The Third International Conference on Availability, Reliability and Security

A Lazy Monitoring Approach for Heartbeat-Style
Failure Detectors

Benjamin Satzger, Andreas Pietzowski, Wolfgang Trumler, and Theo Ungerer

Institute of Computer Science, University of Augsburg
D-86135 Augsburg, Germany
Email: {satzger, pietzowski, trumler, ungerer } @informatik.uni-augsburg.de

Abstract—Failure detectors are a fundamental part of safe
fault-tolerant distributed systems. Many failure detectors use
heartbeats to draw conclusions about the state of nodes within
a distributed environment. The contribution of this paper is
an approach whose benefits are twofold. On the one hand it
reduces the network overhead produced by heartbeat-style failure
detectors. On the other hand it improves the quality of these
failure detectors by providing them with richer information
about the current network condition. We call this approach lazy
monitoring since the active sending of heartbeats is avoided if
possible. As it is independent of the actual failure detection
algorithm it can be used in many domains. For evaluation
purposes we applied our approach to the Smart Doorplate
Project. In this testbed the proposed technique reduced the
traffic to 1.2% while providing much more information about
the environment to the failure detectors.

I. INTRODUCTION

Failure detectors are an important part of fault-tolerant
distributed systems and are thus widely used. They provide
information on failures of components of these systems. While
the research focus so far has been on improving the quality
of the failure detection algorithms this work aims at reducing
their overhead and prividing them with more information about
the distributed system. Dependant on the used failure detection
algorithm more information about the environment should also
improve the detection quality.

The proposed lazy monitoring approach can be used in
combination with an important subset of failure detectors
called push or heartbeat-style failure detectors. There exist
two main monitoring approaches for failure detectors: push
and pull. Assuming there are two nodes or processes p and
q where p has a failure detector monitoring ¢. Using a push
failure detector ¢ has to send heartbeat messages to p. This
information is used by p to draw conclusions about ¢’s status.
A very simple failure detection algorithm using the push
approach works as follows: ¢ sends heartbeat messages at
regular time intervals A; to p. When p receives a heartbeat
message it trusts ¢ for a certain period of time Ay,. If
this period elapses without receiving a newer heartbeat, p
starts to suspect g. Due to the use of heartbeat messages,
failure detectors that are based on a push mechanism are also
called heartbeat-style failure detectors. Many state-of-the-art
algorithms are based on heartbeats, see e.g. [1], [2], [3], [4].
In systems with a pull failure detection the monitored node

adopts a passive role. p monitors ¢ by sending “are you still
alive”-messages every A;. If p does not receive an answer
from ¢ within a certain period of time A,,, p is suspecting q.

Failure detectors using the push paradigm have some ben-
efits compared to pull failure detectors. They need only
half the messages for an equivalent failure detection quality.
Furthermore it is harder to determine the timeout A;, as two
messages need to be taken into account which are both sent
over the network and subject to network delays and loss,
while in push failure detectors only one message has to be
considered. We define a heartbeat-style failure detector to be
lazy if it applies a technique to reduce the networking overhead
that arises from sending heartbeat messages. The analogy is
that these algorithms only send heartbeat messages if they
really have to and are thus called lazy. In this context it
is important to distinct application messages from heartbeat
messages. The former are sent by the application and cannot
be avoided, heartbeat messages are sent by failure detectors.

Fetzer et al. [5] introduced the term lazy failure detector but
came up with a slightly different definition which does not fit
to heartbeat-style failure detectors very well. Their algorithm
requires that each application message is being acknowledged.
Thus the round trip delay of each application message together
with its acknowlegement message is calculated. In addition,
for each destination the maximum round trip delay is stored.
The output of the failure detector depends on the existence of
a pending message, i.e. a message such that the application
message has been sent but not acknowledged yet: If there is
no such message, the answer is “no suspect”, but a ping is sent
to verify this answer. If there is such a message, the answer
depends on the maximum round trip delay.

The lazy monitoring approach proposed in this work also
uses application messages in order to save overhead, but has
some noteworthy features in comparison to the failure detector
of [5]. The usage of application messages in order to save
overhead is an integrated part of the failure detector of Fetzer
et al. and is not applicable to other failure detection algorithms.
Our lazy monitoring approach can be seen as a form of a
plugin that can be used with heartbeat-style failure detectors.
Fetzer’s algorithm uses application messages and is thus able
to save in the optimal case 50% of its message overhead. It
is based on computing round trip delays. Instead of sending
ping-pong messages, with the use of application messages

0-7695-3102-4/08 $25.00 © 2008 IEEE
DOI 10.1109/ARES.2008.51

IEEE
404 @) computer
® psoaety

Authorized licensed use limited to: University Augsburg. Downloaded on October 26, 2009 at 18:54 from IEEE Xplore. Restrictions apply.

it is able to save the “ping”-fraction. Our lazy monitoring
concept is capable of saving nearly all the overhead produced
by heartbeat-style failure detectors. Larrea et al. [6] also have
made contributions to improve the communication efficiency
of failure detectors. They assume a network of n processes
forming a ring while the processes send heartbeats to their
successor and monitor their predecessor by listening for heart-
beats. Their focus is on reducing the number of unidirectional
links between processes that carry messages forever. The
authors of [6] also propose to piggyback information, more
precisely to append a suspicion list to sent heartbeats. By
contrast we want to save the heartbeats themselves and do not
piggyback possibly large data like a list. This paper aims at
using application messages as alive proof which is not novel.
But so far, this fundamental concept cannot be used together
with heartbeat-style failure detectors. These failure detectors
completeley depend on heartbeats sent at regular intervals and
are incapable exploiting information application messages are
providing about the environment. The main contribution of
this paper is to close this gap.

In the following Section II, some heartbeat-style failure
detectors are presented to convey how these algorithms work.
In Section III the proposed lazy monitoring approach is intro-
duced. Section V provides an evaluation and finally, Section VI
concludes the paper.

II. FAILURE DETECTION ALGORITHMS

As system model two processes p and ¢ are considered
which are connected by a communication channel. They
can only communicate by sending and receiving messages.
Furthermore it is assumed that each process has access to
a local clock that is able to measure time intervals whereas
the clocks are not synchronised. As in the previous section,
suppose that process p is monitoring ¢ using a heartbeat-
style failure detector. Thus ¢ sends heartbeat messages to
p while p uses them to draw conclusions about ¢’s status.
Process p manages a sample base S where it stores these
information. This sample base typically consists of inter-arrival
times of received heartbeats. Some algorithms do not use
inter-arrival times but absolute arrival times of heartbeats. As
a transformation from the inter-arrival times to the absolute
times is easily possible, in the following it is assumed that
the sample base S consists of the former. Along with S, p
also stores the selected heartbeat period A;, i.e. the interval ¢
sends hearbeat messages to p, and the freshness point f, i.e.
the time when the last heartbeat was received. At runtime, p
could for instance have the following relevant information:

o S =11.083s,0.968s,1.062s,0.993s, 0.942s, 2.037s, . . |

e A; =1 second

o f=2007-10-22 10:06:02.434 (local clock)

o current time: 2007-10-22 10:06:02.919 (local clock)

Based on this data failure detectors generate a suspicion
value which indicates whether ¢ has failed or not. Failure
detectors differ in the way the suspicion value is computed
but they all are dependant on the input from the sample base
S. Chen et al. [2] propose a well-known adaptive failure

405

detection approach based on a probabilistic analysis. The
algorithm uses the sample base to compute an estimation
of the arrival time of the next heartbeat. The timeout is set
according to this estimation plus a constant safety margin.
Bertier et al. [3] combine Chen’s estimation with another
estimation developed by Jacobson [7] for a different context.
Their approach is similar to Chen’s - however they do not
use a constant safety margin but compute it with Jacobson’s
algorithm. Hayashibara et al. [4] propose a so-called ¢ failure
detector that is based on an estimation of inter-arrival times in
the sample base assuming that inter-arrivals follow a normal
distribution. In contrast to the previous two failure detectors
this failure detector is accrual as it does not output whether
a process is suspected to have crashed or not. Rather it gives
a suspicion information on a continuous scale whereas higher
values indicate a higher probability that the monitored process
has failed. Satzger et al. [1], [8] also introduce an accrual
failure detector based on a statistical analysis of the samples
but do not assume the inter-arrival times to follow a certain
probability distribution. Each of these four exemplary cited
adaptive heartbeat-style failure detectors can be combined with
the lazy monitoring approach presented in the next section.
Before, the failure detector of Satzger et al. is presented
in more detail to provide an impression of the functionality
of failure detection algorithms. Suppose g sends heartbeat
messages to p at a heartbeat interval A; = 1 second. Process
p manages a list S with information about the inter-arrival
times of the last n heartbeats it received. Let us assume S =
[1.083s,0.968s,1.062s,0.993s,0.9425,2.037s, 0.872s, ..] at
a certain point during runtime. The variations of the times
in S are due to the variations of the network sending delays
and also message losses. Furthermore p stores the time of the
last received heartbeat called freshness point f. Based on the
sampled inter-arrival times in S and f the failure detection
algorithm estimates the probability that no further heartbeat
messages arrive, i.e. ¢ has failed. Figure 1 shows the values
of S as a histogram. The shape of the histogram of .S depends

S

10

Frequency
6
1

1.0 15 2.0 25 3.0 35 4.0
time in seconds
Fig. 1. Histogram of the sampled inter-arrival times in S
on A; and the communication channel connecting ¢ and p. In
our example A; is one second. The communication channel
has a message loss rate of 10% and a certain fluctuating

Authorized licensed use limited to: University Augsburg. Downloaded on October 26, 2009 at 18:54 from IEEE Xplore. Restrictions apply.

message sending delay. The peak at two seconds arises from
one lost heartbeat message, the peak at three seconds arises
from two consecutive lost heartbeat messages, and so forth.
Figure 2 shows the cumulative frequencies of the values in S.
These cumulative frequencies are used by the failure detection
algorithm to compute a suspicion value for the failure of
q. If p is for example waiting since two seconds for the
next heartbeat of ¢ in this example the failure probability is
about 95%. This procedure is graphically depicted with arrows
within Figure 2. As you can see the inter-arrival times in S are

o

> | JRE——

0.8

0.6

Cumulative frequency
0.4

0.2

0.0
|

time in seconds

Fig. 2. Cumulative frequencies of the sampled inter-arrival times in S.
the determining factor for the output of the failure detector.
S contains information about how the heartbeat messages
behaved in the past. This knowledge allows for an estimation
of the current state of ¢. In the next section the lazy monitoring
approach is introduced that allows to save overhead using
failure detectors like the ones introduced here.

III. LAZY MONITORING APPROACH

Failure detectors should send as few messages as possible.
There are two ways to influence the amount of sent heartbeat
messages. First, heartbeat-style failure detectors are tailorable,
what denotes the ability to downgrade the detection quality for
the benefit of a lower network load. The heartbeat interval A;
is the key to tailor the failure detector in this way: A small
heartbeat interval results in a high network load, but failures
can be detected rapidly.

Figure 3 shows the traditional sampling method for the
heartbeat inter-arrival times. The monitored process ¢ sends
heartbeat messages to the monitoring process p every A,.
Process p manages a list .S - the sample base with the sampled
inter-arrival times - along with the freshness point f which is
always set to the time when the last heartbeat was received
and the heartbeat interval A;. This information is needed by
most failure detectors to compute a suspicion value. Whenever
p receives a heartbeat, it appends s = ¢, — f (¢, is the current
time) to .S and sets f = ¢, afterwards. Most failure detectors
limit the size of S to a certain value n (e.g. n = 1000) causing
the oldest sample being deleted if a new one is inserted into

S.

406

Process ¢:
send heartbeat message to p every A;

Process p:
f=—1 /lfreshness point
S =mnil /IS is initialised as an empty list

upon receive heartbeat message m; at time ¢,
if f == -1 then f = ¢,
f - t'r‘ 5

append s to S endif

else s=t,—f
Fig. 3. Traditional heartbeat sampling

Our lazy monitoring approach aims at reducing the network
load without the negative effects on the detection time. Quite
the contrary it allows for a better training of the failure detector
as it provides more data and thus can furthermore improve
the quality of the generated suspicion information. Thereby
we distinguish between application messages and heartbeat
messages. Application messages are messages that are sent by
the members of the network in the normal mode and cannot be
avoided. Heartbeat messages are the messages sent by failure
detectors. This work aims at avoiding the overhead of sending
heartbeats by appending small amounts of data to the applica-
tion messages. First, it is assumed that application messages
behave the same way as heartbeat messages. Limitations of
this generalisation are discussed below.

Friedman et al. [9] compare the throughput and latency of
four protocols that provide total ordering. They come to the
conclusion that message packing influences the performance
overwhelmingly more than any other optimization that they
checked both in terms of throughput and latency. The reason
is that packing messages reduces amongst others the header
overhead for messages and the contention on the network. Our
approach can be interpreted as some kind of message packing
where the problem lies in enabling failure detectors to use
them as samples. This is not possible yet for heartbeat-style
failure detectors.

In order to save a heartbeat message, our approach needs
a consecutive id and a timestamp to be appended to an
application message. In heartbeat-style failure detection al-
gorithms ¢ sends a heartbeat to p every A; seconds and p
is sampling the inter-arrival times of these heartbeats. Note
that the calculation of inter-arrival times is always possible,
provided p has a local clock. If the lazy monitoring approach
is applied, process ¢’s heartbeat sending behaviour must be
slightly changed. A heartbeat is not sent automatically every
A;, but ¢ is responsible to send one to p if no message, either
application or heartbeat message, has been sent to p since A;.
Thus pure heartbeat messages are only used if no application
message has been sent since A,.

But a significant problem arises because the failure detector
is now unable to compute new heartbeat inter-arrival times
to insert into the sample base S. The sample base consists
of heartbeat inter-arrival times which are typically around
A;. The inter-arrival times of application messages are ar-
bitrary and have no informative value for a failure detector.
Thus, the basic issue is to provide a technique that allows

Authorized licensed use limited to: University Augsburg. Downloaded on October 26, 2009 at 18:54 from IEEE Xplore. Restrictions apply.

failure detectors to sample inter-arrival times although only
application messages are sent at random times instead of
heartbeats. Basically, the inter-arrival times S in traditional
failure detectors are mainly influenced by the following three
environmental circumstances:

Message delay: Heartbeats sent over the network are affected
by message delays.

Message loss: Tt can occur that heartbeat messages get lost
during the sending process.

Processing delay of q: The monitored process ¢ sends heart-
beat messages not at the time it is supposed, e.g. due to
processing overload.

In many systems the variations of the inter-arrival times
due to processing delays of ¢ are negligible. Therefore, in this
work, we concentrate on message delay and message loss.
In the following the concept of lazy heartbeat sampling is
introduced. This enables p to sample heartbeat inter-arrival
times in order to adapt to the actual network conditions,
even if application messages are used instead of heartbeats.
By this means, the failure detector is able to adapt even
faster to changing networking conditions, as application and
heartbeat messages can be used to sample inter-arrival times.
Due to the fact that every message is used to draw conclusions
about the network’s condition a much richer set of training
information is available. To realise the lazy heartbeat sampling,
q is supposed to append a consecutively numbered id and the
sending time according to its local clock to every message it
sends to g. It is shown in the following that, with this additional
information, process p can use every message it receives to
compute a sample s for the sample base S. While heartbeat
messages are sent every 4A;, application messages can be sent
at random times. The following Formula 1 transformes the
inter-arrival times of the application messages into inter-arrival
times representing an estimation for heartbeats sent instead of
the application messages. Thus application messages are made
useful for the failure detection task. This formula is the core
of this work and consists of three parts:

——

message loss

+ (Ar - As) (l)
——

heartbeat interval sending time

Heartbeat interval: The heartbeat interval A; is the expected
value for the inter-arrival times of heartbeats and the basis for
the lazy heartbeat inter-arrival time estimation.

Message loss: Lost messages can be identified by the piggy-
backed message-ids. Every consecutively lost message length-
ens the estimated heartbeat inter-arrival time by A;. [is the
number of consecutively lost messages what arises from the
message-ids (I = current received message-id - last received
message-id -1). Therefore [- A; adds the additional time by
lost messages to Formula 1.

Sending time: The term A, — A, reflects the variations of the
inter-arrival time through the network. A, is the difference of
the receipt times of the current message and the previously
received message according to p’s local clock and A is the

difference of the sending times of the current message and
the previously received message according to ¢’s local clock
what can be computed by p with the appended sending times.
Figure 4 presents the lazy heartbeat sampling in detail. To

Process ¢:

- append sending time ¢; and consecutive id to
every outgoing message

- if no message has been sent to p since A,,
send heartbeat message to p

Process p:
f=—1 //freshness point
S =mnil /IS is initialised as an empty list

upon receive of message m; at time ¢,
if f == -1 then f = ¢, else
s=tr—f 5 s=0+ (- A)+(Ar—Ay)
f=t- ; append sto S endif

Fig. 4. Lazy heartbeat sampling

clarifiy the functionality of the new lazy monitoring approach
two examples are discussed.

Example 1 In this first example it is assumed that two
application messages are sent within an interval that is shorter
than the heartbeat interval. None of these two messages gets
lost.

A;: heartbeat interval is 1000 ms
m;_1: e message-id: i-1
« sending time: 0000 (according to ¢’s clock)
o receipt time: 0500 (according to p’s clock)
m;: o message-id: i
« sending time: 0250 (according to ¢’s clock)
« receipt time: 0800 (according to p’s clock)

The messages m;_1 and m, are two application messages
that are sent from ¢ to p. The message-ids ¢ and ¢ — 1 indicate
that no message has been lost and thus [= 0 in this case. The
message m; has been sent exactly 250 ms seconds after m;_1.
The interesting point here is that the sending times have an
interval of 250 ms, the receipt times of 300 ms seconds. Thus
the sending time variation is 50 ms.

The basic idea of this lazy monitoring approach is roughly
spoken “if the application message were a heartbeat what
would a sample look like”. If the values of this example are
inserted into Equation 1 the result is:

s=A0;+(1-A;)+ (A — Ay) = 1000ms + (0-1000ms) +
(300 ms — 250 ms) = 1050 ms

The inter-arrival time of m; and m;_1 is 300 ms seconds
- the sending interval is 250 ms. Heartbeat messages are sup-
posed to be sent every 1000 ms. Thus if these two application
messages were heartbeat messages then they would have been
sent with an interval of 1000 ms and the inter-arrival time that
q had experienced would be 1050 ms.

Example 2 In the second example we analyse a case
where one message gets lost. This can be recognised with
the message-ids.

A;: heartbeat interval is 1000 ms

407

Authorized licensed use limited to: University Augsburg. Downloaded on October 26, 2009 at 18:54 from IEEE Xplore. Restrictions apply.

m;_o: e message-id: i-2
« sending time: 0000 (according to ¢’s clock)
o receipt time: 0300 (according to p’s clock)
mg: o message-id: i
« sending time: 0800 (according to ¢’s clock)
o receipt time: 1030 (according to p’s clock)

With this setting the sample s is calculated as follows:

s=0;+(1-A)+ (A —As) = 1000ms + (1-1000ms) +
(730 ms — 800 ms) = 1930 ms

In this example p sends three application messages to ¢
whereas the second gets lost. With the same probability the
loss could also have happened to a sent heartbeat message.
Furthermore the sending time of m; is 70 ms shorter than the
sending time of m;_o. This example transferred to the case of
real heartbeat messages would result in an inter-arrival time
of 1930 ms. The meaning of Equation 1 should be clearer
now: every message is used to draw conclusions about the
conditions a heartbeat would undergo if sent at the same
time. Process ¢ passes on sending real heartbeat messages
if application messages are sent. Process ¢ however is still
able to sample heartbeat inter-arrival times and can update its
knowledge base, the list of inter-arrival times S. The failure
estimation algorithm of heartbeat-style failure detectors do not
have to be changed in order to apply this lazy monitoring
approach. If processes are communicating frequently no single
heartbeat message has to be sent and nearly no network
overhead is produced by failure detectors.

It is also possible to improve the quality of failure detectors
by reducing the heartbeat interval A;. Thus failures can be
detected faster - the bigger network overhead caused by this
action could cease to exist with the application of our lazy
monitoring approach. If no application messages are sent then
of course heartbeat messages have to be used. But it can be
argued that in this case there is a very low network load and the
additional network load caused by heartbeat messages can be
beared. However, during high traffic times where additional
traffic would be very unpleasant our approach prevents the
network from this overhead.

It has to be mentioned that our approach introduces over-
head as a message id and the sending time is appended to
application messages. However, this overhead can be reduced
to 4 bytes or even less per message. Suppose the message id
is represented with 10 bits and the timestamp with 22 bits
what together are 4 bytes. Then, the message id has a range
from 1 to 1024, and a timestamp can be represented by the
number of milliseconds since the last full hour. The check for
lost messages as well as the delay calculation has then to be
performed with modulo 2'° and 222 respectively. Of course, p
is now unable to distinct e.g. whether none or 1024 consecutive
messages have been lost, but the latter case is very unlikely
and can be ignored. The analogue is holding for the appended
timestamp.

IV. MESSAGE SELECTION STRATEGY

In this section we address two issues. First, until now
we assumed that the behaviour of application messages is

408

a good estimator for the behaviour of heartbeat messages.
However, this is not the case if application messages can
become much larger than heartbeats. One way to overcome
this is to perform the piggybacking of the relevant information
at packet level. But as the engineering of this heavily depends
on the used protocols and often the access to these layers is
neither given nor wanted we only consider lazy monitoring
on the application/message level in this work. Second, in the
last section lazy monitoring information is appended to all
application messages - this is not always necessary.

A message selection strategy determines which messages
to use for lazy failure detection. This is useful to (1) omit
application messages which are too large and therefore un-
suitable as information source for failure detectors and (2) to
adjust the amount of suitable messages which are used for
lazy monitoring. A message selection strategy (MSS) takes as
input an application message and outputs whether it is used for
lazy monitoring, i.e. whether a message id and a timestamp is
appended which can be processed at the receiving node. The
simplest strategy is to omit all application messages which
are larger than M AX SIZFE bytes and to use the remaining
ones. Application messages smaller or equal to MAXSIZE
are supposed to have similar behaviour to heartbeat messages
and therefore considered suitable for lazy monitoring.

If all suitable application messages are used for lazy mon-
itoring a maximum number of samples is provided to the
failure detector. As some failure detectors might not be able
to profit from an amount of samples higher than a certain
value n,, per interval A, also suitable application messages
can be omitted to reduce overhead. Suppose n; is the average
number of suitable messages within an interval A; and n,, is
the maximum number of messages the failure detector can
utilise as samples. The adaptive MSS of Figure 5 reduces
the number of messages used for lazy monitoring to n, on
average. The function rand() returns a random value within

Process ¢:
for every outgoing message m:
if sizeof(m) < MAXSIZE and rand() < 7 then
message is selected for lazy monitoring
append sending time ¢, and consecutive id to m
endif

if no selected message has been sent to p since A,,
send heartbeat message to p

Fig. 5. Adaptive MSS

the interval [0, 1).

V. EVALUATION

In this section we describe the costs and benefits of our
approach with respect to (1) the produced traffic, (2) the num-
ber of sent messages, and the (3) number of samples provided
to the failure detector. The points (1) and (2) should be as
small as possible, but for (3) higher values are better because
then the failure detector is provided with more information
about the environment. To make statements about these three
measures the following variables are used:

Authorized licensed use limited to: University Augsburg. Downloaded on October 26, 2009 at 18:54 from IEEE Xplore. Restrictions apply.

non-lazy | lazy
(1) Traffic h bytes b-nyss +p- h bytes
(2) #Messag 1 p (0<p<1
(3) #Samples 1 maz(l,nprss)
TABLE I

COMPARISON NON-LAZY/LAZY FAILURE DETECTION

non-lazy lazy
(1) Traffic 3500 bytes | 43.5 bytes
(2) #Messages 1 0.01
(3) #Samples 1 10
TABLE II

COMPARISON NON-LAZY/LAZY FAILURE DETECTION WITHIN THE SMART
DOORPLATE PROJECT

o /\;: the heartbeat interval

o h: the size of a heartbeat message (including header)

o b: the size of data needed to be appended in order to use

an application message as sample

e njrss: the average number of messages the MSS selects

within A;

o p: the probability that no message is selected within A;
Table I shows how to compute (1), (2), and (3) where all
measures refer to the interval A,.

The lazy monitoring technique has been applied within our
Smart Doorplate Project [10], [11]. This project envisions
the use of smart doorplates within an office building. The
doorplates are amongst others able to display current situa-
tional information about the office owner, to direct visitors
to his current location based on a location-tracking system.
A middleware called “Organic Computing Middleware for
Ubiquitous Environments” OCp [12] based on Java and JXTA
serves as common platform for all included devices. To detect
failures, the devices monitor each other using failure detectors.
The approach introduced in this work is used to minimise the
messaging overhead caused by these failure detectors.

In our smart doorplate environment we set the heartbeat
interval of the failure detectors A; to 10 seconds. Messages are
exchanged in XML format in JXTA what leads to an overhead
of 3.5 kB per message. This overhead does not only con-
sume network resources but also represents a computational
overhead for each node sending and receiving messages. The
amount of data which has to be appended to an application
message in order to use it for lazy monitoring are in our
case 4 bytes. Especially the location tracking-system typically
generates many small messages with coordinates of the office
owners which all can be used for the lazy monitoring. We
decided to limit the amount of selected messages to 10, using
the adaptive MSS shown in Figure 5. The probability that no
single messages is sent during A; (10s) depends strongly on
the system, the number and types of services communicating
in the network, the daytime, and so on. In our case a value of
1% is even pessimistic. This leads to the following list: A;:
10 seconds, h: 3.5 kB, b: 4 bytes, nyrss: 10, p: 1%.

Table II summarises and compares the resulting traffic, the
number of messages sent by the failure detector, and the
number of samples the failure detector can use to adapt to the
network. These results show that using our lazy monitoring

409

approach the generated traffic can be reduced significantly
as well as the number of sent messages. Furthermore, more
samples are provided to the failure detector what allows it to
adapt faster to changing network conditions. In our testbed the
usage of lazy monitoring reduced the traffic to 1.2% and the
number of messages to 1% of the benchmark while 10 times
more information about the environment is available.

VI. CONCLUSIONS

In this work we have presented a mechanism that has
the ability to significantly reduce the overhead caused by
heartbeat-style failure detectors. These detectors are widely
used and their failure estimation algorithms do not need to be
changed in order to apply our approach. Besides the reduction
of overhead our lazy monitoring mechanism also contains the
possibility of a faster adaption to changing network conditions
and better detection quality due to more information about the
network. The saved resources can be used to enable for a faster
failure detection. Especially for environments with battery-
powered devices like sensors in e.g. smart environments or
sensor networks the reduction of message sending is very
valuable as each sent message consumes a relatively high
amount of power. The presented techniques could be a key
enabler to use failure detectors in such environments.

REFERENCES

[1] B. Satzger, A. Pietzowski, W. Trumler, and T. Ungerer, “A new adaptive
accrual failure detector for dependable distributed systems,” in SAC "07:
ACM Symp. on Applied Computing. New York, USA: ACM Press, 2007.

[2] W. Chen, S. Toueg, and M. K. Aguilera, “On the QoS of failure
detectors,” IEEE Trans. Computers, vol. 51, no. 5, pp. 561-580, 2002.

[3] M. Bertier, O. Marin, and P. Sens, “Implementation and performance
evaluation of an adaptable failure detector,” in DSN ’02: 2002 Interna-
tional Conference on Dependable Systems and Networks. Washington,
DC, USA: IEEE Computer Society, 2002, pp. 354-363.

[4] N. Hayashibara, X. Défago, R. Yared, and T. Katayama, “The f accrual
failure detector.” in Symp. on Reliable Distributed Systems, SRDS. 1EEE
Computer Society, 2004, pp. 66-78.

[S] C. Fetzer, M. Raynal, and F. Tronel, “An adaptive failure detection pro-
tocol,” in PRDC ’01: Proceedings of the 2001 Pacific Rim International
Symposium on Dependable Computing. Washington, DC, USA: IEEE
Computer Society, 2001, p. 146.

[6] M. Larrea, A. Lafuente, I. Soraluze, R. Cortifias, and J. Wieland, “On
the implementation of communication-optimal failure detectors,” in 3rd
Latin-American Symp. on Dependable Computing, LADC, ser. LNCS,
vol. 4746. Morelia, Mexico: Springer Verlag, 2007, pp. 25-37.

[7]1 V. Jacobson, “Congestion avoidance and control,” in SIGCOMM ’88:
Communications Architectures and Protocols. New York, NY, USA:
ACM Press, 1988, pp. 314-329.

[8] B. Satzger, A. Pietzowski, W. Trumler, and T. Ungerer, “Variations and
evaluations of an adaptive accrual failure detector to enable self-healing
properties in distributed systems,” in ARCS ’07: 20th International
Conference on Architecture of Computing Systems, 2007.

[9] R. Friedman and R. van Renesse, “Packing messages as a tool for

boosting the performance of total ordering protocols,” in Symp. on High

Performance Distributed Computing, HPDC, 1997, pp. 233-242.

W. Trumler, F. Bagci, J. Petzold, and T. Ungerer, “Smart Doorplate,”

in First International Conference on Appliance Design (1AD), Bristol,

GB, May 2003, pp. 24-28.

, “AMUN - autonomic middleware for ubiquitous environments
applied to the smart doorplate,” ELSEVIER Advanced Engineering
Informatics, vol. 19, no. 3, pp. 243-252, April 2005.

[12] W. Trumler, “Organic ubiquitous middleware,” Ph.D. dissertation, Uni-
versitit Augsburg, July 2006.

[10]

[11]

Authorized licensed use limited to: University Augsburg. Downloaded on October 26, 2009 at 18:54 from IEEE Xplore. Restrictions apply.

