Benjamin Porter

Benjamin Porter
University of Oxford | OX · Department of Materials

Doctor of Philosophy

About

17
Publications
5,030
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
347
Citations
Citations since 2016
15 Research Items
337 Citations
20162017201820192020202120220102030405060
20162017201820192020202120220102030405060
20162017201820192020202120220102030405060
20162017201820192020202120220102030405060
Additional affiliations
January 2013 - September 2015
University of Oxford
Position
  • PhD Student

Publications

Publications (17)
Article
Full-text available
Sustainability has become a critical concern in the semiconductor industry as hazardous wastes released during the manufacturing process of semiconductor devices have an adverse impact on human beings and the environment. The use of hazardous solvents in existing fabrication processes also restricts the use of polymer substrates because of their lo...
Article
Confining electric fields to a nanoscale region is challenging yet crucial for applications such as high resolution probing of electrical properties of materials and electric-field manipulation of nanoparticles. State-of-the-art techniques involving atomic force microscopy typically have a lateral resolution limit of tens of nanometers due to limit...
Article
Heterophase homojunction formation in atomically thin 2D layers is of great importance for next-generation nanoelectronics and optoelectronics applications. Technologically challenging, controllable transformation between the semiconducting and metallic phases of transition metal chalcogenides is of particular importance. Here, we demonstrate that...
Article
For many applications, a method for controlling the optical properties of a solid-state film over a broad wavelength range is highly desirable and could have significant commercial impact. One such application is smart glazing technology where it is necessary to harvest near-infrared solar radiation in the winter and reflect it in the summer--an im...
Preprint
For many applications, a method for controlling the optical properties of a solid-state film over a broad wavelength range is highly desirable and could have significant commercial impact. One such application is smart glazing technology where it is necessary to harvest near-infrared solar radiation in the winter and reflect it in the summer--an im...
Article
Two-dimensional gallium sulfide (GaS) crystals are synthesized by a simple and efficient ambient pressure chemical vapor deposition (CVD) method using a single-source precursor of Ga2S3. The synthesized GaS structures involve triangular monolayer domains and multilayer flakes with thickness of 1 and 15 nm, respectively. Regions of continuous films...
Article
Full-text available
Tin disulfide crystals with layered two-dimensional (2D) sheets are grown by chemical vapor deposition using a novel precursor approach and integrated into all 2D transistors with graphene (Gr) electrodes. The Gr:SnS2:Gr transistors exhibit excellent photodetector response with high detectivity and photoresponsivity. We show that the response of th...
Article
Two dimensional materials are being increasingly studied, particularly for flexible and wearable technologies because of their inherent thickness and flexibility. Crucially, one aspect where our understanding is still limited is on the effect of mechanical strain, not on individual sheets of materials, but when stacked together as heterostructures...
Poster
We present here a facile method to prepare optical materials on flexible substrates utilizing direct additive manufacturing. Development of this field is key to making rapid prototyping more accessible to researchers and industry and allowing more innovation in the fields of electronics, photonics and sensing applications.
Article
Full-text available
The unique physical and optical properties of nanoparticles make their reliable and rapid assembly an important goal for nanotechnology. To this end, many competing driving forces have been targeted to control the self-assembly, though issues with reliability and efficiency indicate that interfaces on the nanoscale are not yet fully understood. In...
Article
Full-text available
Augmenting existing devices and structures at the nanoscale with unique functionalities is an exciting prospect. So is the ability to eventually enable at the nanoscale, a version of rapid prototyping via additive nanomanufacturing. Achieving this requires a step-up in manufacturing for industrial use of these devices through fast, inexpensive prot...
Article
We show how an oxide passivating layer on the Cu surface before the growth of h-BN by chemical vapor deposition (CVD) can lead to increased domain sizes from 1 to 20 μm by reducing the nucleation density from 10⁶ to 10³ mm–2. The h-BN domains within each Cu grain are well-oriented, indicating an epitaxial relationship between the h-BN crystals and...
Article
We study the interactions in graphene/WS2 two-dimensional (2D) layered vertical heterostructures with variations in the areal coverage of graphene by the WS2. All 2D materials were grown by chemical vapor deposition and transferred layer by layer. Photoluminescence (PL) spectroscopy of WS2 on graphene showed PL quenching along with an increase in t...
Article
Full-text available
Additive manufacturing has provided a pathway for inexpensive and flexible manufacturing of specialized components and one-off parts. At the nanoscale, such techniques are less ubiquitous. Manufacturing at the nanoscale is dominated by lithography tools that are too expensive for small- and medium-sized enterprises (SMEs) to invest in. Additive nan...
Article
Full-text available
Techniques to reliably pick-and-place single nanoparticles into functional assemblies are required to incorporate exotic nanoparticles into standard electronic circuits. In this paper we explore the use of electric fields to drive and direct the assembly process, which has the advantage of being able to control the nano-assembly process at the sing...

Questions

Question (1)
Question
I'm trying to maximise the coverage of a carboxylic acid self-assembled on a gold surface, to create a negative surface charge in solution. Does anyone have any advice on the best compound to use for this purpose?
Also, would the shorter chain molecule be a lot smellier?

Network

Cited By