protein-coupled receptor 5 (TGR5) in peripheral tissues. TGR5 is also found in the brain hypothalamus, but whether hypothalamic BA signaling is implicated in body weight control and obesity pathophysiology remains unknown. Here we show that hyp...
Article
An efficient one-pot procedure combining bromide conversion into azide followed by NiAAC for the preparation of 1,5-disubstituted 1,2,3-triazoles has been developed. This procedure prevents the use of isolated azides, which are insufficiently commercially available and could be potentially unstable and difficult to handle. Moreover, this one-pot me...
Article
PEGylation of therapeutic agents is known to improve the pharmacokinetic behavior of macromolecular drugs and nanoparticles. In this work, we performed the conjugation of polyethylene glycols (220-5000 Da) to a series of non-steroidal small agonists of the bile acids receptor TGR5. A suitable anchoring position on the agonist was identified to reta...
Article
Endoplasmic reticulum aminopeptidase 2, ERAP2, is an emerging pharmacological target in cancer immunotherapy and control of autoinflammatory diseases, as it is involved in antigen processing. It has been linked to the risk of the development of spondyloarthritis, and it associates with the immune infiltration of tumours and strongly predicts the ov...
Article
Aggresomes are subcellular perinuclear structures where misfolded proteins accumulate by retrograde transport on microtubules. Different methods are available to monitor aggresome formation, but they are often laborious, time-consuming, and not quantitative. Proteostat is a red fluorescent molecular rotor dye, which becomes brightly fluorescent whe...
Article
Several web-based tools predict the putative targets of a small molecule query compound by similarity to molecules with known bioactivity data using molecular fingerprints. In numerous situations, it would however be valuable to be able to run such computations on a local computer. We present FastTargetPred, a new program for the prediction of prot...
Article
Mycobacterium tuberculosis (M.tb), the etiologic agent of tuberculosis, remains the leading cause of death from a single infectious agent worldwide. The emergence of drug-resistant M.tb strains stresses the need for drugs acting on new targets. Mycolic acids are very long chain fatty acids playing an essential role in the architecture and permeabil...
Article
The proximity ligation assay (PLA) allows the detection and subcellular localization of protein‐protein interactions with high specificity. We recently developed a high‐content screening model based on primary hippocampal neurons cultured in 384‐well plates and screened a library of ∼1100 compounds using a PLA between tau and bridging integrator 1,...
Article
Killing more than one million people each year, tuberculosis remains the leading cause of death from a single infectious agent. The growing threat of multidrug resistant strains of Mycobacterium tuberculosis stresses the need for alternative therapies. EthR, a mycobacterial transcriptional regulator, is involved in the control of the bioactivation...
Article
Full-text available
In the last 5 years, cellular thermal shift assay (CETSA), a technology based on ligand-induced changes in protein thermal stability, has been increasingly used in drug discovery to address the fundamental question of whether drug candidates engage their intended target in a biologically relevant setting. To analyze lysates from cells submitted to...
Article
Kinetic target-guided synthesis (KTGS) is an original discovery strategy allowing a target to catalyze the irreversible synthesis of its own ligands from a pool of reagents. Though pioneered almost two decades ago, it only recently proved its usefulness in medicinal chemistry, as exemplified by the increasing number of protein targets used, the wid...
Article
Full-text available
The bridging integrator 1 gene (BIN1) is a major genetic risk factor for Alzheimer’s disease (AD). In this report, we investigated how BIN1-dependent pathophysiological processes might be associated with Tau. We first generated a cohort of control and transgenic mice either overexpressing human MAPT (TgMAPT) or both human MAPT and BIN1 (TgMAPT;TgBI...
Article
The bridging integrator 1 gene (BIN1) is a major genetic risk factor for Alzheimer’s disease (AD). In this report, we investigated how BIN1-dependent pathophysiological processes might be associated with Tau. We first generated a cohort of control and transgenic mice either overexpressing human MAPT (TgMAPT) or both human MAPT and BIN1 (TgMAPT;TgBI...
Preprint
Although several ADAMs (A disintegrin-like and metalloproteases) have been shown to contribute to the amy-loid precursor protein (APP) metabolism, the full spectrum of metalloproteases involved in this metabolism remains to be established. Transcriptomic analyses centred on metalloprotease genes unraveled a 50% decrease in ADAM30 expression that in...
Article
Insulin-degrading enzyme, IDE, is a metalloprotease implicated in the metabolism of key peptides such as insulin, glucagon, β-amyloid peptide. Recent studies have pointed out its broader role in the cell physiology. In order to identify new drug-like inhibitors of IDE with optimal pharmacokinetic properties to probe its multiple roles, we ran a hig...
Article
Cell transfection, indispensable for many biological studies, requires controlling many parameters for an accurate and successful achievement. Most often performed at low throughput, it is moreover time-consuming and error-prone, even more so when multiplexing several plasmids. We developed an easy, fast, and accurate method to perform cell transfe...
Article
Multi-drug resistant tuberculosis (TB) is a major public health problem concerning about half a million cases each year. Patients hardly adhere to the current strict treatment consisting of more than 10,000 tablets over a 2-year period. There is a clear need for efficient and better formulated medications. We have previously shown that nanoparticle...
Article
Tuberculosis (TB) caused by the pathogen Mycobacterium tuberculosis, represents one of the most challenging threat to public health worldwide, and with the increasing resistance to approved TB drugs, it is needed to develop new strategies to address this issue. Ethionamide is one of the most widely used drugs for the treatment of multidrug-resistan...
Article
Full-text available
The Mycobacterium tuberculosis EthR is a member of the TetR family of repressors, controlling the expression of EthA, a mono-oxygenase responsible for the bioactivation of the prodrug ethionamide. This protein was established as a promising therapeutic target against tuberculosis, allowing, when inhibited by a drug-like molecule, to boost the actio...
Preprint
Full-text available
The bridging integrator 1 gene ( BIN1 ) is a major genetic risk factor for Alzheimer’s disease (AD). In this report, we investigated how BIN1-dependent pathophysiological processes might be associated with Tau. We first generated a cohort of control and transgenic mice either overexpressing human MAPT (Tg MAPT ) or both human MAPT and BIN1 (Tg MAPT...
Article
The Labcyte Echo acoustic liquid handler allows accurate droplet ejection at high speed from a source well plate to a destination plate. It has already been used in various miniaturized biological assays, such as quantitative PCR (q-PCR), quantitative real-time PCR (q-RT-PCR), protein crystallization, drug screening, cell dispensing, and siRNA tran...
Article
Ethionamide is a key antibiotic prodrug of the second-line chemotherapy regimen to treat tuberculosis. It targets the biosynthesis of mycolic acids thanks to a mycobacterial bioactivation carried out by the Baeyer-Villiger monooxygenase EthA, under the control of a transcriptional repressor called EthR. Recently, the drug-like molecule SMARt-420, w...
Article
Full-text available
The nuclear receptors are transcription factors involved in the regulation of a variety of physiological processes whose activity can be modulated by binding to relevant small molecule ligands. Their dysfunction has been shown to play a role in disease states such as diabetes, cancer, inflammatory diseases, and hormonal resistance ailments, which m...
Article
Full-text available
A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
Article
Full-text available
Insulin degrading enzyme (IDE) plays key roles in degrading peptides vital in type 2 diabetes, Alzheimer's, inflammation, and other human diseases. However, the process through which IDE recognizes peptides that tend to form amyloid fibrils remained unsolved. We used cryoEM to understand both the apo- and insulin-bound dimeric IDE states, revealing...
Data
CryoEM data collection and processing statistic
Data
CryoEM map and model refinement statistics
Data
Data collection and structure refinement statistics
Data
Distances and angles between center of mass of different domains of IDE cryoEM and crystal structures.
Article
Full-text available
Hydroxamic acids are outstanding zinc chelating groups that can be used to design potent and selective metalloenzyme inhibitors in various therapeutic areas. Some hydroxamic acids display a high plasma clearance resulting in poor in vivo activity, though they may be very potent compounds in vitro. We designed a 57-member library of hydroxamic acids...
Article
Background: On-pump cardiac surgery provokes a predictable perioperative myocardial ischaemia-reperfusion injury which is associated with poor clinical outcomes. We determined the occurrence of time-of-the-day variation in perioperative myocardial injury in patients undergoing aortic valve replacement and its molecular mechanisms. Methods: We st...
Article
The efficient synthesis of 3-arylazetidine derivatives is reported using a Nickel-catalyzed Suzuki-Miyaura coupling between arylboronic acids and a N-BOC-protected 3-iodoazetidine under microwave irradiation. The reaction tolerates a great range of substituents such as electrodonating and electron withdrawing groups opening the field of the diversi...
Article
Full-text available
Targeting the TNFα pathway is a validated approach to the treatment of psoriasis. In this pathway, TACE stands out as a druggable target and has been the focus of in –house research programs. In this article, we present the discovery of clinical candidate 26a. Starting from hits plagued with poor solubility or genotoxicity, 26a was identified throu...
Article
Full-text available
Tuberculosis (TB) is a leading infectious cause of death worldwide. The use of ethionamide (ETH), a main second line anti-TB drug, is hampered by its severe side effects. Recently discovered “booster” molecules strongly increase the ETH efficacy, opening new perspectives to improve the current clinical outcome of drug-resistant TB. To investigate t...
Article
Full-text available
Genome-wide association studies (GWASs) have identified 19 susceptibility loci for Alzheimer’s disease (AD). However, understanding how these genes are involved in the pathophysiology of AD is one of the main challenges of the “post-GWAS” era. At least 123 genes are located within the 19 susceptibility loci; hence, a conventional approach (studying...
Article
The role of the G-Protein-coupled Bile Acid Receptor TGR5 in various organs, tissues and cell types, specifically in intestinal endocrine L-cells and brown adipose tissue, has made it a promising therapeutical target in several diseases, especially type-2 diabetes and metabolic syndrome. However, recent studies have shown deleterious on-target effe...
Article
Countering TB prodrug resistance The arsenal of antibiotics for treating tuberculosis (TB) contains many prodrugs, such as ethionamide, which need activation by normal metabolism to release their toxic effects. Ethionamide is potentiated by small molecules. Blondiaux et al. screened for more potent analogs and identified a lead compound called SMAR...
Article
Targeting the Tumor Necrosis Factor α signalling with antibodies has led to a revolution in the treatment of psoriasis. Locally inhibiting Tumor Necrosis Factor α Converting Enzyme (TACE or ADAM17) could potentially mimic those effects and help treat mild to moderate psoriasis, without the reported side effect of systemic TACE inhibitors. Efforts t...
Article
A wide variety of spirohydantoins are prepared via microwave-assisted reactions of cyclic ketones with KCN and ammonium carbonate.