Benjamin Bukombe

Benjamin Bukombe
Universität Augsburg | UNA · Institute of Geography

Environmental sciences

About

17
Publications
3,527
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
37
Citations
Citations since 2016
16 Research Items
33 Citations
201620172018201920202021202205101520
201620172018201920202021202205101520
201620172018201920202021202205101520
201620172018201920202021202205101520
Introduction
I am currently a PhD student funded by DFG TropSOC project. In my research project, I am trying to develop a mechanistic understanding of C allocation and release in plant/soils of tropical Africa.

Publications

Publications (17)
Article
Land-use conversion can profoundly modify geochemical and microbial properties that drive organic carbon (C) dynamics in tropical soils. However, it is unclear how microbes adjust nutrient acquisition strategies to changing geochemical properties across deeply weathered soils developed from geochemically contrasting parent material. Here we show th...
Article
Full-text available
The lack of field-based data in the tropics limits our mechanistic understanding of the drivers of net primary productivity (NPP) and allocation. Specifically, the role of local edaphic factors - such as soil parent material and topography controlling soil fertility as well as water and nutrient fluxes - remains unclear and introduces substantial u...
Conference Paper
Full-text available
The net primary productivity (NPP) of tropical forests is an important component of the global terrestrial carbon (C) cycle. The lack of field-based data, however, limits our mechanistic understanding of the drivers of NPP and C allocation. In consequence, the role of local edaphic factors for forest growth and C dynamics is unclear and introduces...
Article
Full-text available
Background: Soil microbes are key drivers of carbon (C) and nutrient cycling in terrestrial ecosystems and their properties are influenced by the relationship between resource demand and availability. Aims: Our objective was to investigate patterns of microbial properties and their controls to understand whether they differ between soils derived fr...
Article
Full-text available
Information on soil properties is crucial for soil preservation, the improvement of food security, and the provision of ecosystem services. In particular, for the African continent, spatially explicit information on soils and their ability to sustain these services is still scarce. To address data gaps, infrared spectroscopy has achieved great succ...
Article
Full-text available
Heterotrophic soil respiration is an important component of the global terrestrial carbon (C) cycle, driven by environmental factors acting from local to continental scales. For tropical Africa, these factors and their interactions remain largely unknown. Here, using samples collected along topographic and geochemical gradients in the East African...
Article
Full-text available
The African Tropics are hotspots of modern-day land-use change and are, at the same time, of great relevance for the cycling of carbon (C) and nutrients between plants, soils and the atmosphere. However, the consequences of land conversion on biogeochemical cycles are still largely unknown as they are not studied in a landscape context that defines...
Preprint
Full-text available
The African Tropics are hotspots of modern-day land-use change and are, at the same time, of great relevance for the cycling of carbon (C) and nutrients between plants, soils and the atmosphere. However, the consequences of land conversion on biogeochemical cycles are still largely unknown as they are not studied in a landscape context that defines...
Data
Version 1.0 of the TropSOC database. Accompanying publication in ESSD currently under review, but available as a pre-print at: https://doi.org/10.5194/essd-2021-73
Preprint
Full-text available
Heterotrophic soil respiration is an important component of the global terrestrial carbon (C) cycle, driven by environmental factors acting from local to continental scales. For tropical Africa, these factors and their interactions remain largely unknown. Here, using samples collected along strong topographic and geochemical gradients in the East A...
Preprint
Full-text available
Information on soil properties is crucial for soil preservation, improving food security, and the provision of ecosystem services. Especially, for the African continent, spatially explicit information on soils and their ability to sustain these services is still scarce. To address data gaps, infrared spectroscopy has gained great success as a cost-...
Conference Paper
Tropical ecosystems and the soils therein have been reported as one of the most important and largest terrestrial carbon (C) pools and are considered important climate regulator. Carbon stabilization mechanisms in these ecosystems are often complex, as these mechanisms crucially rely on the interplay of geology, topography, climate, and biology. Fu...
Article
Wetlands can be considered as one of the most vulnerable and endangered ecosystems on the planet. The threat is even more emphasized when the “kidneys of the landscapes” are used for agricultural purposes. The agricultural intensification in Rwanda resulted year-round cultivation in most of the wetlands. Despite its higher water and labor demand th...
Article
Full-text available
The Rwandan agriculture strongly relies in the dry seasons on the water stored in artificial reservoirs of various sizes for irrigation purposes. Furthermore, the success of irrigation depends on a wide range of soil properties which directly affect the moisture regime of the growing medium. By integrating remote sensing and auxiliary data the objec...

Network

Cited By

Projects

Project (1)
Project
TROPSOC is a research group within the DFG funded Emmy Noether programme starting in Oct 2017. TROPSOC focuses on tropical soil organic carbon dynamics along erosional disturbance gradients in relation to soil geochemistry and land use. The main objective of the proposed TROPSOC project is to develop a mechanistic understanding of C sequestration and release in the soils of Tropical Africa, studied in the Eastern part of the Congo Basin. TROPSOC will make a significant contribution to answering the following questions: 1. How will nutrient fluxes and C allocation between soils, plants and the atmosphere evolve and differ in tropical systems in relation to the controlling factors: mineralogy, topography and vegetation? 2. How does geochemistry control, interact with or mediate the severity of erosional disturbance on C cycling in the critical zone of tropical soils? 3. How can we model the mechanisms controlling tropical soil C dynamics in a spatially explicit way?