Benjamin Bird

Benjamin Bird
  • PhD
  • Engineer at Hindsight Imaging Inc

About

56
Publications
19,112
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,132
Citations
Current institution
Hindsight Imaging Inc
Current position
  • Engineer
Additional affiliations
July 2006 - April 2013
Northeastern University
Position
  • Professor
September 2002 - July 2006
University of Nottingham
Position
  • Research Assistant

Publications

Publications (56)
Article
Thyroglobulin is a glycoiodoprotein that is produced by thyroid follicular cells; it is stored in follicles in structures known as colloids. The main function of this protein is to stock the hormones triiodothyronine (T3) and thyroxine (T4) until the body requires them. This study aims to demonstrate that infrared spectral imaging with appropriate...
Conference Paper
The field of infrared spectral imaging and microscopy is advancing rapidly due in large measure to the recent commercialization of the first high-throughput, high-spatial-definition quantum cascade laser (QCL) microscope. Having speed, resolution and noise performance advantages while also eliminating the need for cryogenic cooling, its introductio...
Article
Mid-infrared microscopy has become a key technique in the field of biomedical science and spectroscopy. This label-free, non-destructive technique permits the visualisation of a wide range of intrinsic biochemical markers in tissues, cells and biofluids by detection of the vibrational modes of the constituent molecules. Together, infrared microscop...
Article
Mid-infrared microscopy is a non-destructive, quantitative and label-free spectroscopic imaging technique that, as a result of recent instrument advancements, is now at the point of enabling high-throughput automated biochemical screening of whole histology samples. Currently the mid-infrared field is undergoing a paradigm shift that has not been s...
Article
Full-text available
Raman spectroscopy can be used to measure the chemical composition of a sample, which can in turn be used to extract biological information. Many materials have characteristic Raman spectra, which means that Raman spectroscopy has proven to be an effective analytical approach in geology, semiconductor, materials and polymer science fields. The appl...
Article
Full-text available
Accurate early diagnosis is critical to patient survival, management and quality of life. Biofluids are key to early diagnosis due to their ease of collection and intimate involvement in human function. Large-scale mid-IR imaging of dried fluid deposits offers a high-throughput molecular analysis paradigm for the biomedical laboratory. The exciting...
Article
Full-text available
Infrared microscopy has become one of the key techniques in the biomedical research field for interrogating tissue. In partnership with multivariate analysis and machine learning techniques, it has become widely accepted as a method which can distinguish between normal and cancerous tissue with both high sensitivity and high specificity1, 2. While...
Article
R aman spectroscopy can be used to measure the chemical composition of a sample, which can in turn be used to extract biological information. Many materials have characteristic Raman spectra, which means that Raman spectroscopy has proven to be an effective analytical approach in geology, semiconductor, materials and polymer science fields. The app...
Article
Instrumental advances in infrared micro-spectroscopy have made possible the observation of individual human cells and even subcellular structures. The observed spectra represent a snapshot of the biochemical composition of a cell; this composition varies subtly but reproducibly with cellular effects such as progression through the cell cycle, cell...
Article
Technological advances, namely the integration of quantum cascade lasers (QCLs) within an infrared (IR) microscope, are enabling the development of valuable label-free biomedical-imaging tools capable of targeting and detecting salient chemical species within practical clinical timeframes.
Article
Full-text available
Correction to: Laboratory Investigation (2015) 95, 406–421; doi:10.1038/labinvest.2015.1; published online 9 February 2015 In this article, Drs Benjamin Bird and Miloš Miljković of Laboratory for Spectral Diagnosis, Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA were mistakenly omitted from the byline.
Article
Full-text available
We report results of a study utilizing a novel tissue classification method, based on label-free spectral techniques, for the classification of lung cancer histopathological samples on a tissue microarray. The spectral diagnostic method allows reproducible and objective classification of unstained tissue sections. This is accomplished by acquiring...
Article
Full-text available
We report results from a study utilizing infrared spectral cytopathology (SCP) to detect abnormalities in exfoliated esophageal cells. SCP has been developed over the past decade as an ancillary tool to classical cytopathology. In SCP, the biochemical composition of individual cells is probed by collecting infrared absorption spectra from each indi...
Chapter
Instrumental advances in vibrational microspectroscopy have made possible the observation of individual human cells and even subcellular structures. The observed spectra represent a snapshot of the biochemical composition of a cell; this composition varies subtly but reproducibly with cellular effects such as progression through the cell cycle, cel...
Article
Mid-infrared spectroscopic imaging is a rapidly emerging technique in biomedical research and clinical diagnostics that takes advantage of the unique molecular fingerprint of cells, tissue and biofluids to provide a rich biochemical image without the need for staining. Spectroscopic analysis allows for the objective classification of biological mat...
Article
During the last 15years, vibrational spectroscopic methods have been developed, which can be viewed as molecular pathology methods that depend on sampling the entire genome, proteome, and metabolome of cells and tissues, rather than probing for the presence of selected markers. First, this review introduces the background and fundamentals of the sp...
Chapter
During the last 15years, vibrational spectroscopic methods have been developed, which can be viewed as molecular pathology methods that depend on sampling the entire genome, proteome, and metabolome of cells and tissues, rather than probing for the presence of selected markers. First, this review introduces the background and fundamentals of the sp...
Article
Full-text available
High-definition infrared (IR) microspectroscopic imaging in a desktop system enables high-throughput cell and tissue screening for clinical diagnostics and drug discovery. Made possible by several technology advances, the system offers clinical pathology a bridge from traditional imaging to a new method that quantifiably assesses tissue for better...
Article
During the last 15 years, vibrational spectroscopic methods have been developed that can be viewed as molecular pathology methods that depend on sampling the entire genome, proteome and metabolome of cells and tissues, rather than probing for the presence of selected markers. First, this review introduces the background and fundamentals of the spec...
Article
Full-text available
In this paper, we report the spectral patterns of normal human thyroid tissue and methodology to interpret hyperspectral imaging data and protein conformational changes observed therein. Raw image datasets were imported into software written in-house in the MATLAB environment and processed to yield pseudo-color images of the tissue sections. All sp...
Article
This paper presents a short review on the improvements in data processing for spectral cytopathology, the diagnostic method developed for large scale diagnostic analysis of spectral data of individual dried and fixed cells. This review is followed by the analysis of the confounding effects introduced by utilizing reflecting "low-emissivity" (low-e)...
Article
The first study interpreting B-lymphocyte activation in normal lymph nodes using vibrational micro-spectral imaging is reported. Lymphocyte activation indicates the presence and response against a pathogen, regardless of the inciting pathogen's etiology, whether a benign, reactive or malignant process. Understanding the biochemical makeup of lympho...
Chapter
Recent results suggest that infrared microspectroscopy, coupled to methods of multivariate analysis, can distinguish normal from virally infected cells. This was established for infection of the oral cavity by the herpes simplex virus, which is associated with the outbreak of cold sores, and for infection of the cervix uteri by the human papillomav...
Article
Spectral cytopathology (SCP) is a robust and reproducible diagnostic technique that employs infrared spectroscopy and multivariate statistical methods, such as principal component analysis to interrogate unstained cellular samples and discriminate changes on the biochemical level. In the past decade, SCP has taken considerable strides in its applic...
Article
This paper explores different phenomena that cause distortions of infrared absorption spectra by mixing of reflective and absorptive band shape components of infrared spectra, and the resulting distortion of observed band shapes. In the context of this paper, we refer to the line shape of the variations of the refractive index in spectral regions o...
Article
Full-text available
This paper summarizes the progress achieved over the past fifteen years in applying vibrational (Raman and IR) spectroscopy to problems of medical diagnostics and cellular biology. During this time, a number of research groups have verified the enormous information content of vibrational spectra; in fact, genomic, proteomic, and metabolomic informa...
Article
Full-text available
We report results of a study utilizing a recently developed tissue diagnostic method, based on label-free spectral techniques, for the classification of lung cancer histopathological samples from a tissue microarray. The spectral diagnostic method allows reproducible and objective diagnosis of unstained tissue sections. This is accomplished by acqu...
Article
We have optimized an imaging methodology capable of monitoring individual live HeLa cells using non-synchrotron FTIR in an aqueous environment. This methodology, in combination with MATLAB based pre-processing techniques, allows fast and efficient collection of data with high signal-to-noise ratio in comparison with previous methods using point mod...
Article
Spectral cytopathology (SCP) is a novel approach for disease diagnosis that utilizes infrared spectroscopy to interrogate the biochemical components of cellular samples and multivariate statistical methods, such as principal component analysis, to analyze and diagnose spectra. SCP has taken vast strides in its application for disease diagnosis over...
Article
Full-text available
The detection of micro-metastases and individual metastatic cells in lymph node tissue by spectral methods is summarized. These methods are based on instrument-based acquisition of thousands of infrared spectra of individual tissue pixels from the tissue section, and analysis of the resulting spectral hypercube by multivariate algorithms. The metho...
Article
In this paper we describe the advantages of collecting infrared microspectral data in imaging mode opposed to point mode. Imaging data are processed using the PapMap algorithm, which co-adds pixel spectra that have been scrutinized for R-Mie scattering effects as well as other constraints. The signal-to-noise quality of PapMap spectra will be compa...
Article
Raman microspectroscopy-based, label-free imaging methods for human cells at sub-micrometre spatial resolution are presented. Since no dyes or labels are used in this imaging modality, the pixel-to-pixel spectral variations are small and multivariate methods of analysis need to be employed to convert the hyperspectral datasets to spectral images. T...
Article
In this manuscript, we report the application of EMSC to correct infrared micro-spectral data recorded from tissue that describe resonant Mie scattering contributions. Small breast micro-metastases previously undetectable using the raw measured spectra were provided clear contrast from the surrounding tissue after signal correction. The technique a...
Article
Full-text available
Aim Spectral Cytopathology (SCP) is a novel spectroscopic method for objective and unsupervised classification of individual exfoliated cells. The limitations of conventional cytopathology are well-recognized within the pathology community. In SCP, cellular differentiation is made by observing molecular changes in the nucleus and the cytoplasm, whi...
Article
Full-text available
Spectral cytopathology (SCP) is a novel approach for diagnostic differentiation of disease in individual exfoliated cells. SCP is carried out by collecting information on each cell's biochemical composition through an infrared micro-spectral measurement, followed by multivariate data analysis. Deviations from a cell's natural composition produce sp...
Chapter
IntroductionMethods Results and DiscussionConclusions AcknowledgmentsReferences
Article
Full-text available
We report the ability of infrared micro-spectral imaging, coupled with completely unsupervised methods of multivariate statistical analysis, to accurately reproduce the histological architecture of axillary lymph nodes and detect metastatic breast cancer cells. The acquisition of spectral data from tissue embedded in paraffin provided spectra free...
Article
Full-text available
The first detection of breast cancer micrometastases in lymph nodes by infrared spectral imaging and methods of multivariate analysis is reported. Micrometastases are indicators of early spread of cancer from the organ originally affected by disease, and their detection is of prime importance for the staging and treatment of cancer. Infrared spectr...
Article
Full-text available
We report microscopically collected infrared spectra of cells found in human urine in an effort to develop automatic methods for bladder cancer screening. Unsupervised multivariate analysis of the observed spectral patterns reveals distinct spectral classes, which correlated very well with visual cytology. Therefore, we believe that spectral analys...
Chapter
Spectral cytology, the diagnosis of disease based on objective physical measurements on individual cells and subsequent computer‐based algorithmic interpretation, promises to provide faster and more reliable results than classical cytology. The measurements described in this review are based on well‐established vibrational microspectroscopic techni...
Article
Full-text available
Histopathologic evaluation of surgical specimens is a well established technique for disease identification, and has remained relatively unchanged since its clinical introduction. Although it is essential for clinical investigation, histopathologic identification of tissues remains a time consuming and subjective technique, with unsatisfactory leve...
Article
Full-text available
This chapter presents novel microscopic methods to monitor cell biological processes of live or fixed cells without the use of any dye, stains, or other contrast agent. These methods are based on spectral techniques that detect inherent spectroscopic properties of biochemical constituents of cells, or parts thereof. Two different modalities have be...
Chapter
This comprehensive overview of biomedical applications of vibrational spectroscopy focuses on methodologies that are most relevant to biodiagnostics. After a few introductory chapters that summarize the current status of the field, the reference covers current spectroscopic applications; new spectroscopic directions; and study design and the analys...
Article
Full-text available
Recently Fourier Transform Infrared (FTIR) spectroscopic imaging has been used as a tool to detect the changes in cellular composition that may reflect the onset of a disease. This approach has been investigated as a mean of monitoring the change of the biochemical composition of cells and providing a diagnostic tool for various human cancers and o...
Article
The focus of this study is the potential use of FTIR imaging as a tool for objective automated histopathology. The Thesis also reports the use of multivariate statistical techniques to analyse the FTIR imaging data. These include Principal Component Analysis (PCA), Hierarchical Cluster Analysis (HCA), Multivariate Curve Resolution (MCR) and Fuzzy C...
Chapter
Full-text available
A comprehensive, coherent, and in depth presentation of the state of the art in fuzzy clustering. Fuzzy clustering is now a mature and vibrant area of research with highly innovative advanced applications. Encapsulating this through presenting a careful selection of research contributions, this book addresses timely and relevant concepts and metho...
Chapter
IntroductionClustering TechniquesCluster ValiditySimulated Annealing Fuzzy Clustering AlgorithmAutomatic Cluster Merging Method Conclusion AcknowledgementsReferences
Conference Paper
Full-text available
Currently there is considerable effort investigating whether infrared spectroscopy can be used as a diagnostic probe to identify early stages of cancer since these techniques are sensitive to biological changes within cells. Cluster analysis is often used to try and unravel complex vibrational images. In this paper, a Fuzzy C-Means (FCM) based mode...

Network

Cited By