
Benjamin J RadfordUniversity of North Carolina at Charlotte | UNC Charlotte · Department of Political Science and Public Administration
Benjamin J Radford
Doctor of Philosophy
Turning unstructured text and noisy signals into reliable socio-political data. Also forecasting crises.
About
25
Publications
15,275
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
330
Citations
Citations since 2017
Introduction
Political Conflict, Political Methodology, Machine Learning, Cybersecurity, Event Data, Text Analysis
Publications
Publications (25)
Determining the number of casualties and fatalities suffered in militarized conflicts is important for conflict measurement, forecasting, and accountability. However, given the nature of conflict, reliable statistics on casualties are rare. Countries or political actors involved in conflicts have incentives to hide or manipulate these numbers, whil...
Many dynamical systems exhibit latent states with intrinsic orderings such as "ally", "neutral" and "enemy" relationships in international relations. Such latent states are evidenced through entities' cooperative versus conflictual interactions which are similarly ordered. Models of such systems often involve state-to-action emission and state-to-s...
We report results of the CASE 2022 Shared Task 1 on Multilingual Protest Event Detection. This task is a continuation of CASE 2021 that consists of four subtasks that are i) document classification, ii) sentence classification, iii) event sentence coreference identification, and iv) event extraction. The CASE 2022 extension consists of expanding th...
The 2020 Violence Early Warning System (ViEWS) Prediction Competition challenged participants to produce predictive models of violent political conflict at high spatial and temporal resolutions. This paper presents a convolutional long short-term memory (ConvLSTM) recurrent neural network capable of forecasting the log change in battle-related deat...
Text data are an important source of detailed information about social and political events. Automated systems parse large volumes of text data to infer or extract structured information that describes actors, actions, dates, times, and locations. One of these sub-tasks is geocoding: predicting the geographic coordinates associated with events or l...
We propose a new task and dataset for a common problem in social science research: "upsampling" coarse document labels to fine-grained labels or spans. We pose the problem in a question answering format, with the answers providing the fine-grained labels. We provide a benchmark dataset and baselines on a socially impactful task: identifying the exa...
This study explored social factors that are associated with the US deaths caused by COVID‐19 after the declaration of economic reopening on May 1, 2020 by President Donald Trump. We seek to understand how county‐level support for Trump interacted with social distancing policies to impact COVID‐19 death rates. Overall, controlling for several potent...
Previous efforts to automate the detection of social and political events in text have primarily focused on identifying events described within single sentences or documents. Within a corpus of documents, these automated systems are unable to link event references -- recognize singular events across multiple sentences or documents. A separate liter...
Previous efforts to automate the detection of social and political events in text have primarily focused on identifying events described within single sentences or documents. Within a corpus of documents, these automated systems are unable to link event references -- recognize singular events across multiple sentences or documents. A separate liter...
The CLEF 2019 ProtestNews Lab tasks participants to identify text relating to political protests within larger corpora of news data. Three tasks include article classification, sentence detection, and event extraction. I apply multitask neural networks capable of producing predictions for two and three of these tasks simultaneously. The multitask f...
The CLEF 2019 ProtestNews Lab tasks participants to identify text relating to political protests within larger corpora of news data. Three tasks include article classification, sentence detection, and event extraction. I apply multitask neural networks capable of producing predictions for two and three of these tasks simultaneously. The multitask f...
Event data provide high-resolution and high-volume information about political events and have supported a variety of research efforts across fields within and beyond political science. While these datasets are machine coded from vast amounts of raw text input, the necessary dictionaries require substantial prior knowledge and human effort to produ...
As the amount of cyber data continues to grow, cyber network defenders are faced with increasing amounts of data they must analyze to ensure the security of their networks. In addition, new types of attacks are constantly being created and executed globally. Current rules-based approaches are effective at characterizing and flagging known attacks,...
We evaluate methods for applying unsupervised anomaly detection to cybersecurity applications on computer network traffic data, or flow. We borrow from the natural language processing literature and conceptualize flow as a sort of "language" spoken between machines. Five sequence aggregation rules are evaluated for their efficacy in flagging multip...
We evaluate methods for applying unsupervised anomaly detection to cybersecurity applications on computer network traffic data, or flow. We borrow from the natural language processing literature and conceptualize flow as a sort of "language" spoken between machines. Five sequence aggregation rules are evaluated for their efficacy in flagging multip...
We show that a recurrent neural network is able to learn a model to represent sequences of communications between computers on a network and can be used to identify outlier network traffic. Defending computer networks is a challenging problem and is typically addressed by manually identifying known malicious actor behavior and then specifying rules...
There has been much disagreement about the relationship between civil wars and state economic performance. While civil war is often associated with poor economic performance, some states have managed robust growth despite periods of domestic armed conflict. We find this disagreement results from not accounting for the spatial distribution of confli...
There has been much disagreement about the relationship between civil wars and state economic performance. While civil war is often associated with poor economic performance, some states have managed robust growth despite periods of domestic armed conflict. We find this disagreement results from not accounting for the spatial distribution of confli...
The black market trade in arms is often cited as a potential source of failure for arms embargoes that are imposed by the international community as a means of mitigating political violence. Sanctioned actors are suspected of gaining access to arms through illicit channels and are therefore able to offset the costs of an embargo. However, a lack of...