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Abstract Applications of the wavelet based coherent vortex extraction method are
presented for homogeneous isotropic turbulence for different Reynolds numbers.
We also summarize the developed adaptive multiresolution method for evolutionary
PDEs. Then we show first fully adaptive computations of 3d mixing layers using
Coherent Vortex Simulation. Features like local scale dependent time stepping are
also illustrated and examples for one dimensional problemsare given. Test cases on
complex geometries like the periodic hill flow (with Reynolds numbers up to 37000)
and an annular burner with a swirl number ofS= 0.6 have been calculated based on
the developed wavelet decomposition models. The extensiveresults presented show
the robustness and good accuracy of the adopted wavelet approach for the various
flows simulated.

1 Introduction

The present paper deals with analysis and simulation of complex turbulent flows
and the utilization of the orthonormal wavelet decomposition for their study and
computation. The first section presents an example of Coherent Vortex Extraction
of three-dimensional isotropic turbulence from a Direct Numerical Simulation.
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Even more than in the incompressible regime, the numerical simulation of fully–
developed turbulent flows in the compressible regime is one of the challenges for
scientific computing. The difficulty comes from the nonlinear dynamics of the
Navier-Stokes equations, which excite a very large range oftemporal and spatial
scales. To perform computations in industrial configurations, turbulence models are
necessary because Direct Numerical Simulation (DNS) of fully–developed turbu-
lent flows is up to now limited to low Reynolds numbers. However, most turbulence
models used in industrial codes are based on phenomenology,and thus require tun-
ing of their parameters for each flow configuration. Coheren Vortex Simulation is a
powerfull method which overcomes this principal difficultyof classical models and
is demonstrated for the turbulent mixing layer in section 3.

Systems of nonlinear partial differential equations (PDEs) naturally arise from
mathematical modelling of chemical-physical problems encountered in many appli-
cations, for instance in chemical industry. In turbulent reactive or non-reactive flow,
for example, these PDE solutions usually exhibit a multitude of active spatial and
temporal scales. However, as typically these scales are notuniformly distributed in
the space–time domain, efficient numerical discretizations could take advantage of
this property. Introducing some kind of adaptivity in space-time allows to reduce the
computational complexity with respect to uniform discretizations, while controlling
the accuracy of the adaptive discretization. The development and application of such
an adaptive multiresolution method is shown in section 4.

An important step for the development of each numerical technology is the ap-
plication toward real-life engineering applications. This presumes that the algorithm
can easily be incorporated in existing codes for numerical simulations of flows
with complex geometry. This step has been undertaken for theparallelized finite-
volume code LESOCC2 developed for Large Eddy Simulations oncurvilinear grids.
The wavelet decomposition, implemented in this code has been tested extensively
against other classical numerical models and experimentaldata. For this purpose
test cases with high Reynolds numbers and complex geometry,developed within
the present DFG-CNRS cooperation has been utilized. Results, showing the robust-
ness and effectiveness of the wavelet algorithm as well as its good accuracy are
presented in the last part of this work.

2 Coherent Vortex Extraction using Wavelets

2.1 Principle

In the fully-developed turbulent regime one observes the emergence of coherent
structures out of turbulent fluctuations. Typically, thesestructures are well localized
and excited on a wide range of scales. Ten years ago Marie Farge and Kai Schnei-
der have proposed a method, called Coherent Vortex Extraction (CVE), to extract
them [11, 13, 12, 15, 32]. It decomposes turbulent fluctuations into two classes :
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coherent fluctuations, responsible of convective transport and incoherent fluctua-
tions, responsible of diffusive transport. For this, they used the wavelet representa-
tion which presents the advantage, compared to the classical Fourier representation,
to preserve both spectral and spatial structures. Their method relies on two original
choices. The first one consists to represent turbulent fieldsusing wavelets rather than
grid points (physical space representation) or Fourier modes (spectral space repre-
sentation) as it is classically done. The second choice corresponds to a change of
viewpoint. Since scientists working in turbulence have notyet agreed on a precise
and operational definition of coherent structures, they have proposed the following
minimalist definition : coherent structures are not noise. If one agrees on this hypoth-
esis, the problem of extracting coherent structures becomes equivalent to denoising.
Indeed, one no more needs hypothesis on structures themselves, but only on the
noise to eliminate. To get started, they have proposed the simplest hypothesis about
the noise, namely they have supposed the noise to be additive, white and Gaussian.
This method is based on a wavelet decomposition of the vorticity field, a subsequent
thresholding of the wavelet coefficients and a reconstruction from those coefficients
whose modulus is above a given threshold. Wavelet bases are well suited for this
task, because they are made of self-similar functions well localized in both physical
and spectral spaces leading to an efficient hierarchical representation of intermit-
tent data, as encounted in turbulent flows [11]. The value of the threshold is based
on mathematical theorems yielding an optimal min-max estimator for the denois-
ing of intermittent data [9, 10]. In this section we use the coherent vortex extraction
(CVE) method and apply it to different realizations of homogeneous isotropic turbu-
lent flows. They have been computed by direct numerical simulation (DNS), with a
stochastic forcing at large scales, for a range of Reynolds number fromRe = 20000
to 400000 by P.K. Yeung and his group, from Georgia Tech (USA), who have kindly
provided their data.

2.2 Coherent Vortex Extraction (CVE)

The CVE decomposition use an orthogonal three-dimensionalmultiresolution anal-
ysis (MRA) ofL2(R3) obtained through the tensor product of three one-dimensional
MRA’s of L2(R). In this context a functionf ∈ L2(R3) can be developed into a three-
dimensional wavelet basis

f (x) = ∑
γ∈Γ

f̃γ ψγ(x), γ = ( j, ix, iy, iz,µ) (1)

where j denotes the scale,i = (ix, iy, iz) denotes the positions,µ = 1, ...,7 indicates
the 7 wavelets and the index setΓ = {γ = ( j, ix, iy, iz,µ) j = 0, ...,J−1 ix, iy, iz =
0, ...,2 j −1 µ = 1, ...,7}. Due to orthogonality the wavelet coefficients are given
by f̃γ = 〈 f ,ψγ 〉 where〈·, ·〉 denotes theL2 inner product. For more details on this
construction and in wavelets we refer the reader to the standard textbook [2] and
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also to the article [11] for the 3D case. Here the Coifman 12 mother-wavelet is
chosen on the MRA. The reasons for this choise is that it is almost symmetric, it
have compact support and there is a fast wavelet transform,i.e., the total number of
operations isO(N), where N is the resolution. Another important point is that this
wavelet hasM = 4 vanishing moments, and therefore the corresponding quadratic
mirror filter has a length of 3M = 12 [2]. The computational cost of the fast wavelet
transform is of orderCN, whereN is the resolution, andC is proportional to the fil-
ter length. Therefore the total number of operations isO(N), while it is O(N log2N)
for the Fast Fourier Transform (FFT) [14]. Therefore the total number of operations
is O(N), and is smaller thanO(N log2N), the operation count for the fast Fourier
transform, forN > 212 = 4096.
We consider in the extraction algorithm a 3D vorticityω = ω(x,y,z) field ω = ∇×v,
wherev = v(x,y,z) is the velocity field. The three components ofω are devel-
oped into an orthonormal wavelet series, from the largest scale lmax = 20 to the
smallest scalelmin = 2−J+1. The vorticity field is decomposed into coherent vortic-
ity ωc = ωc(x,y,z) and incoherent vorticityω i = ω i(x,y,z) by projecting its three
components onto an orthonormal wavelet basis and applying nonlinear threshold-
ing to the wavelet coefficients. The choice of the threshold is based on theorems
[9, 10] proving optimality of the wavelet representation for denoising signals –
optimality in the sense that wavelet-based estimators minimize the maximumL2-
error for functions with inhomogeneous regularity in the presence of Gaussian white
noise. We have chosen the variance of the total vorticity (i.e., twice the enstrophy
Z) since we do not knowa priori the variance of the noise. The threshold is then
T = (4

3Z logN)
1
2 , whereZ = 1

2〈ω ,ω〉 is the total enstrophy andN3 is the resolution.
Notice that this threshold does not require any adjustable parameters.
In summary, we compute the modulus of the wavelet coefficients:

|ω̃ | =
∣∣ω̃γ
∣∣=
(

3

∑
n=1

[
ω̃γ
]2

n

) 1
2

. (2)

Then, the coherent vorticity is reconstructed from the wavelet coefficients whose
modulus is larger than the thresholdT, while the incoherent vorticity is computed
by the difference with the total field. The two fields thus obtained,ωc andω i , are
orthogonal, which ensures the decomposition of the total enstrophy intoZ = Zc+Zi .

The CVE decomposition algorithm consists of three fast wavelet transforms
(WT) for each vorticity component, a thresholding of the wavelet coefficients and
three inverse fast wavelet transforms (IWT), one for each component of theω̃c, i.e.,
all coefficient with|ω̃ | greater than the threshold, form the coherent vorticity (ωc).
The incoherent vorticityω i components are in principle computed using the inverse
wavelet transform from the weak coefficients. In order to simplify computations
we performed the difference between total and coherent vorticity which yields the
same result. A flowchart of the CVE algorithm is depicted in Fig. 1. The induced co-
herent and incoherent velocity fields are computed using Biot–Savat’s kernel (BS),
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Fig. 1 Flowchart of CVE decomposition.

v = ∇× (∇−2ω), from the coherent and incoherent vorticity fields, respectively.

2.3 CVE of Turbulent Flows at Different Reynolds Numbers

In the case ofN = 2563 we study the vorticity field, for theN = 5123 and 20483

dataset, as they are are too large, we will only consider subcubes of 2563.
Table 1 shows the statistical analysis comparing the total,coherent and incoherent

flows for Reynolds numberRe = 20000 and Table 2 shows the same for 4 differ-
ent 2563 subcubes extracted from theN = 5123 cube data set which correspond
to a flow with Reynolds numberRe = 60000, and for 4 other different 2563 sub-
cubes of theN = 20483 cube which correspond to a flow with Reynolds number
Re = 400000. We found that the coherent flow corresponds to 3.6% of the wavelet
coefficients and retains from 92.5% to 90.7% of the total enstrophy and more than
99% of the total energy. The remaining incoherent flow represents about 95% of the
wavelet coefficients but retains from 7.5% to 9.2% of the enstrophy and less than
1% of the energy. A visualization of the modulus of vorticityand their coherent and
incoherent contributions are shown in Figure 2. We observe that almost all struc-
tures are preserved in the coherent vorticity while they areno organized structures
left in the incoherent vorticity. Indeed, the total and coherent vorticity fields present
vortex tubes, while the incoherent vorticity looks structureless and noise-like. The
vorticity PDFs and spectra for the total flow and for the coherent flow are similar,
i.e., non-Gaussian and long-range correlated, while the incoherent flow is decorre-
lated and has a much reduced variance (Fig. 3). We observe that all along the inertial
range the coherent flow presents a similar energy and enstrophy spectra compared
to the spectra of the total flow, whereas they differ only in the dissipative range for
k ≥ 30. The reconstruction of the coherent part of these fields requires only, for
Re = 60000, 3.6% of the wavelet coefficients and retains≈ 92% of the enstrophy ,
and only≈ 3.7% of the wavelet coefficients maintains about 91% of the enstrophy
for Re = 40000. Additionally, there are nonsignificant changes in the skewness and
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Table 1 CVE decomposition of a flow field computed at resolutionN = 2563 for Reynolds number
Re = 20000.

Re=20000

total coherent incoherent
% of coefficients 100 3.59 96.41

Energy 2.955 2.946 0.004
% of Energy 100 99.7 0.14
min value -5.92 -5.93 -0.31
max value 6.16 6.17 0.33
velocity skewness 0.1432 0.1439 0.0016
skewness 0.14317 0.14385 0.15956
velocity flatness 2.7818 2.7802 3.48
flatness 2.7818 2.7802 3.4816

Enstrophy 212.80 196.93 15.87
% of enstrophy 100 92.54 7.46
min value -230.26 -243.29 -34.18
max value 245.86 259.24 38.19
vorticity skewness -0.013 -0.016 0.68·10−3

vorticity flatness 8.08 8.31 4.92

flatness between the total field and the coherent field for the differentRe. Moreover
we do not observe significant variations between the statistical properties of the four
different subcubes for each forRe.
The total, coherent and incoherent vorticity fields of the vorticity field is visualized
in Figure 2 forRe = 20000,60000,400000. As observed in theRe = 20000, almost
all structures are preserved in the coherent contribution and none remain in the in-
coherent contribution. However with the increase ofRe, we observe the presence of
more structures in the analyzed subcubes.
In [26] the extraction of coherent structures is done for homogenous isotropic turbu-
lent flows. A similar CVE is used for different resolutions 2563,5123,10243,20483

which correspond toRe = 30000,70000,200000,600000respectively. The main dif-
ference is that the CVE is applied on all the fields and not on subcubes as we do
here. The authors find that the compression rate increases with Re. In our analysis
on the subcubes, the compression rates are nearly constant∼ 3.6% for the different
Re (20000,60000,400000), so that, the Donoho threshold increases withRe. This
could suggest that the compression rate is limited by the resolution, i.e., the number
of octaves available. Indeed the resolution of all cubes we analysed is constant at
N = 2563. Moreover the decay of wavelet coefficients is smaller for the subcubes,
but the PDFs and spectra are very similar to the ones obtainedin our study.
From the present results we conjecture that modelling the effect of the discarded
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Table 2 Statistical analysis of the CVE filtering of several vorticity fields computed at resolution
N = 2563,5123,20483, which correspond to Reynolds numberRe = 20000,60000,400000 respec-
tively.

Re=60000 Re=400000

total coherent incoherent total coherent incoherent
subcube 1
% of coeff. 100 3.64 96.36 100 3.69 96.31
Vorticity
Enstrophy 598.51 550.76 47.75 4669.09 4418.81 450.27
% Enstrophy 100 92.2 7.98 100 90.75 9.25
Skewness -0.046 -0.047 -0.001 0.067 0.076 -0.903
Flatness 10.42 10.88 5.32 13.23 14.17 5.72
subcube 2
% of coeff. 100 3.66 96.34 100 6.62 93.38
Vorticity
Enstrophy 685.12 624.41 60.7 5336.16 4856.18 479.98
% Enstrophy 100 91.14 8.86 100 91.01 8.99
Skewness 0.029 0.027 0.001 -0.483 -0.527−6.33 10−06

Flatness 10.305 10.09 5.17 15.77 17.14 5.55
subcube 3
% of coeff. 100 3.69 96.31 100 3.70 96.3
Vorticity
Enstrophy 782.48 707.92 74.56 6975.17 6197.89 777.27
% Enstrophy 100 90.47 9.53 100 88.86 11.14
Skewness 0.157 0.164 0.001 0.05 0.544−3.50 10−05

Flatness 10.77 11.41 5.25 14.08 15.39 5.88
subcube 4
% of coeff. 100 3.66 96.34 100 3.69 96.31
Vorticity
Enstrophy 738.75 673.21 65.54 6043.08 5426.71 616.37
% Enstrophy 100 91.13 8.87 100 89.8 10.2
Skewness -0.14 -0.15 −3.00 10−04 -0.084 -0.0093 0.00002
Flatness 11.142 11.75 5.41 14.69 16.01 5.64

standard deviation
% of coeff. 100 0.02061 0.02061 0 1.46334 1.46334
Vorticity
Enstrophy 79.2048 68.1165 11.1797 987.662 768.802 149.519
% Enstrophy 0 0.71565 0.63597 0 0.97947 0.97947
Skewness 0.12544 0.13206 0.00099 0.25606 0.43885 0.45149
Flatness 0.37773 0.72315 0.10210 1.06849 1.2389 0.14008
mean
% of coeff. 100 3.6625 96.3375 100 4.425 95.575
Vorticity
Enstrophy 701.215 639.075 62.1375 5755.875 5224.8975 580.9725
% Enstrophy 100 91.235 8.81 100 90.105 9.895
Skewness 0 -0.0015 0.000175 -0.1125 0.020925 -0.225755333
Flatness 10.65925 11.0325 5.2875 14.4425 15.6775 5.6975
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(a) |ω| (b) |ωc| (c) |ω i |

Re = 20000

Re = 60000

Re = 400000

Fig. 2 Modulus of vorticity for (a), coherent part for (b), and incoherent part for (c).Note that
for Re = 60000and400000 subcubes 2563 data set are visualized to zoom on the structures. The
isosurface areσ = 56,96,290 for total and coherent parts andσ = 14,24,75.2 for the incoherent
part, forRe = 20000,60000,400000 respectively.

modes on the resolved modes is easier to perform using the Coherent Vortex Sim-
ulation (CVS) approach introduced in [14]. CVS computes alldegrees of freedom
which contribute to the flow nonlinearity,i.e., the coherent modes, whatever their
scale, while the remaining degrees of freedom,i.e., the incoherent modes, are dis-
carded to model turbulent dissipation. The method actuallycombines an Eulerian
projection of the solution with a Lagrangian procedure for the adaption of the com-



Coherent Vortex Simulation in Complex Geometries 9

Re = 20000

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

-200 -150 -100 -50  0  50  100  150  200

total
coherent

incoherent

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1  10  100

total
coherent

incoherent
k^(1/3)

k^4

Re = 60000 (first 2563 subcube)

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

-400 -300 -200 -100  0  100  200  300  400

total
coherent

incoherent

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 10000

 1  10  100

total
coherent

incoherent
k^(1/3)

k^4

Re = 400000 (first 2563 subcube)

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

-1500 -1000 -500  0  500  1000  1500

total
coherent

incoherent

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 100

 10000

 1  10  100

total
coherent

incoherent
k^(1/3)

k^4

(a) PDF ofω (b) Enstrophy spectrum
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putational basis: for more details we refer the reader to [14]. The next step to demon-
strate the potential of CVS is to develop an adaptive waveletsolver for the 3D
Navier–Stokes equations.

3 Coherent Vortex Simulation of Turbulent Mixing Layers

In this section, we present an extension of the Coherent Vortex Simulation (CVS)
[14] method to compressible flows. The CVS method is based on the observation
that turbulent flows contain both an organized part, the coherent vortices, and a
random part, the incoherent background flow. The separationinto coherent and in-
coherent contributions is done using a non-linear wavelet filtering. The evolution of
the coherent part is computed in physical space using a finitevolume scheme on
a locally refined grid, while the incoherent part is discarded during the flow evo-
lution, which models turbulent dissipation. To discretizethe convective terms, we
use a 2–4 McCormack scheme [17], while the diffusive terms are discretized us-
ing a second–order centered scheme in space. The time integration is done by an
explicit second-order Runge-Kutta scheme. The wavelet basis used for the filtering
relies on the cell-average multiresolution analysis developed by Harten [19]. Af-
ter the filtering, the discarded coefficients are removed from memory, so that both
CPU time and memory requirements are significantly reduced in comparison with
the DNS computation. The data structure is organized into a graded-tree form to be
able to navigate through it. To perform the CVS computations, a three-dimensional
adaptive multiresolution algorithm [30], originally developed for reaction-diffusion
equations, has been extended to the compressible Navier-Stokes equations. Exten-
sions of the adaptive multiresolution scheme to the compressible Euler equations
can be found in [6].

Table 3 Comparison between DNS and CVS of a 3D compressible mixing layer,Ma= 0.3, Re=
200. CPU time required on a Pentium IV 2.5 GHz, percentages ofCPU time, required memory,
total energyE and total enstrophyZ in comparison with the DNS computation.

Method CPU time % CPU % Mem % E % Z
DNS 7 day 09 h 40 min 08 s100.0 %100.0 %100.0 %100.0 %
CVS 2 day 07 h 00 min 03 s29.0 % 30.2 % 98.3 % 93.4 %

As example, we apply the CVS method here to compute a time-developing three-
dimensional turbulent mixing layer in the weakly compressible regime. CVS com-
putations of incompressible turbulent mixing layers have been presented in [32].
In this test-case, both layers have the same initial velocity norm, but opposite di-
rections. An initial three-dimensional sinusoidal perturbation is added to the basic
profile. The Reynolds and Mach numbers, based on the initial velocity norm and
half the initial layer thickness, are set to 200 and 0.3, respectively. The results are
compared with the one obtained by DNS performed on the regular finest grid with
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Fig. 4 CVS of a 3D compressible mixing layer,Ma= 0.3, Re= 200. Top: isosurfaces of vorticity
||ω|| = 0.6 (black), ||ω|| = 0.4 (dark gray), and ||ω|| = 0.2 (light gray) at t = 18, (left) t = 37
(center), andt = 80 (right). Bottom: corresponding adaptive grids.

the same numerical scheme. We find that only 17.9 % wavelet coefficients contain
around 98.3 % of the energy and 93.4 of the enstrophy. Taking into account all the
nodes of the tree data structure, these wavelet coefficientsrepresent 30.2% of the
1283 = 2097152 cells that the fine-grid computation requires. Concerning the CPU
time, it only represents 29.0% of the one required by the DNS, i.e. CVS is in the
present case three times faster than DNS.

These results show that the CVS method yields accurate results in comparison
with DNS, while significantly reducing the CPU time and memory requirements.
Further work will focus on the CVS of compressible mixing layers with larger val-
ues of both Mach and Reynolds numbers, i.e. in a more turbulent and more com-
pressible regime, for which higher compression of memory and CPU time are ex-
pected, cf. [31].

4 Adaptive Multiresolution Methods for Evolutionary PDEs

Up to now, different approaches have been investigated to define adaptive space
discretizations, some emerge fromad hoccriteria, others are based on more elabo-
rateda posteriorierror estimators using control strategies by solving computational
expensive adjoint problems.

In the framework of the current project we focused on multiresolution based
schemes (MR) for evolutionary PDEs. The multiresolution data representation is
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the main idea of the MR method. The decay of the MR coefficientsgives infor-
mation on local regularity of the solution. Therewith the truncation error can be
estimated and coarser grids can be used in regions where thiserror is small and the
solution is smooth. An adaptive grid can be introduced by suitable thresholding of
the multiresolution representation where only significantcoefficients are retained.

Hence a given discretization on a uniform mesh can be accelerated as the number
of costly flux evaluations is significantly reduced, while maintaining the accuracy
of the discretization. The memory requirement could also bereduced, for example
using a dynamic tree data structure.

A main bottleneck of most of these space–adaptive methods, which typically
employ explicit or semi–explicit time discretizations, isthat the finest spatial grid
size imposes a small time step in order to fulfill the stability criterion of the time
scheme. Hence, for extensive grid refinement with a huge number of refinement
levels, a very small size of the time step is implied.
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The aim in the present project was to develop local scale dependent time step-
ping for the space adaptive multiresolution scheme introduced in [30]. The idea is
to obtain additional speed up of this efficient space adaptive scheme by introduc-
ing at large scales larger time steps without violating the stability condition of the
explicit time scheme and less flux evaluation due to larger time steps. The original-
ity of our work is to combine, in the framework of the cell-average multiresolution
analysis, a local time stepping together with multi-stage Runge-Kutta methods. The
synchronization we propose differs from the one introducedin [25], where single-
stage methods were used.

Starting point of our work is the fully adaptive numerical scheme for evolutionary
PDEs in Cartesian geometry which based on a second order finite volume discretiza-
tion. A multiresolution strategy allows local grid refinement while controlling the
approximation error in space. The number of costly flux evaluations is significantly
reduced. For details we refer the reader to [30]. For time discretization we use an
explicit Runge-Kutta scheme of second order with a scale dependent time step. On
the finest scale the size of the time step is imposed by the stability condition of the
explicit scheme. On large scales the time step can be increased without severe vio-
lation of the stability requirement of the explicit scheme.The implementation uses
a dynamic tree data structure which allows memory compression and CPU time
reduction. In [6] we present numerical validations for testproblems in one space
dimension which demonstrate the efficiency and accuracy of the local time stepping
scheme with respect to both the multiresolution scheme withglobal time stepping
and the finite volume scheme on a regular grid. Fully adaptivethree-dimensional
computations for reaction-diffusion equations illustrated the memory reduction and
the CPU speed-up for a flame instability. For details we againrefer the interested
reader to [6].

In [7, 6] we extended the above scheme and developed an adaptive time stepping
scheme with automatic error control. The adaptive time integration method is based



14 H. Bockhornet al.

 0

 0.05

 0.1

 0.15

 0.2

 0  0.2  0.4  0.6  0.8  1

E
rr

CFL

ErrMax, const. time step CFL=0.5
ErrL2, const. time step CFL=0.5
ErrL1, const. time step CFL=0.5

ErrMax
ErrL2
ErrL1

Fig. 8 Errors vs. initial CFL value for the advection equation. Thegrid contains 256 points. The
parameters areδdesired= 10−3, Smin = 0.01, andS0 = 0.10.

 200

 300

 400

 500

 600

 700

 0  0.2  0.4  0.6  0.8  1

# 
of

 ti
m

e 
st

ep
s

CFL

const. time step, CFL=0.5

Fig. 9 Number of time steps vs. initial CFL value for the advection equation. The grid contains
256 points. The parameters areδdesired= 10−3, Smin = 0.01, andS0 = 0.10.

on a Runge–Kutta–Fehlberg method, which allows an estimation of the local error
in time. An original limiting technique is also proposed to avoid non admissible
choices for the time step. The adaptivity in space is done through a multiresolution
method, which automatically detects the local regularity of the solution and hence
guarantees automatic grid adaption in space. The costly numerical fluxes are evalu-
ated on this locally refined, while ensuring strict conservativity. The implementation
uses graded tree data structures which allows an efficient representation of the solu-
tion on adaptive grids with reduced memory requirements. Applications are shown
for the compressible Euler equations [6].
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4.1 Advection Equation in 1D

As example (see [7]) we consider the linear advection equation

∂u
∂ t

+c
∂u
∂x

= 0,

whereu = u(x,t), t ≥ 0, (x,y) ∈ [− 1
2, 1

2], andc > 0 is the constant velocity. The
boundary conditions are periodic and the initial conditionis

u(x,0) = exp
(
−50x2) .

The elapsed time is set tot = 1, so that the final solution is equal to the initial one.
In Figure 6, we show the time evolution of the time step for different initial CFL

values, i.e., for different initial time step sizes, using the finite volume scheme on
a regular grid with global time adaptivity and the RKF 2(3) method. We observe
that the time steps tend to converge in all cases to a time steparound 5.2×10−3. To
avoid a “bad choice” of the initial CFL values, the code allows a bigger limiter in the
beginning time steps. These “bad choices” of initial CFL could however increase the
global error, as presented in Table 4. The automatic step size control of the solution
reduces the number of time steps and hence the computationalcost (cf. Table 4).
We can also observe that the final error with respect to the analytical solution is
reduced for the time adaptive schemes, compared to the finitevolume scheme with
fixed time stepping, except for the initial CFL = 1 using theL∞ norm.

In Figure 8, we compareL2,L1,L∞ norms for the RK 3 method with CFL=
0.5 and the RKF 2(3) method. The results show that the choice of the initial time
step does not influence the final error, since all computations yield a similar result.
Figure 7 shows the CPU time spent for different choices of theinitial CFL. The CPU
time decreases as the initial CFL increases. This is directly related to the number of
time steps needed to compute the solution att = 1, as could be observed in Fig. 9.
For this test case, we can thus conclude that RKF 2(3) is more efficient than the
conventional RK 3 method with a fixed time step.

Table 4 Initial CFL, number of time steps, CPU time, initial and finaltime steps, and errors for
the advection equation. Mesh containing 256 points,δ0 = 10−3, Smin = 0.01,S0 = 0.10. The first
line corresponds to the constant time step with CFL=0.5.

Init. # steps % CPU Initial Final L∞-error L2-error L1-error
CFL compressiontime steptime step
0.50 513 100 3.91e-033.91e-038.61e-021.68e-026.84e-03
1.00 367 90 7.64e-035.27e-038.80e-021.65e-026.27e-03
0.75 381 96 5.73e-035.18e-038.52e-021.58e-025.97e-03
0.50 388 93 3.90e-035.15e-038.52e-021.58e-025.97e-03
0.25 452 105 2.00e-034.88e-038.58e-021.64e-026.57e-03
0.10 587 133 7.98e-044.94e-038.56e-021.60e-026.23e-03
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5 Wavelet Decomposition for LES - Implementation in the
LESOCC2 Code

All simulations of the test cases presented further have been performed with the
block-structured finite volume code LESOCC2 [20]. In this code the wavelet de-
composition was implemented and used to derive subgrid-scale models for LES.
Details are given in [4, 5]. Performing this work in the code LESOCC2 had the ad-
vantage of employing an already parallelized code which runs efficiently on a large
number of processors with disrtibuted memory access [3].

5.1 Wavelet subgrid-scale modelling

The wavelet decomposition used here is based on Hartens biorthogonal approach
[18, 29]. It is applied here to generate a two-level decomposition to obtain the
wavelet details . The details from this wavelet decomposition are then used to de-
rive an eddy-viscosity subgrid-scale model in the framework of LES according to
the following equation:

νt = C(Volp)
(1/3)

√
[detail(u)]2+[detail(v)]2+[detail(w)]2. (3)

Here,C denotes a model constant which was set equal to 0.02 based on calibration
for turbulent channel flow. The quantityVolp is the volume of the computational
cell on the finer grid, whileu, v andw denote the instantaneous values of the ve-
locity components. The above equation was derived based on dimensional reason-
ing. Alternatively, this model can be obtained in analogy tothe structure-function
model [23] by substituting the structure functions with thewavelet-details. Further
exploitation of the idea of wavelet decompositions and how they can be used in the
framework of LES with mixing of passive scalars is given in [4].

5.2 Numerical Details for the Simulated Cases

The finite-volume code LESOCC2 developed at the University of Karlsruhe for
Large Eddy Simulations of incompressible flows uses second-order central schemes
for the spatial discretization of all terms. The time-marching is explicit and is based
on a second-order Runge-Kutta scheme. The time step is variable computed with a
CFL number equal to 0.6. The grid is block-structured, hexahedral, collocated and
curvilinear.

Whenever possible a wall-resolving grid was applied for theflow regions close
to rigid walls. The Smagorinsky model was used with model constantCs = 0.1 and
a van Driest damping function. With the above wavelet model,no wall damping was



Coherent Vortex Simulation in Complex Geometries 17

y/h

<
u´

u´
>

,<
v´

v´
>

,<
w

´w
´>

,-
<

u´
v´

>

0 0.2 0.4 0.6 0.8
0

0.005

0.01

0.015

0.02

0.025

0.03 <u´u´> DNS-KMM
<v´v´> DNS-KMM
<w´w´>DNS-KMM
-<u´v´>DNS-KMM
<u´u´> PRESENT
<v´v´> PRESENT
<w´w´>PRESENT
-<u´v´>PRESENT

y/h

<
u´

u´
>

,<
v´

v´
>

,<
w

´w
´>

,-
<

u´
v´

>

0 0.2 0.4 0.6 0.8
0

0.005

0.01

0.015

0.02

0.025

0.03 <u´u´> DNS-KMM
<v´v´> DNS-KMM
<w´w´>DNS-KMM
-<u´v´>DNS-KMM
<u´u´> SMAG.
<v´v´> SMAG.
<w´w´>SMAG.
-<u´v´>SMAG.

Fig. 10 Resolved turbulent stresses,Reτ = 180. Left: Present subgrid-scale model compared to the
DNS data from [22]. Right: The Smagorinsky model compared tothe DNS data from [22].

used. For the cases where the grid near the wall was too coarseto be wall-resolving,
the Werner-Wengle wall function was employed for the Smagorinsky model, while
for the wavelet-based model the no-slip boundary conditionwas applied.

6 Complex Flows Simulation: Presentation of Test Case Results

In the framework of the DFG-CNRS cooperation of FOR 507, several test cases
were defined to assess LES model development for complex flows. The following
cases were computed in the present project and will be discussed below:

• Plane turbulent channel flow with Reynolds numbersReτ = 180, 395 and 590;
• Periodic hill flow,Re= 10 600 andRe= 37 000;
• Flow in a model combustor with swirl,Re= 50 500, swirl numberS= 0.6.

In all subsequent Figures the wavelet model (3) is labeled as”present”. Com-
putations with the Smagorinsky model were undertaken with all other parameters
unchanged in order to provide sound reference data for the evaluation of the per-
formance of the new model. For the hill flow at the lower Reynolds number, the
fine-grid LES solution of Breuer [1] obtained on a grid with 12Mio cells is used as
an additional reference data set (REF-MB).

6.1 Plane Channel Flow

The numerical grid consists of about 250,000 control volumes, and is the same
for all three Reynolds numbers. As a result, the first node (cell center) in the
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Fig. 11 Resolved turbulent stresses,Reτ = 395. Left: Present subgrid-scale model compared to the
DNS data from [24]. Right: The Smagorinsky model compared tothe DNS data from [24].
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Fig. 12 Resolved turbulent stresses,Reτ = 590. Left: Present subgrid-scale model compared to the
DNS data from [24]. Right: The Smagorinsky model compared tothe DNS data from [24].

wall-normal direction is positioned aty+ = 1.34 for Reτ = 180, aty+ = 2.94 for
Reτ = 395, and aty+ = 4.40 for Reτ = 590. For the two higher Reynolds num-
bers, computations with the present model were carried out also with a finer, wall-
resolving grid with about 400,000 control volumes. This finer grid resulted in only
very minor improvement so that they are not reproduced here for the sake of brevity.

Results for the resolved Reynolds stresses from the presentmodel and from the
Smagorinsky model are compared with DNS data from [22, 24] and presented in
Figures 10 to 12. For the lowest Reynolds number the present model is clearly su-
perior to the Smagorinsky model for all turbulence quantities. ForReτ = 395 and
Reτ = 590 the present model overpredicts the streamwise stresses〈u′u′〉, while the
Smagorinsky model predicts them with a good accuracy. However, the position of
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Fig. 13 Streamlines of the averaged flowfield and time-averaged turbulent viscosity, Re=37000.
Left: Smagorinsky, Right: Present. Broken vertical lines indicate positions of profiles discussed
below. Double lines identify block boundaries of the block-structured grid employed.

the peak with respect to they/h coordinate is well predicted by both models. For
all other quantities (and especially for the shear stresses〈u′v′〉) the present model is
superior to the Smagorinsky model.

6.2 Periodic Hill Flow

The periodic hill flow test case was calculated for two different Reynolds numbers.
Comparison is performed with data from other groups of theDFG−CNRScol-
laboration, both numerical [1] and experimental [28]. Fig.13 shows the geometry
and computed streamlines. Configuration and physical issues of this test case are
discussed in [16]. In [34], SGS and wall-modelling issues were investigated. The
numerical grid employed consists of about 1Mio control volumes. Details are pro-
vided in Table 5.

Table 5 Summary of the numerical simulations of the periodic hill flow. Index ”s” - separation
point, index ”r” - reattachment point,ta is averaging time andtx is flow-trough time, LR stands for
Re=10595 and HR - for Re=37000

Case Grid ∆tUb/h ta/tx (x/h)s (x/h)r

REF-MB (DSM) LR 281×222×200 0.0018 141 0.190 4.69
Smagorinsky LR 160×100×60 0.0084 72 0.211 4.56
Present LR 160×100×60 0.0085 72 0.209 4.86
Smagorinsky HR 160×100×60 0.0083 73 0.234 4.62
Present HR 160×100×60 0.0079 73 0.294 4.33

Figure 14 shows the dimensionless streamwise velocity for all models and the
experiments at the lower Reynolds number 10595. Compared tothe experiments of
[28], all numerical simulations overpredict the maximal streamwise velocity by a
small amount with the deviation being largest for the present model. In the same
Figure data for the resolved turbulent stresses are compared. Here, the new simu-
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lations show good agreement with the experimental and numerical reference data.
The observed deviations are substantially smaller than those between different SGS
models in [34].

We now turn to the positionx/h= 0.5 located at the beginning of the recirculation
zone, with corresponding data shown in Fig. 15. As above, thenumerical solutions
slightly underpredict the mean streamwise velocity in the lower part of the domain
(y/h < 1.8), while yielding somewhat larger values in the upper part.Concerning
the vertical velocity component〈v〉, it is to be observed that its value is substantially
smaller than〈u〉, so that differences should not be over-interpreted. Closest to the
experiments are the data obtained with the Smagorinsky model, while the present
model yields larger values. The resolved Reynolds stressesin the lower pictures of
the figure agree very well with the reference data. Here,〈v′v′〉 exhibits the largest
visual differences, with the present model and the Smagorinsky model being similar
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Fig. 15 Comparison of results forRe= 10595 atx/h= 0.5. For additional explanations see caption
of Fig. 14

in the upper part and the present model better in the lower part. But again absolute
value of〈v′v′〉 is small.

In the following Fig. 16 we present results for the hill flow with Re= 37000.
It is the first time that this case is computed since the experimental data have been
obtained only recently. Hence, only the experimental data of [28] are available for
comparison. Since the Reynolds number is higher than for theprevious case it is
expected that the contribution of the SGS-modelling is larger. In order to be able to
assess this, a solution without a SGS-model was carried out (referenced asPDNS
with P standing for ”Pseudo”). For the mean streamwise velocity, this PDNSsolu-
tion yields results which are closer to the experimental data than obtained with the
other simulations. For the resolved Reynolds stresses, however, and in particular for
〈u′u′〉, the results are worse than those from the other cases. Comparing the results
with the new model and the Smagorinsky model shows that the Reynolds stresses
are largely the same in both cases. This is even more observedfor the mean flow.
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Fig. 16 Comparison of results forRe= 37000. Left:x/h = 2. Right: x/h = 6. For additional
explanation see caption of Fig. 14

The overall analysis carried out so far shows that the agreement between the nu-
merical simulations and the experiments is better for the lower Reynolds number
than for the higher one. In order to investigate the effect ofthe Reynolds number,
results for bothRe= 10595 andRe= 37000 are presented in Fig. 17 atx/h= 4.0 - a
position at which the recirculation zone approximately ends. The mean streamwise
velocity 〈u〉 in the experiment becomes more uniform with increasing Reynolds
number. The same trend is observed with the present model, while for the Smagorin-
sky model the curves are almost identical between the two cases. Concerning the
Reynolds stresses it is observed that these, when scaled withU2

b , decay with increas-
ing Reynolds number in the experiment. The results of the simulations, all obtained
on the same grid, are very much alike. Only for〈u′u′〉 slight deviations are observed
showing a small trend in opposite direction, i.e. increasing scaled fluctuations with
Re. In particular, the results of the new model are close to those of the Smagorinsky
model. These observations can be related to the mean eddy viscosity displayed in
Fig. 13. The change of this quantity withRe(not displayed here) is very small. The
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Fig. 17 Comparison of results for the two Reynolds numbers considered,x/h = 4. For additional
explanations see caption of Fig. 14

difference between the two models can be appreciated in thatfigure forRe= 37000
and is about 10-15%.

One time step with the present wavelet model was about 5% faster than the
Smagorinsky model with respect to the CPU-time for the caseswith Reynolds num-
ber 37000. Additional information about the computations performed as well as for
the separation and reattachment points is given in Table 5.

6.3 Flow in a Model Combustor with Swirl

The annular swirl combustor experimentally investigated at the Technical University
of Darmstadt [27, 33] was another testcase in the DFG-CNRS collaboration. In the
following we focus on the burner geometry and compute the flowprior to the outlet
into the combustion chamber, as it was done in [27].
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Fig. 19 Comparison of different numerical simulations with experiments atx = −0.04[m]. DSM
and experimental data courtesy toŠarić and Jakirlić [33]

This annular swirler as depicted in Fig. 18 has an inner wall and an outer wall
and no blades. Its dimensions are the following: length 0.180[m], radius at the inflow
section 0.085[m], inner radius of the annulusr i = 0.020[m] and outer radiusro =
0.050[m]. The Reynolds number based on the hydraulic diameter of the annulus is
Re= 50500 with a bulk velocityUb = 10.94[m/s] used as characteristic velocity.
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The swirl number in the plane of comparison was toS= 0.6 and is visualized by
the streamlines of the mean flow in the right graph of Fig. 18. This was achieved
with the following values at the inflow boundary of the domain: radial component
4.51[m/s] and tangential component 3.01[m/s].

The computational grid employed contains 1.9 Mio computational nodes de-
composed into 40 blocks as depicted in Fig. 18. The computation was performed
over 12.5 flow-through times and averaging was accumulated over 10.5 flow-trough
times. Using 20 processors on an HP XC4000 this simulation took approximately
72 hours wall-clock time.

The contour plot in Fig. 18 provides instantaneous data of the pressure fluctua-
tions convey an impression of the structure and the size of turbulent fluctuations at
this position.

Figure 19 presents a comparison between numerical and experimental results in
the annular swirler, atx = −0.040[m]. This section had been selected for measure-
ments in the experiments [27]. From the different simulations carried out in [33],
the one with the Dynamic Smagorinsky model and a boundary condition set de-
noted as ”simplified swirler” has been used here for comparison as it corresponds
most closely to the present set of boundary conditions and computational domain.
In the figures these results are denoted ”DSM” and the corresponding experimental
data from [33] have been used for comparison, too. The present simulation were
undertaken using the Smagorinsky model as well as the new wavelet model.

Figure 19 shows that the DSM simulation of [33] agrees well with the exper-
imental data. The simulations performed in the present paper with the two SGS
models considered produced virtually identical data. Theyyield a mean streamwise
velocity profile which is close to the reference data. The deviation for the mean
circumferential velocity〈w〉 between the present models and the DSM is larger, in
particular near the inner wall. The reason for this behavioris the substantially lower
level of fluctuations compared to the reference simulation and the experiment. This,
in turn, may be due to the use of stationary inflow conditions (in [33] this issue
is not discussed). Computations with different boundary conditions and numerical
parameters are under way to elucidate this issue.

7 Conclusions

The present paper gives examples of analysis and simulationof complex turbu-
lent flows with a particular emphasis on the utilization of the orthogonal and bi-
orthogonal wavelet decomposition for their study and computation.

Theoretical background and applications of the wavelet based coherent vortex
extraction method are presented for homogeneous isotropicturbulence at different
Reynolds numbers.

A summary of the developed adaptive multiresolution methodfor evolutionary
PDEs is presented. First fully adaptive computations of 3d mixing layers using Co-
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herent Vortex Simulation are shown. Features like local scale dependent time step-
ping are also illustrated and examples for one dimensional problems are given.

Computations with the developed wavelet models have been performed on com-
plex geometries and flows with high Reynolds numbers applicable to engineering
problems. For this purpose three test cases selected in the present DFG-CNRS coop-
eration were simulated comprising non-orthogonal grids and swirl. The simulations
with the finite-volume code LESOCC2 show that the wavelet-based models are ro-
bust and efficient for the purpose of parallel computations,showing a good accuracy
when compared to classical subgrid-scale models like the one of Smagorinsky.
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SanjinŠarić for the support in setting up the test-case simulations and to P. K. Yeung
and D. Donzis from Georgia Tech for the dataset related to [35] they provided.

References

1. M. Breuer. New reference data for the Hill Flow Test Case: DFG - CNRS Research Unit 507,
A French-German Research Group,url: www.hy.bv.tum.de/DFG-CNRS, 2005

2. I. Daubechies.Ten Lectures on wavelets, volume 61. CBMS-NSF Conferences in Applied
Mathematics, SIAM, 1992.
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16. J. Fröhlich, C.P. Mellen, W. Rodi, L. Temmerman, and M.A. Leschziner. Highly resolved
large-eddy simulation of separated flow in a channel with streamwise periodic constrictions.
J. Fluid Mech., 526:19-66, 2005.

17. D. Gottlieb and E. Turkel. Dissipative two-four methodsfor time-dependent problems.J. Com-
put. Phys., 30:703-723, 1976.

18. A. Harten. Discrete multi-resolution analysis and generalized wavelets,J. Appl. Num. Math.,
12:153-193, 1993

19. A. Harten. Multiresolution algorithms for the numerical solution of hyperbolic conservation
laws.Comm. Pure Appl. Math., 48:1305-1342, 1995.

20. C. Hinterberger. Three-dimensional and depth-averaged Large-Eddy-Simulation of flat water
flows.PhD thesis, Inst. Hydromechanics, Univ. of Karlsruhe, 296 p., 2004

21. J. Jeong and F. Hussain On the identification of a vortex.J. Fluid Mech., 285:69–94, 1995.
22. J. Kim, P. Moin, and R. Moser. Turbulence statistics in fully developed channel flow at low

Reynolds number.J. Fluid Mech., 177:133–166, 1987
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