Benjamin Frank

Benjamin Frank
Johns Hopkins University | JHU · Department of Chemistry

About

16
Publications
2,326
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
422
Citations

Publications

Publications (16)
Article
Full-text available
Petrochemical-based plastics have not only contaminated all parts of the globe, but are also causing potentially irreversible damage to our ecosystem because of their non-biodegradability. As bioplastics are limited in number, there is an urgent need to design and develop more biodegradable alternatives to mitigate the plastic menace. In this regar...
Article
Full-text available
Multicolor carbon dots (CDs) have been developed recently and demonstrate great potential in bio-imaging, sensing, and LEDs. However, the fluorescence mechanism of their tunable colors is still under debate, and efficient separation methods are still challenging. Herein, we synthesized multicolor polymeric CDs through solvothermal treatment of citr...
Article
Carbon nanotubes (CNTs) have unique physical and chemical properties that drive their use in a variety of commercial and industrial applications. CNTs are commonly oxidized prior to their use to enhance dispersion in polar solvents by deliberately grafting oxygen-containing functional groups onto CNT surfaces. In addition, CNT surface oxides can be...
Article
The interaction of anaerobic microorganisms with carbon nanotube/polymer nanocomposites (CNT/PNC) will play a major role in determining their persistence and environmental fate at the end of consumer use when these nano-enabled materials enter landfills and encounter wastewater. Motivated by the need to understand how different parameters (i.e., po...
Article
The unique physicochemical and luminescent properties of carbon dots (CDs) have motivated research efforts towards their incorporation into commercial products. Increased use of CDs will inevitably lead to their release into the environment where their fate and persistence will be influenced by photochemical transformations, the nature of which is...
Article
Plasmonic aluminum nanoparticles have emerged as an exciting new materials platform, due to the high natural abundance of aluminum, their ability to be synthesized in the solution phase, and the potential of these materials to be used for photocatalysis and sensing. However, the photothermal properties of solution-processed aluminum nanoparticles,...
Article
This study reveals how natural fiber welding (NFW) can be used to engineer biopolymer materials with improved thermal stability. First, it is shown how NFW without binders improves lignocellulose yarn thermal stability by ≈17 °C, primarily by condensing microfibril structure. Next, silanized‐cellulose nanofibrils (Si‐CNFs) are developed as NFW bind...
Preprint
This manuscript describes cyclodextrin polymers formed as a thin coating on microcrystalline cellulose. The resulting polymer/cellulose composite shows promising performance for removing organic pollutants from water and can be packed into columns for continuous-flow experiments. The polymer/cellulose composite also shows excellent resistance to ae...
Article
For nanocellulose to function effectively as a nanofiller in polymers, its interfacial properties are often modified to enhance the dispersion of nanocellulose in the polymer matrix. However, the effect of different surface modification strategies on the persistence of nanocellulose in the environment is unclear. In this study, we have examined the...
Article
Full-text available
As-synthesized malic acid carbon dots are found to possess unique and superior photoblinking properties compared to conventional dyes. Considering their excellent biocompatibility, malic acid carbon dots are suitable for super-resolution fluorescence localization microscopy under a variety of conditions, as we demonstrate in fixed and live trout gi...
Article
The properties and commercial viability of biodegradable polymers can be significantly enhanced by the incorporation of carbon nanotubes (CNTs). The environmental impact and persistence of these carbon nanotube/polymer nanocomposites (CNT/PNCs) after disposal will be strongly influenced by their microbial interactions, including their biodegradatio...
Article
Carbon dots have arisen as a potential alternative to traditional quantum dots since they fluoresce but are synthesized from sustainably sourced green chemicals. Herein, fluorescent nitrogen-doped polymeric carbon dots (CDs) were synthesized by using citric acid (CA) or malic acid (MA) as carbon precursors and ethylenediamine as the nitrogen precur...
Article
The biodegradation rates of carbon nanotube (CNT)/ polymer nanocomposites (PNCs) containing poly-ɛ-caprolactone (PCL) were investigated using Pseudomonas aeruginosa, a microorganism commonly found in the environment. CNT/PCL nanocomposite mass loss profiles revealed that the rate of PCL matrix biodegradation decreased systematically as the CNT load...
Article
In the present work, we have studied the flame-retardant properties of phosphorus-functionalized multi-walled carbon nanotubes (MWCNTs) created by treating oxidized MWCNTs (O-MWCNTs) with phosphoric acid. These phosphorus MWCNTs (P-MWCNTs), along with pristine MWCNTs and O-MWCNTs, were incorporated into polystyrene (PS) and poly (methyl methacrylat...

Network

Cited By